
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 2, 349–366
DOI: 10.2478/v10006-010-0026-2

A HIERARCHICAL DECOMPOSITION OF DECISION PROCESS PETRI NETS
FOR MODELING COMPLEX SYSTEMS

JULIO CLEMPNER

Center for Computing Research
National Polytechnic Institute (CIC-IPN), Av. Juan de Dios Batiz s/n, Edificio CIC, Col. Nueva Industrial Vallejo

07738 Mexico City, Mexico
e-mail:julio@clempner.name

We provide a framework for hierarchical specification called Hierarchical Decision Process Petri Nets (HDPPNs). It is
an extension of Decision Process Petri Nets (DPPNs) including a hierarchical decomposition process that generates less
complex nets with equivalent behavior. As a result, the complexity of the analysis for a sophisticated system is drasti-
cally reduced. In the HDPPN, we represent the mark-dynamic and trajectory-dynamic properties of a DPPN. Within the
framework of the mark-dynamic properties, we show that the HDPPN theoretic notions of (local and global) equilibrium
and stability are those of the DPPN. As a result in the trajectory-dynamic properties framework, we obtain equivalent
characterizations of that of the DPPN for final decision points and stability. We show that the HDPPN mark-dynamic and
trajectory-dynamic properties of equilibrium, stability and final decision points coincide under some restrictions. We pro-
pose an algorithm for optimum hierarchical trajectory planning. The hierarchical decomposition process is presented under
a formal treatment and is illustrated with application examples.

Keywords: hierarchy, decomposition, structuring mechanisms, re-usable components, decision process, DPPN, stability,
Lyapunov methods, optimization.

1. Introduction

The most critical point in the development of complex sys-
tems depends largely on the ability to choose a concep-
tual model to represent the problem domain in a coherent
and natural fashion. Formal models that capture and orga-
nize knowledge hierarchically can facilitate solutions to
this problem.

Decision Process Petri Nets (DPPNs) are used for
complex systems representations, taking advantage of the
well-known properties of Petri nets, namely, formal se-
mantic, graphical display and decision process (Clemp-
ner 2005b; 2005c). However, DPPNs lack, as any other
Petri nets, at least two important characteristics, on the
one hand a way of adding a structure and, on the other, a
way of decomposing larger nets into smaller ones. One
of the basic approaches to accomplishing this task is the
hierarchical decompositions.

In order to provide hierarchical features to the DPPN,
in this work we introduced Hierarchical Decision Process
Petri Nets (HDPPNs). The idea has been advocated and
tested for the modeling of complex processes by a num-
ber of researchers in Petri nets (Bellman, 2008; Buch-

holz, 1994; Dai et al., 2009; Gomes and Barros, 2005; Hu-
ber et al., 1990; Jensen, 1992). The proposed hierarchical
decomposition forms allow the replacement of transitions
by more complex nets which describe a refinement of the
view.

From a practical point of view, to model a complex
system it is convenient to concentrate on some activities
which are regarded as being essential for system function-
ality, and to abstract the activity behavior in the early de-
sign stages. When the design evolves, every single tran-
sition in a net may be refined by a new net in order to
specify the respective activity in greater detail.

Under this method a complex system could be di-
vided into various levels of detail in a top-down approach.
The hierarchical decomposition can be used as a structur-
ing mechanism to organize the development of a system
in an efficient and coherent manner. It allows the decom-
position of the system into different levels of detail giv-
ing increased modeling adaptability. The intention of this
approach is to define an equivalence relation able to con-
struct a hierarchical partition. At the top level it provides a
higher level of abstraction and a complete view of the sys-

julio@clempner.name

350 J. Clempner

tem without a great specification, and at the lowest level it
provides a high degree of design detail.

However, the hierarchy in HDPPN formalism is used
not only for net efficiency or model specification. One of
the most important problems that DPPN theory confronts
is the analysis and utility function calculation of sophisti-
cated systems, which is usually huge for real applications.
The complexity of the analysis of the DPPN can be re-
duced significantly if it is hierarchically decomposed. The
hierarchical decomposition process generates simple nets
with equivalent behavior. As a result, the net is divided
into small sets and the complexity of the analysis of the
DPPN is reduced considerably.

The main point of the HDPPN is its ability to repre-
sent the mark-dynamic and the trajectory-dynamic prop-
erties of a hierarchical decision process application. We
will identify the mark-dynamic properties of the HDPPN
as related to only place-transitions Petri nets, and we will
relate the trajectory-dynamic properties of the HDPPN as
related with the utility function at each place that depends
on a probabilistic routing policy of the DPPN. Within the
mark-dynamic properties framework, we show that the
HDPPN theoretic notions of local and global stability are
those of the DPPN. In the trajectory-dynamic properties
framework, we define the utility function as a Lyapunov-
like function that is able to track hierarchically the net
and to converge to an equilibrium point (Clempner et
al., 2005a). By selection of appropriate Lyapunov-like
functions under certain desired criteria, it is possible to op-
timize the utility. In addition, we used the notions of local
and global stability in the sense of Lyapunov to charac-
terize the stability properties of the HDPPN. The HDPPN
uses a non-negative utility function (as the DPPN does)
that converges in decreasing form to a (set of) final de-
cision states. We show that if the HDPPN is finite and
non-blocking, then we have that a final decision state is an
equilibrium point iff it is an optimum point. We present
an algorithm for optimum hierarchical trajectory planning
used to find the optimum point. The algorithm consists in
finding a firing transition sequence such that an optimum
decision state is hierarchically reached in the HDPPN. For
this propose the algorithm uses the graphical represen-
tation provided by the place-transitions Petri net and the
utility function.

The paper is structured in the following manner. The
next section presents the necessary mathematical back-
ground and terminology needed to understand the rest of
the work. Section 3 discusses the main results of this pa-
per, providing a definition of the HDPPN and giving a de-
tailed analysis of the equilibrium, stability and optimum
point conditions for the mark-dynamic and the trajectory-
dynamic parts of the HDPPN. An algorithm for calcu-
lating the optimum trajectory used to find the optimum
point is proposed. For illustration purposes, we show how
the standard notions defined in HDPPN theory are ap-

plied to a practical example. Finally, some concluding
remarks and future work are provided in Section 4. For
completeness, appendices related to the mark-dynamic,
trajectory-dynamic and the convergence of the HDPPN
mark-dynamic and trajectory-dynamic properties are in-
cluded.

2. Preliminaries

In this section, we present some well-established defini-
tions and properties (Lakshmikantham et al., 1990; 1991)
which will be used later.

Notation. N = {0, 1, 2, . . .}, R+ = [0,∞), Nn0+ =
{n0, n0 + 1, . . . , n0 + k, . . . } , n0 ≥ 0. Given x, y ∈
R

d, we usually denote the relation “≤” to mean compo-
nentwise inequalities with the same relation, i.e., x ≤ y is
equivalent to xi ≤ yi, ∀i. A function f(n, x), f : Nn0+ ×
R

d → R
d is called nondecreasing in x if, given x, y ∈ R

d

such that x ≥ y and n ∈ Nn0+ , f(n, x) ≥ f(n, y).
Consider systems of first-order difference equations

given by

x(n+ 1) = f
[
n, x(n)

]
, x(no) = x0, (1)

where x(n) ∈ R
d and f : Nn0+×R

d → R
d is continuous

in x(n).

