
Int. J. Appl. Math. Comput. Sci., 2005, Vol. 15, No. 3, 359–367

NON–COOPERATIVE GAME APPROACH
TO MULTI–ROBOT PLANNING

ADAM GAŁUSZKA, ANDRZEJ ŚWIERNIAK

Silesian University of Technology
Institute of Automatic Control

Akademicka 16, 44–100 Gliwice, Poland
e-mail: {agaluszka, aswierniak}@ia.polsl.gliwice.pl

A multi-robot environment with a STRIPS representation is considered. Under some assumptions such problems can be
modelled as a STRIPS language (for instance, a Block World environment) with one initial state and a disjunction of goal
states. If the STRIPS planning problem is invertible, then it is possible to apply the machinery for planning in the presence
of incomplete information to solve the inverted problem and then to find a solution to the original problem. In the paper a
planning algorithm that solves the problem described above is proposed and its computational complexity is analyzed. To
make the plan precise, non-cooperative strategies are used.

Keywords: planning problems, multi-robot environment, STRIPS language, non-cooperative games, planning complexity

1. Introduction

In multi-agent (multi-robot) environments each agent tries
to achieve its own goal. This leads to complications in
problem modelling and searching for a solution: in most
cases, agents’ goals are conflicting: the agents usually
have different capabilities and goal preferences, and they
simultaneously interact with the problem environment.
Many methods for solving these problems are known and
developed in the literature (Belker et al., 2002; Boutilier
and Brafman, 2001; Kraus et al., 1998). Most approaches
take into account situations where agents in conflicting
situations cooperate to make decisions (Karacapilidis and
Papadias, 1998; Kraus et al., 1998; Zhang et al., 2001). In
this paper the opposite situation is considered, i.e., agents
cannot cooperate.

In our case the problem environment was mod-
elled as the Block World with a STRIPS representation.
This domain is often used to model planning problems
(Boutilier and Brafman, 2001; Gałuszka and Świerniak,
2003; 2003a; Kraus et al., 1998; Nilson, 1980; Slaney
and Thiebaux, 2001; Smith and Weld, 1998) because of
complex operator interactions and simple physical inter-
pretations.

Since the 1970s, the STRIPS formalism introduced
by (Nilson, 1980) has become popular for planning prob-
lems (Weld, 1999). Planning problems are PSPACE-
complete in a general case (Baral et al., 2000; Bylander,
1994), and even in a Block World environment they are
not easy (here the problem of optimal planning is NP-

complete, cf. Gupta and Nau, 1993)). This Block World is
stated now as an experimentation benchmark for planning
algorithms (Howe and Dahlman, 2002).

1.1. Contribution of the Paper

In this paper we propose a methodology that solves the
problem of plan generation for robots being in conflict.
This methodology combines the STRIPS language and
game theory: it is based on a block world environment,
the invertibility of STRIPS planning problems, confor-
mant planning and non-cooperative games. The STRIPS
domain is modified according to a classical one in such a
way that generating a conformant plan is easy in the sense
of computational complexity. The modification also guar-
antees that the plan exists but makes it imprecise. To spec-
ify the plan, the use of the Nash equilibrium is proposed.

1.2. Motivation

The Block World environment is chosen to illustrate
the proposed approach despite the fact that it has been
considered in the literature for decades (Nilson, 1980).
Today this domain can be a representation for logis-
tic problems, where moving blocks correspond to mov-
ing different objects like packages, trucks and planes
(Slaney and Thiebaux, 2001). The case of the Block
World problem where the table has a limited capac-
ity corresponds to a container-loading problem (Slavin,

A. Gałuszka and A. Świerniak360

1996). In real situations decision problems at con-
tainer terminals are more complex and divided into sev-
eral groups: the arrival of a ship, the unloading and
loading of the ship, the transport of containers from
and onto the ship, the stacking of containers (see, e.g.,
www.ikj.nl/container/decisions.html).