Definition 1. The n-vector valued function Φ(n, n0, x0)
is said to be a solution of (1) if Φ(n0, n0, x0) = x0 and
Φ(n+ 1, n0, x0) = f(n,Φ(n, n0, x0)) for all n ∈ Nn0+.

Definition 2. The system (1) is said to be

(i) practically stable if, given (λ,A) with 0 < λ < A,
we have

|x0| < λ⇒ |x(n, n0, x0)| < A, ∀n ∈ Nn0+, n0 ≥ 0,

(ii) uniformly practically stable if it is practically stable
for every n0 ≥ 0.

The following class of function is defined.

Definition 3. A continuous functionα : [0,∞) → [0,∞)
is said to belong to class K if α(0) = 0 and it is strictly
increasing.

2.1. Methods for practical stability. Consider (cf.
Lakshmikantham et al. 1990; 1991) the vector function
v(n, x(n)), v : Nn0+×R

d → R
p
+ and define the variation

of v relative to (1) by

Δv = v
(
n+ 1, x(n+ 1)

) − v
(
n, x(n)

)
. (2)

Then, the following result concerns the practical stability
of (1).

A hierarchical decomposition of decision process Petri nets for modeling complex systems 351

Theorem 1. Let v : Nn0+ × R
d → R

p
+ be a contin-

uous function in x. Define the function v0(n, x(n)) =∑p
i=1 vi(n, x(n)) such that it satisfies the estimates

b(|x|) ≤ v0 (n, x (n)) ≤ a(|x|) for a, b ∈ K
and

Δv(n, x(n)) ≤ w(n, v(n, x(n)))

for n ∈ Nn0+, x(n) ∈ R
d, where w : Nn0+ × R

p
+ → R

p

is a continuous function in the second argument.

Assume that g(n, e) � e+ w(n, e) is nondecreasing
in e, 0 < λ < J are given and, finally, that a(λ) < b(A)
is satisfied. Then, the practical stability properties of

e(n+ 1) = g(n, e(n)), e(n0) = e0 ≥ 0 (3)

imply the corresponding practical stability properties of
the system (1).

Corollary 1. In Theorem 1

1. If w(n, e) ≡ 0 , we obtain uniform practical stabil-
ity of (1) which implies structural stability (Murata,
1989).

2. If w(n, e) = −c(e), for c ∈ K, we obtain uniform
practical asymptotic stability of (1).

2.2. Petri nets. Petri nets are a tool for systems anal-
ysis. Petri net theory allows a system to be modeled by
a Petri net, a mathematical representation of the system.
The analysis of the Petri net can then, hopefully, reveal
important information about the structure and dynamic
behavior of the modeled system. This information can
then be used to evaluate the modeled system and suggest
improvements or changes.

A Petri net is a quintuple, PN = {P,Q, F,W,M0},
where P = {p1, p2, . . . , pm} is a finite set of places, Q =
{q1, q2, . . . , qn} is a finite set of transitions, F ⊆ (P ×
Q) ∪ (Q× P) is a set of arcs, W : F → N1+ is a weight
function, M0: P → N is the initial marking, P ∩Q = ∅

and P ∪Q
= ∅.
A Petri net structure without any specific initial

marking is denoted by N . A Petri net with the given
initial marking is denoted by (N,M0). Notice that if
W (p, q) = α (or W (q, p) = β), this is often represented
graphically by α, (β) arcs from p to q (q to p), each with
no numeric label.

Let Mk(pi) denote the marking (i.e., the number
of tokens) at place pi ∈ P at time k, and let Mk =
[Mk(p1), . . . ,Mk(pm)]T denote the marking (state) of
PN at time k. A transition qj ∈ Q is said to be enabled
at time k if Mk(pi) ≥ W (pi, qj) for all pi ∈ P such that
(pi,qj) ∈ F . It is assumed that at each time k there ex-
ists at least one transition to fire, i.e., it is not possible to
block the net. If a transition is enabled, then it can fire. If

an enabled transition qj ∈ Q fires at time k, then the next
marking for pi ∈ P is given by

Mk+1(pi) = Mk(pi) +W (qj , pi) −W (pi, qj).

Let A = [aij] denote an n × m matrix of integers
(the incidence matrix), where aij = a+

ij − a−ij with a+
ij =

W (qi, pj) and a−ij = W (pj , qi). Let uk ∈ {0, 1}n denote
a firing vector, where if qj ∈ Q is fired, then its cor-
responding firing vector is uk = [0, . . . , 0, 1, 0, . . . , 0]T

with a “1” in the j-th position in the vector and zeros ev-
erywhere else. The matrix equation (nonlinear difference
equation) describing the dynamical behavior represented
by a Petri net is

Mk+1 = Mk +ATuk, (4)

where if at step k, a−ij < Mk(pj) for all pj ∈ P, then
qi ∈ Q is enabled, and if this qi ∈ Q fires, then its cor-
responding firing vector uk is utilized in the difference
equation (4) to generate the next step. Notice that if M

′

can be reached from some other markingM and if we fire
some sequence of d transitions with the corresponding fir-
ing vectors u0, u1, . . . , ud−1, we obtain that

M
′
= M +ATu, u =

d−1∑

k=0

uk. (5)

Definition 4. The set of all the markings (states) reach-
able from some starting marking M is called the reacha-
bility set and is denoted by R(M).

Let (Nn0+, d) be a metric space where d : Nn0+ ×
Nn0+ → R+ is defined by

d(M1,M2) =
m∑

i=1

ζi|M1(pi) −M2(pi)|,

ζi > 0, i = 1, . . . ,m,

and consider the matrix difference equation which de-
scribes the dynamical behavior of the discrete event sys-
tem modeled by the Petri net (5). Then the following
proposition holds (Passino et al., 1994).

Proposition 1. Let PN be a Petri net. It is uniformly
practically stable if there exists a strictly positivem vector
Φ such that

Δv = uTAΦ ≤ 0 ⇔ AΦ ≤ 0. (6)

Moreover, a PN exhibits uniform practical asymptotic
stability if the following equation holds:

Δv = uTAΦ ≤ −c(e).

352 J. Clempner

2.3. Decision processes Petri nets. We introduce
the concept of Decision Process Petri Nets (DPPNs)
(Clempner, 2005b) by locally randomizing the possible
choices, for each individual place of the Petri net.

Definition 5. A decision process Petri net is a septuple
DPPN = {P,Q, F,W,M0, π, U}, where

• P = {p0, p1, p2, . . . , pm} is a finite set of places,

• Q = {q1, q2, . . . , qn} is a finite set of transitions,

• F ⊆ I ∪ O is a set of arcs where I ⊆ (P ×Q) and
O ⊆ (Q×P) such that P ∩Q = ∅ and P ∪Q
= ∅,

• W : F → N
+
1 is a weight function,

• M0: P → N is the initial marking,

• π : I → R+ is a routing policy represent-
ing the probability of choosing a particular tran-
sition (routing arc), such that for each p ∈ P ,∑

qj :(p,qj)∈I

π((p, qj)) = 1,

• U : P → R+ is a utility function.
Uk(.) denotes the utility at place pi ∈ P at time k, and
let Uk = [Uk(.), . . . , Uk(.)]T denote the utility state of
the DPPN at time k. FN : F → R+ is the number of
arcs from place p to transition q (the number of arcs from
transition q to place p). The rest of DPPN functionality is
as described in the PN preliminaries.

Consider an arbitrary pi ∈ P , and for each fixed tran-
sition qj ∈ Q that forms an output arc (qj , pi) ∈ O,
we look at all the previous places ph of the place pi de-
noted by the list (set) pηij = {ph : h ∈ ηij}, where
ηij = {h : (ph, qj) ∈ I &(qj , pi) ∈ O}, that materialize
all the input arcs (ph, qj) ∈ I and form the sum

∑

h∈ηij

Ψ(ph, qj , pi) · Uk(ph), (7)

where

Ψ(ph, qj , pi) = π(ph, qj) · FN(qj , pi)
FN(ph, qj)

and the index sequence j is the set {j : qj ∈ (ph, qj) ∩
(qj , pi) and ph running over the set pηij}.

Proceeding with all the qjs, we form the vector in-
dexed by the sequence j identified by (j0, j1, . . . , jf) as
follows:

[
∑

h∈ηij0

Ψ(ph, qj0 , pi) · Uk(ph),
∑

h∈ηij1

Ψ(ph, qj1 , pi)

· Uk(ph), . . . ,
∑

h∈ηijf

Ψ(ph, qjf
, pi) · Uk(ph)

]

.

(8)

Intuitively, the vector (8) represents all the pos-
sible trajectories through the transitions qjs, where
(j1, j2, . . . , jf), to a place pi for a fixed i.

The aim of this example is to present a business pro-
cess application as a motivation example represented by
the DPPN showing the optimum strategy and the stability
properties of the net.

Example 1. Let us consider an insurance agency. The
agency sells policies for different companies. The main
products are life and automobile policies. Let us consider
the process for a car accident. The insurance company de-
pends on the adjustor appraisal to evaluate the damages.
To maintain company profitability, the adjustor must eval-
uate the case so that only the minimal necessary repairs
are considered. In this sense, the adjustor evaluation is
expected to be in favor of the insurance company because
of his/her dependence on the latter. However, the adjus-
tor must be careful, because the insurance company wants
to offer good service in order to keep the client. As a re-
sult, the automobile owner depends on the appraisal of the
adjustor for an appropriate accident evaluation. The auto-
mobile owner can also be assisted by an authorized garage
to obtain a fair evaluation of the car’s damage. Notice that
the garage must satisfy both the client and the insurance
company, given that the garage income depends on the car
owner and on the insurance company. If the accident in-
cludes physical damage, the client and passengers must be
directed to an accredited hospital for medical treatment.

Three different strategies can be presented to man-
age a car accident in order to optimize the company’s
profitability (Hammer and Champy , 1993). To improve
the operation cost, small accidents can be directly eval-
uated by the adjustor or the authorized garage, and re-
ported to the insurance company. Accidents of consid-
erable size must be managed centrally by the insurance
company. The partially ordered DPPN (Fig. 1) has the
following specifications:

Places

P0: claim settled

P1: handled accident info centrally

P2: handled accident info by authorized garage

P3: handled accident info by adjustor

P4: verified policy covering centrally

P5: verified policy covering by authorized garage

P6: verified policy covering by adjustor

P7: corroborated accident details

P8: evaluated damage centrally

P9: got medical treatment cost

A hierarchical decomposition of decision process Petri nets for modeling complex systems 353

P10: determined accident in range

P11: send info to be handle centrally

P12: got accident info by adjustor

P13: assessed client antecedents

P14: determined accident covering centrally

P15: got accident info by authorized garage

P16: evaluated damage by authorized garage

P17: determined accident in range

P18: send info to be handle centrally

P19: adjusted policy and made covering offer centrally

P20: made covering offer by authorized garage

P21: evaluated damage by adjustor

P22: made covering offer by adjustor

Transitions

q1: handle accident info centrally

q2: handle accident info by authorized garage

q3: handle accident info by adjustor

q4: verify policy covering centrally

q5: verify policy covering by authorized garage

q6: verify policy covering by adjustor

q7: corroborate accident details

q8: evaluate damage

q9: get medical treatment cost

q10: determine accident in range

q11: send info to be handle centrally

q12: get accident info by adjustor

q13: assess client antecedents

q14: determine accident covering centrally

q15: get accident info by authorized garage

q16: evaluate damage by authorized garage

q17: determine accident in range

q18: send info to be handle centrally

q19: adjust policy and make covering offer centrally

q20: make covering offer by authorized garage

q21: evaluated damage by adjustor

q22: make covering offer by adjustor

(i) Stability
From the incidence matrix A of the DPPN of Fig. 1

and choosing

Φ =[1, 1/2, 1, 1, 1/2, 1, 1, 1/2, 1/2, 1/2, 1, 1,
1, 1/2, 1, 1, 2, 1, 1, 5/2, 3, 1, 1/2],

Φ > 0, we obtain that AΦ ≤ 0 concluding stability.

(ii) Optimum strategy
Define the Lyapunov like function L in terms of the

entropy H(pi) = −pi ln pi as

L = max
i=1,...,|α|

(−αi lnαi),

(I) The optimum strategy σ� for accidents of consider-
able size that must be manages centrally by the assurance
company is represented by

Uk=0(p0) = 1,

U
σhj

k=0(p1) = L[σ01(p1) · Uσ01
k=0(p0)]

= L[1/3 · 2 · 1] = maxH [2/3] = 0.270,

U
σhj

k=0(p4) = L[σ14(p4) · Uσ14
k=0(p1)]

= L[1 · 0.270] = maxH [0.270] = 0.353,

U
σhj

k=0(p7) = L[σ47(p7) · Uσ47
k=0(p4)]

= L[2/5 · 0.353] = maxH [0.141] = 0.276,

U
σhj

k=0(p8) = L[σ48(p8) · Uσ48
k=0(p4)]

= L[1/5 · 0.353] = maxH [0.070] = 0.187,

U
σhj

k=0(p9) = L[σ49(p9) · Uσ49
k=0(p4)]

= L[2/5 · 0.353] = maxH [0.141] = 0.276,

U
σhj

k=0(p13) = L[σ7,13(p13) · Uσ7,13
k=0 (p7)]

= L[1 · 0.276] = maxH [0.276] = 0.355,

U
σhj

k=0(p14) = L[σ8,14(p14) · Uσ8,14
k=0 (p8)

+ σ9,14(p14) · Uσ9,14
k=0 (p9)]

= L[1 · 0.187 + 1 · 0.276]
= maxH [0.463] = 0.356,

U
σhj

k=0(p19) = L[σ13,19(p19) · Uσ13,19
k=0 (p13)

+ σ14,19(p19) · Uσ14,19
k=0 (p14)]

= L[1 · 0.355 + 1/2 · 0.356]
= maxH [0.533] = 0.335,

where the firing transition vector is u.
For this case, the adjustor or the garage must abort

the process because the accident is out of their range ob-
taining that

U
σhj

k=0(p11) = L[σ5,11(p11) · Uσ5,11
k=0 (p5)]

= L[4/5 · 0.367] = maxH [0.293] = 0.359,

U
σhj

k=0(p18) = L[σ12,18(p18) · Uσ12,18
k=0 (p12)]

= L[3/4 · 0.367] = maxH [0.275] = 0.355,

354 J. Clempner

u =
1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

u′ =
0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

concluding U
σhj

k=0(p19) < U
σhj

k=0(p18) < U
σhj

k=0(p11),
i.e., U

σhj

k=0(p18), U
σhj

k=0(p19) are more expensive than
U

σhj

k=0(p11).