Since the arrival of a ship and the transport of con-
tainers are usually treated as scheduling and allocation
problems (Bish et al., 2001; Imai et al., 2001), problems
of loading and unloading and container stacking can be
treated as planning ones (e.g. Avriel et al., 1998; Wil-
son 2000). In a natural way, containers can be treated as
blocks and cranes as robots that are stacking and unstack-
ing the blocks. There are also other sources of conflicting
situations:

• the unloading time should be minimized (this corre-
sponds to the minimization of the robots’ moves), but
a good distribution of containers on the ship should
be respected because of its stability (Avriel et al.,
2000);

• different robots have different goals (cranes can be
designed to realize different export and import con-
tainer tasks in parallel).

We propose to treat these conflicts as a discrete non-
cooperative game. This assumption can be justified as fol-
lows:

• firstly, as a game with nature since the ship stability
is ‘non-negotiable’,

• secondly, the number of imported containers is
known in practice shortly before the arrival of the
ship (Wilson, 2000).

In these games, robot decisions are moves of blocks
and the profit describes the preference of achieving a sin-
gle subgoal.

In a general case (in other logistic problems), this as-
sumption can also be justified in the case where in the
robot environment communication is not allowed or the
communication equipment is broken down.

1.3. Organization of the Paper

The paper is organized as follows: In Section 2 the prob-
lem is defined. In Section 3 a method of finding a solution
of the defined problem is described. This section is di-
vided into four subsections that describe the steps and an
exemplary simulation. The computational complexity of
the search for the solution is analysed in Section 4. Then
the work is concluded.

2. Problem Definition

We focus on the following situation:

• in the initial state there are a finite number of blocks
and a table with unlimited memory;

• two (or, in a general case, more) robots tend to re-
build the initial state, each on its own (each robot
wants to achieve its own desired goal situation);

• the goal of each robot consists of subgoals;
• each subgoal has its preference (the preference de-

scribes the profit of achieving this subgoal);
• robots may have different capabilities (i.e., not all

robots may be able to move all blocks);
• robots cannot cooperate.

We are interested in the following two problems:

• to find a solution for the above situation;
• to analyse the computational complexity of the pro-

posed algorithm of searching for this solution.

The solution is understood as an action sequence that
achieves some or all of subgoals of each robot in such
a way that the sum of the profits of the robots is max-
imised. Because of their autonomy, the robots are also
called agents.

3. Method of Finding a Solution

The problem where there are some possible initial states
and one goal state is called the problem of planning in
the presence of incompleteness (Weld et al., 1998). The
inverse problem is connected with the situation with one
initial state and more possible goal states. It corresponds
to a multi-robot Block World problem where each robot
wants to achieve its own goal. If we are able to find a plan
for the problem of planning in the presence of incomplete-
ness, then it is possible to extract a solution for the multi-
agent problem. Below we define the STRIPS language, an
invertible planning problem and inverse operators.

3.1. STRIPS Language

In general, the STRIPS language is represented by four
lists (C; O; I; G) (Bylander, 1994; Nilson, 1980):

• a finite set of ground atomic formulae (C), called
conditions,

• a finite set of operators (O),
• a finite set of predicates that form the initial state (I),
• a finite set of predicates that define the goal

state (G).

Non-cooperative game approach to multi-robot planning 361

The initial state describes the physical configuration
of the blocks. The description should be complete, i.e.,
it should deal with every true predicate corresponding to
the state. The goal state is a conjunction of predicates.
Predicates in I and G are ground and function free. In a
multi-agent environment each agent defines its own goal.
This description does not need to be complete. The algo-
rithm results in an ordered set of operators (i.e., an action
sequence) that transforms an initial state into a goal situa-
tion.

Operators O in the STRIPS representation consist of
three sublists: a precondition list (pre), an add list (add)
and a delete list (del). Formally an operator o ∈ O takes
the form pre(o) → add(o), del(o). The precondition list
is a set of predicates that must be satisfied in the world
state to perform this operator. The delete list is a set of
predicates that become false after executing the operator,
and the add list is a set of predicates that become true. The
last two lists represent the effects of the operator executing
in the problem state. Following (Koehler and Hoffmann,
2000), the set of actions in a plan is denoted by P o.

It is assumed that agents may have different capabil-
ities (i.e., they can deal with limited problem elements),
but this is not obligatory. No negotiations are allowed.
Goal preferences are also considered. We will understand
the profit as the sum of the preferences of subgoals being
satisfied.

To analyze our problem, we introduced four opera-
tors similar to classical ones in the Block World as in (Nil-
son, 1980). The only difference is that the operators stack
and unstack specify only the block that is currently being
transformed (i.e., they do not specify on which block a
transformed block is stacked, nor from which block it is
unstacked):

• pickup(x) — the block x is picked up from the table;
precondition list & delete list: ontable(x), clear(x),
handempty add list: holding(x)

• putdown(x) — the block x is put down on the table;
precondition list & delete list: holding(x) add list:
ontable(x), clear(x), handempty

• stack(x) — the block x is stacked on any other block;
precondition list & delete list: holding(x), clear(_)
add list: handempty, on (x, _), clear(x)

• unstack(x) — the block x is unstacked from any
other block;
precondition list & delete list: handempty, clear(x),
on(x, _) add list: holding(x), clear(_).

The underscore sign denotes ‘any block’.

Now an invertible planning problem is intro-
duced (Koehler and Hoffmann, 2000). The problem

(C, O, I, G) is called invertible if and only if

∀s : ∀PO : ∃P
O

: Result(Result(s, PO), P
O

) = s,

where
Result(S, 〈〉) = S,
Result(S, 〈o〉) = (S(add(o)) del(o) if pre(o) ⊆ S

S in the opposite case,
Result(S, 〈o1, o2, . . . , on〉)

= Result(Result(S, 〈o1〉), 〈o2, . . . , on〉),
and P

O
is called an inverted plan.

Now an inverse operator is introduced follow-
ing (Koehler and Hoffmann, 2000). An operator
o ∈ O is called inverse if and only if it has the form
pre(o) → add(o), del(o) and satisfies the conditions

1. pre(o) ⊆ pre(o) ∪ add(o)\del(o),

2. add(o) = del(o),

3. del(o) = add(o).

Under the closed-world assumption, applying an in-
verse operator leads back to the previous state. Koehler
and Hoffmann (2000) proved that if for each operator
there exist an inverse operator, then the problem is invert-
ible.

It is easy to see that unstack is an inverse operator
for stack, and pickup is an inverse operator for putdown.
We have defined the Block World as an invertible planning
problem because it allows us to apply planning in the pres-
ence of incompleteness as a methodology to search for a
solution to the inverted multi-agent problem and then to
extract a solution for the right multi-agent problem.

3.2. Plan in the Presence of Incompleteness as an
Inverted Plan in a Multi-Robot Environment

There are many possible types of modelling uncertainty in
planning problems. One of the groups of planning algo-
rithms in the presence of incompleteness deals with plan-
ning problems with uncertainty in the initial state (Weld
et al., 1998). In this case the algorithm seeks to generate
a robust plan by thinking over all possibilities. This ap-
proach is called conformant planning (Smith and Weld,
1998). Conformant planning algorithms develop non-
conditional plans that do not rely on sensory information,
but still succeed no matter which of the allowed states the
world is actually in.

3.3. Examples

The Block World environment was implemented using the
PDDL language (Planning Domain Definition Language),

A. Gałuszka and A. Świerniak362

A
E D

B
F
C

(a)

A
D
E

C
F B

1
3 2

4

(b)

A
C
E

D
F B

1
4 2

3

(c)

Fig. 1. Definition of Problem 1 (numbers describe the
preference of achieving a subgoal) : (a) initial
state, (b) desired goal state of Robot 1 (the goal
conflicts with the goal of Robot 2), (c) desired
goal state of Robot 2 (the goal conflicts with the
goal of Robot 1) .

extended for handling uncertainty in the initial state (Yale
Center, 1998). The Graphplan algorithm was used to solve
block world problems with uncertainty in the initial state
(www.cs.washington.edu/research/projects
/www/sgp.html).