(II) The optimum strategy σ′� for small accidents that
must be managed ideally by the company centrally is rep-
resented by

U
σhj

k=0(p2) = L[σ02(p2) · Uσ02
k=0(p0)]

= L[1/3 · 1] = maxH [1/3 · 1] = 0.366,

U
σhj

k=0(p5) = L[σ25(p5) · Uσ25
k=0(p2)]

= L[1 · 0.366] = maxH [1 · 0.366] = 0.367,

U
σhj

k=0(p10) = L[σ5,10(p10) · Uσ5,10
k=0 (p5)]

= L[1/5 · 0.367]
= maxH [1/5 ∗ 0.367] = 0.191,

U
σhj

k=0(p15) = L[σ10,15(p15) · Uσ10,15
k=0 (p10)]

= L[6/8 · 0.191]
= maxH [6/8 · 0.191] = 0.278,

U
σhj

k=0(p16) = L[σ10,16(p16) · Uσ10,16
k=0 (p10)]

= L[1/8 · 0.191]
= maxH [1/8 · 0.191] = 0.089,

U
σhj

k=0(p20) = L[σ15,20(p20) · Uσ15,20
k=0 (p15)

+ σ16,20(p20) · Uσ16,20
k=0 (p16)]

= L[1 · 0.278 + 1 · 0.089]
= maxH [1 · 0.278 + 1 · 0.089] = 0.367,

the firing transition vector being u′.
Intuitively, the result is correct, because the best op-

tion for the insurance company after a car accident hap-
pens is to send an adjustor before the customer takes the
car to the garage.

(III) The strategy σ′′ for small accidents that must be man-
aged by the adjustor is represented by

U
σhj

k=0(p3) = L[σ03(p3) · Uσ03
k=0(p0)]

= L[1/3 · 1] = maxH [1/3 · 1] = 0.366,

U
σhj

k=0(p6) = L[σ36(p6) · Uσ36
k=0(p3)]

= L[1 · 0.366] = maxH [1 · 0.366] = 0.367,

U
σhj

k=0(p12) = L[σ6,12(p12) · Uσ6,12
k=0 (p6)]

= L[1 · 0.367] = maxH [1 · 0.367] = 0.367,

U
σhj

k=0(p17) = L[σ12,17(p17) · Uσ12,17
k=0 (p12)]

= L[1/4 · 0.367]
= maxH [1/4 · 0.367] = 0.219,

U
σhj

k=0(p21) = L[σ17,21(p21) · Uσ17,21
k=0 (p17)]

= L[1 · 0.219] = maxH [1 · 0.219] = 0.332,

U
σhj

k=0(p22) = L[σ21,22(p22) · Uσ21,22
k=0 (p21)]

= L[2 · 0.332] = maxH [2 · 0.332] = 0.271,

the firing transition vector being u′′.
Notice that, since U

σhj

k=0(p20) is greater than
U

σhj

k=0(p22), small accidents must be handled by the ad-
justor whenever possible.

3. Hierarchical decision process Petri net

Let DPPN = {P,Q, F,W,M0, π, U} be a decision pro-
cess Petri net and let f : P ∪Q → 2P∪Q be a refinement
function such that for each s ∈ P ∪ Q the symbol f(s)
defines the immediate descendant element of s.

Let ≡f be the equivalence relation on P ∪Q induced
by f such that

∀s1, s2 ∈ P ∪Q : s1 ≡f s2 ⇐⇒ f(s1) =f f(s2). (9)

Then the collection of equivalence classes (P ∪ Q/ ≡f

) = {C(s)|s ∈ P ∪Q}, where C denotes class, is a poset.
Thus, (P ∪Q/ ≡f) is linearly ordered and, consequently,
it is a lattice. The structure (P ∪Q/ ≡f) is indeed trivial:
all elements in P ∪ Q belonging to the same net under f
are identified in this quotient set.

On the other hand, let us consider the relation ≤f as
follows:

∀s1, s2 ∈ P ∪Q : s1 ≤f s2 ⇐⇒ f(s1) ≤f f(s2). (10)

This relation is reflexive and transitive, but it is not anti-
symmetric in most cases1. Thus, ≤f is not an ordering in
P ∪Q.

At this point let us recall some basic notions on or-
derings. A binary relation ≤ over a set X is a partial or-
der if it satisfies the following three properties: reflexivity,
antisymmetry and transitivity. A total order is a partial or-
der that satisfies a fourth property known as comparabil-
ity, where every element is related to every element in one
way or another. A set and a partial order on that set define
a partially ordered set, or poset for short. A quasi-order is

1It is antisymetric if and only if f is one-to-one.

A hierarchical decomposition of decision process Petri nets for modeling complex systems 355

u′′ =
0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

Fig. 1. BRP DPPN.

a relation ≤ that satisfies reflexivity and transitivity. For-
mally, let (X,≤) be a poset and let S ⊆ X . Then an
element b ∈ S is a minimal element of S if there is no
element a ∈ S that satisfies a ≤ b. Similarly, an element
b ∈ S is a maximal element of S if there is no element
a ∈ S that satisfies b ≤ a. It is important to mention
maximal elements that are in general not the greatest el-
ements of a subset S. Formally, we have that an element
b ∈ S is the greatest element of S if, for every element
a ∈ S, a ≤ b. Dually, an element b ∈ S is the least
element of S if for every element a ∈ S, b ≤ a. Note
that the least element of a poset is unique if one exists be-
cause of the antisymmetry of ≤. A strict partial order is a
binary relation which is irreflexive, asymmetric and tran-
sitive. Strict partial orders correspond to Directed Acyclic
Graphs (DAGs), such that every strict partial order is a
DAG, and the transitive closure of a DAG is both a strict
partial order and also a DAG itself.

For any s ∈ P ∪Q, define the successors of s:

t ∈ suc(s) iff s
= t, s ≤f t

and

∀t1 : s ≤f t1 ≤f t =⇒ (t1 =f s) ∨ (t1 =f t). (11)

For any s ∈ P ∪Q, define the predecessors of s:

t ∈ pre(s) iff t
= s, t ≤f s

and

∀t1 : t ≤f t1 ≤f s =⇒ (t1 =f t) ∨ (t1 =f s). (12)

Therefore, let P ∪Q be ordered by the following re-
lationship:

∀s1, s2 ∈ P ∪Q,
s1 < s2⇔(s1 <f s2) ∨ (s1 ≡f s2) ∨ (s2 <f s1).

(13)

Thus, f is inducing a hierarchical structure on the DPPN.
Therefore, we can introduce the hierarchical partition

{DPPNξ}ξ∈Ξ (where Ξ is a finite set) of the DPPN in-
duced by f , such that each pair (s, t) ∈ Pξ ∪ Qξ : (s, t)
is an edge iff t ∈ suc(s) in the DPPNξ (or, equivalently,
s ∈ pre(t)). We say that f is consistent if the hierarchical
structure has no cycles. From now on, we will consider
only consistent functions.

Definition 6. A hierarchical decision process Petri net
HDPPN is the graph whose set of nodes are the partition
{DPPNξ}ξ∈Ξ induced by a refinement function f .

The minimal elements are those with no predeces-
sors, i.e., nodes with a null inner degree in the HDPPN.
The maximal elements are those with no successors, i.e.,
node with a null outer degree in the HDPPN.