Two different problems are presented below. In both
cases two robots operate in the environment. In Problem 1
(see Fig. 1) Robot 1 is capable of moving the blocks A, B
and C, whereas Robot 2 can move the blocks D, E and F.
In Problem 2 (see Fig. 2) Robot 1 is capable of moving
the blocks A, B, C and D, whereas Robot 2 can move the
blocks E, F, G and H. In both cases the definitions of the
operators are inverted (operator names are changed, i.e.,
unstack for stack and pickup for putdown). This implies
that the plan for the inverted problem is extracted just by
executing the found plan in reverse order. In both cases the
agents’ goals are in conflict. The case when the goals do
not conflict with one another in a multi-agent environment
was investigated in (Gałuszka and Świerniak, 2002).

The solution to Problem 1 (a conformant plan)
consists of 7 steps and should be read in reverse order:

Step 7 – ((((STACK2 E)))

Step 6 – (((PICK-UP2 E)) ((STACK1 A)))

Step 5 – (((STACK2 D)) ((UNSTACK1 A)))

Step 4 – (((PICK-UP2 D)) ((STACK1 C)))

Step 3 – (((PUT-DOWN2 D)) ((UNSTACK1 C)))

Step 2 – (((PICK-UP2 D)) ((PUT-DOWN1 B)))

Step 1 – (((UNSTACK1 B))))

A E D B F C G H

(a)

A E

D

B F
C G

H

 2

 1
4 2

3

3

(b)

A E

H

F B
C G

D

1

3
 2 3

 3

 4

(c)

Fig. 2. Definition of Problem 2 (numbers describe the
preference of achieving a subgoal) : (a) initial
state, (b) desired goal state of Robot 1 (the goal
conflicts with the goal of Robot 2), (c) desired
goal state of Robot 2 (the goal conflicts with the
goal of Robot 1).

The solution to Problem 2 consists of 6 steps:

Step 6 – ((((STACK2 E)) ((STACK1 A)))

Step 5 – (((PICK-UP2 E)) ((PICK-UP1 A)))

Step 4 – (((STACK2 F)) ((STACK1 B)))

Step 3 – (((PICK-UP2 F)) ((PICK-UP1 B)))

Step 2 – (((STACK2 G)) ((STACK1 C)))

Step 1 – (((PICK-UP2 G)) ((PICK-UP1 C))))

Both agents can apply the above plan to attain their
goals. However, when they are trying to achieve their
goals simultaneously, they are in conflict. To make deci-
sions in the presence of such a conflict situation, a non-
cooperative equilibrium is proposed. Non-cooperative
games have been used in planning earlier (see, e.g., Isil
Bozma and Koditschek, 2001; Skrzypczyk, 2005), but
here this idea is combined with the classical STRIPS sys-
tem. Now we define the non-cooperative equilibrium (the
Nash equilibrium, cf. Mesterton-Gibbons, 2001; Mc Kin-
sey, 1952), and indicate how the agents can maximise their
profits (the sum of the preferences of satisfied goals) by
achieving a non-cooperative (Nash) equilibrium.

3.4. Non-Cooperative Game

For our problem a plan exists only if the operators stack
and unstack have only one parameter so they do not spec-
ify from which and on which block the transformed one is

Non-cooperative game approach to multi-robot planning 363

stacked or stacked out. This implies that both robots can
apply the found plan to reach theirs goals but not simul-
taneously. Using goal preferences it is possible to express
this conflict with a bimatrix game represenattion (for our
two-robot problem), and then to use a Nash equilibrium
strategy to specify how to apply the plan simultaneously
and maximise the profit (the sum of satisfied goals prefer-
ences). The analysis of the problem leads to two remarks:

Remark 1. It is not always possible to find a Nash strategy
for the defined problems, and in a general case it depends
on the problem size.

Remark 2. More precisely, the Nash strategy (if it ex-
ists) defines an equilibrium for the whole plan when the
number of the stack operators in the found plan is even for
each agent (two operators for each agent in Problem 1).
When this condition is not satisfied (three operators for
each agent in Problem 2), then the Nash strategy defines
an equilibrium only for a part of the problem.

The conflict between two robots will be presented by
a bimatrix game (Mesterton-Gibbons, 2001). The matrix
A characterises the profits of the first agent, and the ma-
trix B characterises the profits of the second agent. We
assume that Agent 1 chooses rows and Agent 2 chooses
columns of the matrices. The agents try to maximise profit
functions defined by the matrices A = aij and B = bij .

Definition of the Nash equilibrium. The strategy
{i0, j0} determines a non-cooperative (Nash) equilibrium
in a bimatrix game (A, B) if the following inequalities
are satisfied:

aiojo ≥ aijo , biojo ≥ bioj

for all i = 1, 2, . . . , n and j = 1, 2, . . . , m.
The Nash strategy is reasonable in conflict situa-

tions where players (in this case agents) strive to max-
imise profits, do not cooperate and make decisions inde-
pendently.

Now we define matrices for Problem 1. The strate-
gies in the matrices correspond to the plan that solves
Problem 1. Agent 1 can stack the block C either on B
or F, and the block A on C or D, whereas Agent 2 can
stack block D on B or F and block E on C or D. The val-
ues in the matrices correspond to goal preferences (e.g., if
Robot 1 stacks the block A on C and Robot 2 block D on
F, then the profit of Robot 1 is 5 since it satisfied two of its
subgoals, whereas the profit of Robot 2 is 0 as it satisfied
none of its subgoals). Tables 1 and 2 show the profits of
Agent 1 and 2.

In this game we found one strategy that satisfies the
non-cooperative (Nash) equilibrium definition (in brack-
ets). This strategy modifies the plan in such a way that

Table 1. Matrix A (profits of the first agent).

Robot 1
Robot 2

stack D B stack D F stack E C stack E D

Stack C B 3 3 + 2 (3) 3 + 4

Stack C F 0 2 0 4

Stack A C 1 1 + 2 1 1 + 4

Stack A D 0 2 0 4

Table 2. Matrix B (profits of the second agent).

Robot 1
Robot 2

stack D B stack D F stack E C stack E D

stack C B 1 0 (2) 0

stack C F 1 + 3 3 2 + 3 3

stack A C 1 0 2 0

stack A D 1 + 4 4 2 + 4 4

Agent 1 should place the block C on B and Agent 2 should
place block E on C. This leads to the situation when the fi-
nal state for Problem 1 takes the form presented in Fig. 3.

E
D
A

C
F B

Fig. 3. Final state for Problem 2 that comes
from a Nash equilibrium.

Finally, the profit of Agent 1 is now 3 + 2 = 5, and for
Agent 2 it is 2 + 4 = 6.

Finding a solution is more difficult for real-size prob-
lems. There are two sources of this situation: a game solu-
tion is non-unique (i.e., there are Nash equilibria that can-
not be compared) or it does not exist (i.e., Nash equilibria
do not exist). In the first case an additional criterion could
be introduced (e.g., a greedy strategy that maximises the
sum of profits of all players—for greedy strategies, see,
e.g., (Papadimitriou, 2001a)—or a fair-arbiter one based
on other strategies, cf. (Skrzypczyk, 2005). In the sec-
ond case a safe strategy can be applied (i.e., the strategy
that maximizes the minimal possible profit (Mesterton-
Gibbons, 2001; Basar and Olsder, 1982).