Let us define the upper distance d+ as follows:

d+(s, t) = 1 ⇐⇒ t ∈ suc(s),

d+(s, t) = 1 + r

⇐⇒ ∃t1 : d+(s, t1) = r& d+(t1, t) = 1.

356 J. Clempner

Similarly, the lower distance d− is

d−(s, t) = 1 ⇐⇒ t ∈ pre(s),

d−(s, t) = 1 + r

⇐⇒ ∃t1 : d−(s, t1) = r& d−(t1, t) = 1.

Thus d+(s, t) = d−(t, s).
The upper height of a node s is h+(s) =

Max{d+(s1, s)|s1 is minimal}. The lower height of a
node s is h−(s) = Max{d−(s1, s)|s1 is maximal}.

Let Pξ and Qξ be the sets of places and transitions
of the DPPNξ. Places and transitions in the HDPPN
are enumerated consecutively and will receive the number
of the corresponding DPPNξ if necessary, i.e., pξi corre-
sponds to the place i at the DPPNξ; otherwise, we will
identify the place only as pi.

LetMξk(pξi) denote the marking (i.e., the number of
tokens) at place pξi ∈ Pξ at time k, and let

Mξk = [Mξk(pξ1), . . . ,Mξk(pξm)]T

denote the marking (state) of the DPPNξ at time k. A
transition qξj ∈ Qξ is said to be enabled at time k if
Mξk(pξ1) ≥ Wξ(pξ1, qξj) for all pξi ∈ Pξ such that
(pξi, qξj) ∈ Fξ. It is assumed that at each time k there
exists at least one transition to fire, i.e., it is not possible
to block the net. If a transition is enabled, then it can fire.
If an enabled transition qξj ∈ Qξ fires at time k, then the
next marking for pξi ∈ Pξ is given by

Mξk+1(pξi)
= Mξk(pξi) +Wξ(qξj , pξi) −Wξ(pξi, qξj).

Let Aξ = [aij] denote an n × m matrix of in-
tegers (the incidence matrix), where aij = a+

ij − a−ij
with a+

ij = Wξ(qξi, pξj) and a−ij = Wξ(pξj , qξi). Let
uk ∈ {0, 1}n denote a firing vector where, if qξj ∈ Qξ

is fired, then its corresponding firing vector is uk =
[0, . . . , 0, 1, 0, . . . , 0]T with the “1” in the j-th position in
the vector and zeros everywhere else. The matrix equation
(nonlinear difference equation) describing the dynamical
behavior represented by a Petri net is

Mξk+1 = Mξk +AT
ξ uk, (14)

where, if at step k, a−ij < Mξk(pιj) for all pξj ∈ Pξ , then
qξi ∈ Qξ is enabled and, if this qξi ∈ Qξ fires, then its
corresponding firing vector uk is utilized in the difference
equation (4) to generate the next step. Notice that, if M

′
ξ

can be reached from some other markingMξ and if we fire
some sequence of d transitions with corresponding firing
vectors u0, u1, . . . , ud−1, we obtain that

M
′
ξ = Mξ +AT

ξ u, u =
d−1∑

k=0

uk. (15)

In Fig. 2 we have partial routing policies π that gener-
ate a transition from state p1 to state p2, where p1, p2 ∈ P :

• Case 1. The probability that q1 generates a transition
from state p1 to p2 is 1/3. But, because q1 transition
to state p2 has two arcs, the probability to generate a
transition from state p1 to p2 is increased to 2/3.

• Case 2. We set by convention the probability that
q1 generates a transition from state p1 to p2 to 1/3
(1/6 plus 1/6). However, because the transition q1 to
state p2 has only one arc, the probability to generate
a transition from state p1 to p2 is decreased to 1/6.

• Case 3. Finally, we have the trivial case when there
exists only one arc from p1 to q1 and from q1 to p2.

Remark 1. In the previous definition we were consider-
ing nets with a single initially marked place.

Remark 2. The previous definition in no way changes
the behavior of the place-transitions Petri net; the routing
policy is used to calculate the utility value at each place
of the net.

Remark 3. It is important to note that the utility value
can be re-normalized after each transition or time k of the
net.

Uk(·) denotes the utility at place pξi ∈ Pξ at time k
and let Uk = [Uk(·), . . . , Uk(·)]T denote the utility state
of the HDPPN at time k. FNξ : Fξ → R+ is the number
of arcs from place p to transition q at level ξ (the number
of arcs from transition q to place p). The rest of HDPPN
functionality is as described above.

Consider an arbitrary pξi ∈ Pξ . For each fixed tran-
sition qξj ∈ Qξ that forms an output arc (qξj , pξi) ∈ Oξ ,
we look at all the previous places pξh of the place pξi de-
noted by the list (set) pξηij = {pξh : h ∈ ηij}, where
ηij = {h : (pξh, qξj) ∈ I & (qξj , pξi) ∈ O}, that materi-
alize all the input arcs (pξh, qξj) ∈ Iξ and form the sum

∑

h∈ηij

Ψ(pξh, qξj , pξi) · Uk(pξh), (16)

where

Ψ(pξh, qξj , pξi) = π(pξh, qξj) · FNξ(qξj , pξi)
FNξ(pξh, qξj)

and the index sequence j is the set {j : qξj ∈ (pξh, qξj) ∩
(qξj , pξi) & pξh running over the set pξηij}.

(a) (b)

Fig. 2. Routing policy: Case 1 (a), Case 2 (b).

A hierarchical decomposition of decision process Petri nets for modeling complex systems 357

Proceeding with all the qξjs we form the vector in-
dexed by the sequence j identified by (j0, j1, . . . , jf) as
follows:

[
∑

h∈ηij0

Ψ(pξh, qξj0 , pξi) · Uk(pξh),

∑

h∈ηij1

Ψ(pξh, qξj1 , pξi) · Uk(pξh), . . . ,

∑

h∈ηijf

Ψ(pξh, qξjf
, pξi) · Uk(pξh).

]

.

(17)

Intuitively, the vector (17) represents all the possible tra-
jectories to a place pξi for a fixed i and ξ through the tran-
sitions qξjs where (j1, j2, . . . , jf).

Continuing the construction of the definition of the
utility function U , let us introduce the following defini-
tion.

Definition 7. Let L : R
n → R+ be a continuous map.

Then, L is a Lyapunov-like function (see (Kalman and
Bertram, 1960)) iff it satisfies the following properties:

1. ∃x∗ such that L(x∗) = 0,

2. L(x) > 0 for ∀x
= x∗,

3. L(x) → ∞ as x→ ∞,

4. ΔL = L(xi+1) − L(xi) < 0 for all xi, xi+1
= x∗.
Then, we formally define the utility function U as

follows.