A. Gałuszka and A. Świerniak364

4. Computational Complexity of the Search
for a Solution

The complexity analysis should take into account the
complexity of finding a plan problem (Section 4.1) and
the complexity of solving a game (Section 4.2).

4.1. Complexity of Finding a Plan

In general, planning with complete information is
PSPACE-complete (Bylander, 1994). In the Block World
the problem of optimal planning is NP-complete (Bylan-
der, 1994). Planning in the presence of incompleteness
belongs to the next level in the hierarchy of completeness
(Baral et al., 2000). The proposed algorithm is formulated
in such a way that for a subclass of block world problems
it reduces the complexity of finding a solution to the P
class.

Non-optimal planning in the Block World is in the P
class of complexity (Gupta and Nau, 1992). With no loss
of generality, while analysing the complexity in our case,
it is assumed that the planning problems are limited only
to a completely decomposed initial state (i.e., all blocks
are on the table) as it shown in Fig. 4. Then the inverted
problem is to decompose all possible initial states (i.e., the
goal definition consists only of ‘on-table’ predicates). The
number of possible initials corresponds to the number of
robots. So the inverted problem is planning in the pres-
ence of incompleteness (see Fig. 5).

Now there will be shown a sub-class of block world
problems for which finding a plan is easy. In this class
each block has the same position in the stack in each pos-
sible initial state. This class belongs to the same class of
complexity as classical block world planning.

The Hass Diagram (Gupta and Nau, 1992) will be
used to represent possible initial states of the block world.
This diagram is a directed acyclic graph whose nodes are
the blocks and arcs are from the block x to the block y
if and only if on (x, y) is in an initial state. This diagram
can be constructed in linear time (Gupta and Nau, 1992).
Since the number of possible initial states is equal to the
number of robots, the time necessary to built a Hass dia-
gram for all initial states is also linear.

Next, for each block in each possible initial state, the
position in stack is calculated using Hass diagrams. This
corresponds to the problem of finding the length of a path
in an acyclic graph. In Problem 2 the block positions are:

for A and E – 3,

for F and B – 2,

for C and G – 1,

for D and H – 0
for both possible initial states.

If each block has the same position in a stack in each
possible initial state, then there exists the same plan for
each agent that solves the problem of decomposing all ini-
tials. Hence, in order to find a plan, only the goal situation
and block positions can be considered. Subgoals are se-
rialised in decreasing order according to block positions.
For the situation in Problem 2 we have the order
{

(on-table A), (on-table E), (on-table F), (on-table B),

(on-table C), (on-table G), (on-table D), (on-table H)
}
.

If all blocks are on the table, then all are ‘clear’. Let
us redefine the order:

{
(clear A), (clear E), (clear F), (clear B),

(clear C), (clear G), (clear D), (clear H)
}
,

and define one operator move-to-table (x): pre:(clear x),
(on x y), add: (clear y). The operator consists of posi-
tive preconditions and one postcondition (so non-optimal
planning is tractable, cf. (Bylander, 1994)). This simple
operator extends the definition of the current state tak-
ing into account the order in the goal definition, until all
‘clear’ predicates are true in the current state.

Each step requires only a polynomial time, so the
presented planning problem is solved in polynomial time
(it belongs to the complexity P class).

4.2. Complexity of Solving a Game

Now the complexity of solving a game is analysed. The
complexity of the problem of finding Nash equilibria is
widely described in the literature and solved only for spe-
cific cases (Papadimitriou, 2001; Fabricant et al., 2004).
In this case assume that k is the number of robots, ni is
the number of decisions of the i-th robot, i = 1, 2, . . . , k,
and nmax = max {n1, n2, . . . , nk}.

To find all possible Nash equilibria for k = 2, the
number of maximizations of nmax elements is n2

max in
the worst case. So, the time needed for this, is bounded
by O(n3

max). In general, there are nk
max maximizations

of n
(k−1)
max elements, so for a bounded number of robots

the problem of finding Nash equilibria in this case is poly-
nomial time complete.

5. Conclusion

Defining a Block World environment as an invertible
STRIPS planning problem allows us to apply planning in
the presence of incompleteness as a machinery of search-
ing for a solution of the inverted multi-agent problem and
then the extraction of a solution for the primary multi-
robot problem. It is possible to use a non-cooperative

Non-cooperative game approach to multi-robot planning 365

 Robot 2 Robot 1

Fig. 4. Problem with a decomposed initial state.

 Robot 2 Robot 1

Fig. 5. Inverted problem with a disjunction of the initial state.

A. Gałuszka and A. Świerniak366

equilibrium strategy to improve the found plan. The pro-
posed methodology is polynomial time complete.

The approach presented in the paper is applicable
only to the work block model. It should be interest-
ing to extend this work to other domains. The group of
robots which move blocks is an agent-based system be-
cause there is no communication among the constituent
agents. Moreover, when a plan is found (that satisfies
non-cooperative Nash equilibrium), it acts as centralized
control and the agents only have to execute it, losing their
autonomy. Although the plan is improved using a non-
cooperative strategy, when the agents execute the general
plan (following a Nash equilibrium), they are cooperating
in an indirect way.

The computational complexity study presented is ap-
plicable only to the Block World.

Acknowledgments

This work was supported by the Polish State Committee
for Scientific Research through a grant No. 3 T 11 A 026
28 in 2005 for the first author and by the Silesian Univer-
sity of Technology through a grant in 2005 for the second
author.

References

Avriel M., Penn M., Shpirer N. and Witteboon S. (1998):
Stowage planning for container ships to reduce the num-
ber of shifts. — Ann. Oper. Res., Vol. 76, pp. 55–71.

Avriel M., Penn M. and Shpirer N. (2000): Container ship
stowage problem: complexity and connection to the col-
oring of circle graphs. — Discr. Appl. Math., Vol. 103,
pp. 271–279.

Baral Ch., Kreinovich V. and Trejo R. (2000): Computational
complexity of planning and approximate planning in the
presence of incompleteness. — Artif. Intell., Vol. 122,
pp. 241–267.

Basar T. and Olsder G.J. (1982): Dynamic Noncooperative
Game Theory. — New York: Academic Press.

Belker T., Beetz M. and Cremers. A.B. (2002): Learning of plan
execution policies for indoor navigation. — AI Comm.,
Vol. 15, No. 1, pp. 3–16.

Bish E.K., Leong T.Y., Li C.L., Ng J.W.C. and Simchi-Levi D.
(2001): Analysis of a new vehicle scheduling and location
problem. — Naval Res. Logist., Vol. 48, pp. 363–385.

Boutilier C. and Brafman R.I. (2001): Partial-order planning
with concurrent interacting. — Actions. J. Artif. Intell.
Res., Vol. 14, pp. 105–136.

Bylander T. (1994): The computational complexity of proposi-
tional STRIPS planning. — Artif. Intell., Vol. 69, pp. 165–
204.

Fabricant A., Papadimitriou Ch. and Talvar K. (2004): The com-
plexity of pure Nash equilibria. — Proc. ACM Symp. The-
ory of Computing, Chicago, pp. 604–612.

Gałuszka A. and Świerniak A. (2002): Planning in multi-agent
environment as inverted STRIPS planning in the presence
of uncertainty, In: Recent Advances In Computers, Com-
puting and Communications (N. Mastorakis and V. Malde-
nov, Eds.). — Athens: WSEAS Press, pp. 58–63.

Gałuszka A. and Świerniak A. (2003): STRIPS representation
and non-cooperative strategies in multi-robot planning. —
Proc. 15th European Simulation Symposium (SCS), Delft,
the Netherlands, pp. 110–115.