Definition 8. Let HDPPN be a hierarchical decision pro-
cess Petri net. The utility function U is represented by the
equation

U
qξj

k (pξi)

=

⎧
⎨

⎩

Uk(p0) if i = 0, k = 0,
L(α) if i > 0, k = 0 & i ≥ 0, k > 0,
U

qξj

k (p
′
ξi) if i > 0, k = 0 & i ≥ 0, k > 0,

(18)

where

α =

[
∑

h∈ηij0

Ψ(pξh, qξj0 , pξi) · U qξj0
k (pξh),

∑

h∈ηij1

Ψ(pξh, qξj1 , pξi) · U qξj1
k (pξh), . . . ,

∑

h∈ηijf

Ψ(pξh, qξjf
, pξi) · U qξjf

k (pξh)

]

,

(19)

the place p
′
ξi ∈ f(pξi) is the initial marked place of the

DPPNξ , the function L : D ⊆ R
n
+ → R+ is a Lyapunov-

like function which optimizes the utility through all pos-
sible transitions (i.e., through all the possible trajectories

defined by the different qξjs), D is the decision set formed
by the j’s ; 0 ≤ j ≤ f of all those possible transitions (qξj

pξi) ∈ O,

Ψ(pξh, qξj , pξi) = π(pξh, qξj) · FN(qξj , pξi)
FN(pξh, qξj)

,

ηij is the index sequence of the list of previous places to
pξi through transition qξj , pξh (h ∈ ηij) is a specific pre-
vious place of pξi through transition qξj .

Remark 4.

• Note that the Lyapunov-like function L guarantees
that an optimal course of action is followed (taking
into account all the the possible paths defined). In
addition, the function L establishes a preference re-
lation because by definition L is asymptotic. This
condition gives the decision maker the opportunity
to select a path that optimizes the utility.

• The iteration over k for U is as follows:

1. For i = 0 and k = 0 the utility is U0(p0) at
place p0 and for the rest of the places pi the
utility is zero.

2. For i ≥ 0 and k > 0 the utility is U qξj

k (pξi) at
each place pξi, and it is computed by taking into
account the utility value of the previous places
pξh for k and k − 1 (when needed).

Property 1. The continuous function U(·) satisfies the
following properties:

1. There is a p� ∈ P such that

(a) if there exists an infinite sequence {pi}∞i=1 ∈ P
with pn →

n→∞ p� such that 0 ≤ · · · < U(pn) <

U(pn−1) · · · < U(p1), then U(p�) is the infi-
mum, i.e., U(p�) = 0,

(b) if there exists a finite sequence p1, . . . , pn ∈ P
with p1, . . . , pn → p� such that C = U(pn) <
U(pn−1) · · · < U(p1), then U(p�) is the
minimum, i.e., U(p�) = C, where C ∈ R,
(p� = pn).

2. U(p) > 0 or U(p) > C, where C ∈ R, ∀p ∈ P such
that p
= p�.

3. For all pi and pi−1 ∈ P such that pi−1 ≤U pi we
have ΔU = U(pi) − U(pi−1) < 0.

4. The routing policies decrease monotonically, i.e.,
πi ≥ πj (notice that the indexes i and j are taken
j > i along a trajectory to the infimum or the mini-
mum).

358 J. Clempner

Remark 5. In Property 1, Point 3, we state that ΔU =
U(pi)−U(pi−1) < 0 for determining the asymptotic con-
dition of the Lyapunov-like function. However, it is easy
to show that such a property is convenient for determin-
istic systems. In Markov decision process systems it is
necessary to include probabilistic decreasing asymptotic
conditions to guarantee the asymptotic condition of the
Lyapunov-like function.

Property 2. The utility function U : P → R+ is a
Lyapunov-like function.

Remark 6. From Properties 1 and 2, we have the follow-
ing:

• U(p�) = 0 or U(p�) = C means that a final state
is reached. Without lost generality we can say that
U(p�) = 0 by means of a translation to the origin.

• In Property 1 we determine that the Lyapunov-like
function U(p) approaches to a infimum/minimum
when p is large thanks to Property 4 of Definition 7.

• Property 1, Point 3, is equivalent to the following
statement: ∃ε > 0 such that |U(pi) − U(pi−1)| > ε,
∀pi, pi−1 ∈ P such that pi−1 ≤U pi.

Property 3. The marking and the enabling conditions as
well as and utility function calculation of the DPPN and
the HDPPN are equivalent.

The previous formalisms of the HDPPN are de-
scribed as follows. The DPPN is refined in a subset of
local DPPNξ determined by a partition and hierarchically
structure through a refinement function f . Each local de-
cision process Petri net DPPNξ describes more detailed
local behavior of a given transition of its immediately high
level DPPNξ. The function f defines the immediate de-
scendant element of the net, and therefore the hierarchy
can be considered as a continuous net. The inverse func-
tion f−1 defines the parent of a given node of the net.
The utility is calculated recursively by the hierarchical
tracking of the HDPPN. It is important to note that the
HDPPN can be transformed into a flat DPPN simply by
replacing each DPPNξ in its immediate parent.

For optimization reasons, we want to contemplate
asynchronous behavior of each DPPNξ in the hierarchical
structure realized by tokens moving at the different lev-
els of the HDPPN. We can conceptualize a DPPNξ as
embedded by a set of input and output ports that deter-
mine it scope. The input or output ports are places. Port
places can be only connected with transitions. The input
place port accepts tokens fired by its immediate high level
DPPNξ. When a token reaches a place, it is reserved for
the firing of a given transition according to the routing pol-
icy determined byU . A transition q must fire as soon as all
the places pi ∈ P contain enough tokens reserved for the
transition q. Once the transition fires, it consumes the cor-
responding tokens and immediately produces an amount

of tokens in each subsequent places pj ∈ P . When
π(ι) = 0 for ι ∈ I , this means that there are no arcs in
the place-transitions Petri net.

Definition 9. A local equilibrium point with respect to
local decision process Petri net DPPNξ ∈ HDPPN is a
place pξi ∈ Pξ such that Mξl(pξi) = S < ∞, ∀l ≥ k and
pξi is the last place of the net.

Definition 10. A global equilibrium point with respect
to a hierarchical decision process Petri net HDPPN is a
place p∗ ∈ P such that Ml(p∗) = S < ∞, ∀l ≥ k and p∗

is the last place of the net.

Definition 11. A local final decision point pξf ∈ Pξ with
respect a DPPNξ ∈ HDPPN is a place p ∈ Pξ where
the infimum or a minimum is attained, i.e., U(p) = 0 or
U(p) = C.

Definition 12. A global final decision point pf ∈ P
with respect to a hierarchical decision process Petri net
HDPPN is a place p ∈ P where the infimum or the mini-
mum is attained, i.e., U(p) = 0 or U(p) = C.

Remark 7. A local final decision point pξf is a global
final decision point if the utility function attains the infi-
mum or the minimum.

Definition 13. A local optimum point pξ� ∈ Pξ with
respect to a DPPNξ ∈ HDPPN is a local final decision
point pξf ∈ Pξ where the best choice is selected ‘accord-
ing to some local criteria’.

Definition 14. A global optimum point p� ∈ P with re-
spect to a hierarchical decision process Petri net HDPPN
is a global final decision point pf ∈ P where the best
choice is selected ‘according to some global criteria’.

Property 4. Every hierarchical decision process Petri net
HDPPN has a final decision point.

Remark 8. If there are p1, . . . , pn ∈ P , such that
U(p1) = · · · = U(pn) = 0, then p1, . . . , pn are optimum
points.

Definition 15. A global strategy with respect to a hier-
archical decision process Petri net HDPPN is identified
by σ and consists of the routing policy transition sequence
represented in the HDPPN graph model such that some
point p ∈ P is reached.

Definition 16. A local strategy with respect to a hierar-
chical decision process Petri net HDPPN is identified by
σξ and consists of the routing policy transition sequence
represented in the DPPNξ ∈ HDPPN graph model
such that some point p ∈ Pξ is reached.