Gałuszka A. and Świerniak A. (2003a): Invertible planning
and non-cooperative equilibrium strategies in multi-agent
planning. — Proc. 11th IEEE Mediterranean Conf. Control
& Automation, Rhodos, Greece, CD-ROM.

Gupta N. and Nau D.S. (1992): On the complexity of Blocks-
World Planning. — Artif. Intell., Vol. 56, No. 2–3,
pp. 223–254.

Howe A.E. and Dahlman E. (2002): A critical assessment of
benchmark comparison in planning. — J. Artif. Intell.
Res., Vol. 17, pp. 1–33.

Imai A., Nishimura E. and Papadimitriou S. (2001): The dy-
namic berth allocation problem for a container port. —
Transp. Res., Vol.B 35, pp. 401–417.

Isil Bozma H. and Koditschek D.E. (2001): Assembly as a non-
cooperative game of its pieces: Analysis of 1D sphere as-
semblies. — Robotica, Vol. 19, pp. 93–108.

Karacapilidis N.I. and Papadias D. (1998): A computational ap-
proach for argumentative discourse in multi-agent decision
making environment. — AI Comm., Vol. 11, No. 1, pp. 21–
33.

Koehler J. and Hoffmann J. (2000): On reasonable and forced
goal orderings and their use in an agenda-driven planning
algorithm. — J. Artif. Intell. Res., Vol. 12, pp. 339–386.

Kraus S., Sycara K. and Evenchik A. (1998): Reaching agree-
ments through argumentation: A logical model and imple-
mentation. — Artif. Intell., Vol. 1, No. 4, pp. 1–69.

Mc Kinsey J.C. (1952): Introduction to the Theory of Games. —
New York: Mc Graw Hill.

Mesterton-Gibbons M. (2001): An Introduction to Game-
Theoretic Modelling. — Providence, RI: American Mathe-
matical Society.

Nilson N.J. (1980): Principles of Artificial Intelligence. — Palo
Alto, CA: Toga Publishing Company.

Papadimitriou Ch. (2001): Algorithms, games and the Internet.
— Proc. ACM Symp. Theory of Computing, Hersonissos,
Greece, pp. 749–753.

Papadimitriou Ch. (2001a): Theory of the Complexity. — War-
saw: Polish Scientific Publishers.

Skrzypczyk K. (2005): Control of a team of mobile robots based
on non-cooperative equilibria with partial coordination.
— Int. J. Appl. Math. Comp. Sci., Vol. 15, No. 1, pp. 89–
97.

Non-cooperative game approach to multi-robot planning 367

Slaney J. and Thiebaux S. (2001): Block World revisited. — Ar-
tif. Intell., Vol. 125, pp. 119–153.

Slavin T. (1996): Virtual port of call. — New Scientist, No. 15,
pp. 40–43.

Smith D.E. and Weld D.S. (1998): Conformant graphplan.
— Proc. 15th Nat. Conf. Artificial Intelligence, Madison,
Wisconsin, USA, pp. 889–896.

Weld D.S. (1999): Recent Advantages in AI Planning. — AI
Mag. Vol. 20, No. 2, pp. 93–123.

Weld D.S., Anderson C.R. and Smith D.E. (1998): Extend-
ing graphplan to handle uncertainty & sensing actions.
— Proc. 15th Nat. Conf. Artificial Intelligence, Madison,
Wisconsin, USA, pp. 897–904.

Wilson I.D. and Roach P.A. (2000): Container stowage plan-
ning: A methodology for generating computerised solu-
tions. — J. Oper. Res. Soc., Vol. 51, pp. 1248–1255.

Yale Center for Computational Vision and Control (1998):
PDDL – The planning domain definition language. —
Tech. Report CVC TR-98-003/DCS TR-1165.

Zhang Y., Wu Ch. and Bai Y. (2001): Implementing prioritized
logic programming. — AI Comm., Vol. 14, No. 4, pp. 183–
196.

Received: 25 October 2004
Revised: 23 June 2005