A hierarchical decomposition of decision process Petri nets for modeling complex systems 359

Definition 17. An optimum global strategy with respect
to a hierarchical decision process Petri net HDPPN is
identified by σ� and consists of the routing policy tran-
sition sequence represented in the HDPPN graph model
such that an optimum point p� ∈ P is reached.

Definition 18. An optimum local strategy with respect
to a hierarchical decision process Petri net HDPPN is
identified by σ�

ξ and consists of the routing policy tran-
sition sequence represented in the DPPNξ ∈ HDPPN
graph model such that a local optimum point pξ� ∈ Pξ is
reached.

Equivalently, we can represent (18, 19) as follows:

U
σξhj

k (pξi)

=

⎧
⎨

⎩

Uk(p0) if i = 0, k = 0,
L(α) if i > 0, k = 0 & i ≥ 0, k > 0,
U

σξhj

k (p
′
ξi) if i > 0, k = 0 & i ≥ 0, k > 0,

(20)

α =
[∑

h∈ηij0

σξhj0 (pξi) · Uσξhj0
k (pξh),

∑

h∈ηij1

σξhj1 (pξi) · Uσξhj1
k (pξh), . . . ,

∑

h∈ηijf

σξhjf
(pξi) · Uσξhjf

k (pξh)
]
,

(21)

where σξhj(pξi) = Ψ(pξh, qξj , pξi). The rest is as previ-
ously defined.

For notational simplicity, we will represent the utility
function U as follows:

1. for any transition and any strategy:

Uk(pi)
�
= U

qξj

k (pi)
�
= U

σξhj

k (pξi)
�
= U

σhj

k (pi),

2. for an optimum transition and optimum strategy:

U�
k (pξi)

�
= U

q�
ξj

k (pξi)
�
= U

σ�
ξhj

k (pξi)
�
= U

σ�
hj

k (pi).

The reader will easily identify which notation is used
depending on the context.

Definition 19. Let HDPPN be a hierarchical decision
process Petri net. A trajectory ω is an (finite or infinite)
ordered subsequence of places

pς(1) ≤Uk
pς(2) ≤Uk

· · · ≤Uk
pς(n) ≤Uk

. . .

such that a given strategy σ holds.

Definition 20. Let HDPPN be a hierarchical decision
process Petri net. An optimum trajectory ω is an (finite or
infinite) ordered subsequence of places

pς(1) ≤U�
k
pς(2) ≤U�

k
· · · ≤U�

k
pς(n) ≤U�

k
. . .

such that the optimum strategy σ� holds.

Theorem 2. Let HDPPN be a non-blocking hierarchi-
cal decision process Petri net (unless p ∈ P is a global
equilibrium point). Then we have

U�
k (p�) ≤ Uk(p), ∀σ, σ�.

Proof. We have that

U
σξhj

k (pξi)

=

⎧
⎨

⎩

Uk(p0) if i = 0, k = 0,
L(α) if i > 0, k = 0 & i ≥ 0, k > 0,
U

σξhj

k (p
′
ξi) if i > 0, k = 0 & i ≥ 0, k > 0,

α =
[∑

h∈ηij0

σξhj0 (pξi) · Uσξhj0
k (pξh),

∑

h∈ηij1

σξhj1 (pξi) · Uσξhj1
k (pξh), . . . ,

∑

h∈ηijf

σξhjf
(pξi) · Uσξhjf

k (pξh)
]
.

Then, starting from p0 and proceeding with the itera-
tion, eventually the trajectory ω given by p0 = pς(1) ≤Uk

pς(2) ≤Uk
· · · ≤Uk

pς(n) ≤Uk
. . . which converges to

p�, i.e., the optimum trajectory, is obtained. Since at the
optimum trajectory the optimum strategy σ� holds, we
have that U�

k (p�) ≤ Uk(p), ∀σ, σ�. �

Remark 9. The inequality U�
k (p�) ≤ Uk(p) means

that the utility is optimum when the optimum strategy is
applied.

Theorem 3. The behavior of the HDPPN is equivalent
to the behavior of the DPPN.

Proof. This follows from Definition 6, Definition 8 and
is ensured by Theorem 2. �

3.1. Optimum trajectory planning. Given a non-
blocking (unless p ∈ P is an equilibrium point) hierar-
chical decision process Petri net HDPPN, the optimum
trajectory planning consists in finding a firing transition
sequence u such that the optimum target state Mt with the
optimum point is achieved. The target state Mt belongs
to the reachability set R(M0) and satisfies the assumption
that it is the last and final task processed by the HDPPN
with some fixed starting state M0 with utility U0.

Theorem 4. Let DPPNξ ∈ HDPPN be a decision
process Petri net. The optimum local trajectory planning
problem is solvable.

Proof. From what is shown in Theorem 2, for each step
we find U�

k (pξς(1)), . . . , U
�
k (pξς(i)), . . . , U

�
k (pξ�). De-

fine a mapping

ur(U
q�

ξj

k (pξς(i))) = [0, . . . , 0, 1, 0, . . . , 0], (22)

360 J. Clempner

with one in position j and zero everywhere else, and set

uξ =
∑

r ur((U
q�

ξj

k (pξς(i))), where the index r runs over
all the transitions associated with the subsequence ς(i)
such that pξς(i) converge to pξ�. Then, by construction, a
local optimum point is attained. �

Remark 10. The order in which the transitions are fired
is given by the order of the transitions inherited from the
order of the subsequence pξς(i).

Theorem 5. Let HDPPN be a hierarchical decision
process Petri net. The optimum global trajectory planning
problem is solvable.

Proof. Let us consider uξ as in the previous theorem for
each DPPNξ and set u =

⋃
ξ∈Ξ uξ. Then, by construc-

tion, the optimum point is attained. �

Example 2. Let us extend Example 1 using a hierarchical
structure.

The partially ordered HDPPN (Fig. 3) has the
following specifications:

Places

P0: claim settled

P1: handled accident info centrally

P2: handled accident info by authorized garage

P3: handled accident info by adjustor

P4: adjusted policy and made covering offer centrally

P5: made covering offer by authorized garage

P6: made covering offer by adjustor.

Transitions

q1: handle accident info centrally

q2: handle accident info by authorized garage

q3: handle accident info by adjustor

q4: adjust policy and make covering offer centrally

q5: make covering offer by authorized garage

q6: make covering offer by adjustor.
The partially ordered HDPPN (Fig. 4) has the fol-

lowing specifications:

Places

P7: handled accident info centrally

P8: verified policy covering centrally

P9: corroborated accident details

P10: evaluated damage centrally

Fig. 3. BPR HDPPN.

P11: got medical treatment cost

P12: assessed client antecedents

P13: determined accident covering centrally

P14: adjusted policy and made covering offer centrally.

Transitions

q8: verify policy covering centrally

q9: corroborate accident details

q10: evaluate damage

q11: get medical treatment cost

q12: assess client antecedents

q13: determine accident covering centrally

q14: adjust policy and make covering offer centrally.
The partially ordered HDPPN (Fig. 5) has the fol-

lowing specifications:

Places

P15: handled accident info by authorized garage

P16: verified policy covering by authorized garage

P17: determined accident in range

P18: send info to be handle centrally

P19: got accident info by authorized garage

P20: evaluated damage by authorized garage

P21: made covering offer by authorized garage.

Transitions

q15: handle accident info by authorized garage

q16: verify policy covering by authorized garage

q17: determine accident in range

q18: send info to be handle centrally

q19: get accident info by authorized garage

q20: evaluate damage by authorized garage

A hierarchical decomposition of decision process Petri nets for modeling complex systems 361

q21: make covering offer by authorized garage.
The partially ordered HDPPN (Fig. 6) has the fol-

lowing specifications:

Places

P22: handled accident info by adjustor

P23: verified policy covering by adjustor

P24: got accident info by adjustor

P25: determined accident in range

P26: send info to be handle centrally

P27: evaluated damage by adjustor

P28: made covering offer by adjustor

Transitions

q22: handle accident info by adjustor

q23: verify policy covering by adjustor

q24: get accident info by adjustor

q25: determine accident in range

q26: send info to be handle centrally

q27: evaluated damage by adjustor

q28: make covering offer by adjustor.

Fig. 4. HDPPN accident centrally.

From the incidence matrix of the partially ordered
Petri net shown in Figs. 4–6, we conclude what follows:
(i) Stability

For the DPPN in Fig. 4 we have

Fig. 5. HDPPN accident by garage.

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 −1 0 0 1 0 0 0
0 0 −1 0 0 1 0 0
0 0 0 −1 −1 0 1 0
0 0 0 0 0 −1 −2 1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

.

Choosing Φ = [1, 1, 1, 1/2, 1, 1, 1/2, 1/2], Φ > 0, we
obtain that AΦ ≤ 0 concluding stability. For the DPPN
in Fig. 5 it follows that

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

−1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 −1 0 1 0 0
0 0 −2 0 0 1 0
0 0 0 0 −1 −1 1

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

.

Choosing Φ = [1, 1, 1, 1/2, 1, 1, 1/2], Φ > 0, we obtain
that AΦ ≤ 0 concluding stability. For the DPPN in Fig. 6
we get

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 −1 0 1 0 0
0 0 0 −1 0 1 0
0 0 0 0 0 −1 2

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

.

Choosing Φ = [1, 1, 1, 1/2, 1, 1, 1/2], Φ > 0, we obtain
AΦ ≤ 0 concluding stability.

(ii) Optimum strategy
Define the Lyapunov like function L in terms of the

entropy H(pi) = −pi ln pi as

L = max
i=1,...,|α|

(−αi lnαi).

362 J. Clempner

Then

Uk=0(p0) = 1,

U
σhj

k=0(p1) = L[σ01(p1) · Uσ01
k=0(p0)]

= L[1/3 · 2 ∗ 1] = maxH [0.666] = 0.270,

U
σhj

k=0(p2) = L[σ02(p2) · Uσ02
k=0(p0)]

= L[1/3 · 1] = maxH [0.333] = 0.366,

U
σhj

k=0(p3) = L[σ03(p3) · Uσ03
k=0(p0)]

= L[1/3 · 1] = maxH [0.333] = 0.366.

(I) The optimum strategy σ� for accidents of consider-
able size that must be managed centrally by the assurance
company is represented by

U
σhj

k=0(p7) = 0.270,

U
σhj

k=0(p8) = L[σ7,8(p8) · Uσ7,8
k=0 (p7)]

= L[1 · 0.270] = maxH [0.270] = 0.353,

U
σhj

k=0(p9) = L[σ8,9(p9) · Uσ89
k=0(p8)]

= L[2/5 · 0.353] = maxH [0.141] = 0.276,

U
σhj

k=0(p10) = L[σ8,10(p10) · Uσ8,10
k=0 (p8)]

= L[1/5 · 0.353] = maxH [0.070] = 0.187,

U
σhj

k=0(p11) = L[σ8,11(p11) · Uσ8,11
k=0 (p8)]

= L[2/5 · 0.353] = maxH [0.141] = 0.276,

U
σhj

k=0(p12) = L[σ9,12(p12) · Uσ9,12
k=0 (p9)]

= L[1 · 0.276] = maxH [0.276] = 0.355,

U
σhj

k=0(p13) = L[σ10,13(p13) · Uσ10,13
k=0 (p10)

+ σ11,13(p13) · Uσ11,13
k=0 (p11)]

= L[1 · 0.187 + 1 · 0.276]
= maxH [0.463] = 0.356,

U
σhj

k=0(p14) = L[σ12,14(p14) · Uσ12,14
k=0 (p14)

+ σ13,14(p14) · Uσ13,14
k=0 (p13)]

= L[1 · 0.355 + 1/2 · 0.356]
= maxH [0.533] = 0.335.

The firing transition vector is

u =
1 1 1 1 1 1 1
q8 q9 q10 q11 q12 q13 q14

.

For this case the adjustor or the garage must abort the
process because the accident is out of their range obtaining

U
σhj

k=0(p18) = L[σ16,18(p18) · Uσ16,18
k=0 (p16)]

= L[4/5 · 0.367] = maxH [4/5 · 0.367]
= 0.359,

U
σhj

k=0(p26) = L[σ24,26(p26) · Uσ24,26
k=0 (p24)]

= L[3/4 · 0.367] = maxH [3/4 · 0.367]
= 0.355.

Accordingly,

U
σhj

k=0(p14) < U
σhj

k=0(p26) < U
σhj

k=0(p18),

i.e., U
σhj

k=0(p18), U
σhj

k=0(p26) are more expensive than
U

σhj

k=0(p14).

(II) The optimum strategy σ′� for small accidents that
must be managed ideally by the garage is represented by

U
σhj

k=0(p15) = 0.366,

U
σhj

k=0(p16) = L[σ15,16(p16) · Uσ15,16
k=0 (p15)]

= L[1 · 0.366] = maxH [0.366] = 0.367,

U
σhj

k=0(p17) = L[σ16,17(p17) · Uσ16,17
k=0 (p16)]

= L[1/5 · 0.367] = maxH [0.073] = 0.191,

U
σhj

k=0(p19) = L[σ17,19(p19) · Uσ17,19
k=0 (p17)]

= L[6/8 · 0.191] = maxH [0.143] = 0.278,

U
σhj

k=0(p20) = L[σ17,20(p20) · Uσ17,20
k=0 (p17)]

= L[1/8 · 0.191]
= maxH [1/8 · 0.191] = 0.089,

U
σhj

k=0(p21) = L[σ19,21(p21) · Uσ19,21
k=0 (p19)

+ σ20,21(p21) · Uσ20,21
k=0 (p20)]

= L[1 · 0.278 + 1 · 0.089]
= maxH [0.367] = 0.367.

The firing transition vector is

u′ =
1 1 1 1 1 1
q16 q17 q18 q19 q20 q21

.

(III) The strategy σ′′ for small accidents that must be man-
aged by the adjustor is represented by

U
σhj

k=0(p22) = 0.366,

U
σhj

k=0(p23) = L[σ22,23(p23) · Uσ22,23
k=0 (p22)]

= L[1 · 0.366] = maxH [1 · 0.366] = 0.367,

U
σhj

k=0(p24) = L[σ23,24(p24) · Uσ23,24
k=0 (p23)]

= L[1 · 0.367] = maxH [1 · 0.367] = 0.367,

U
σhj

k=0(p25) = L[σ24,25(p25) · Uσ24,25
k=0 (p24)]

= L[1/4 · 0.367]
= maxH [1/4 · 0.367] = 0.219,

U
σhj

k=0(p27) = L[σ25,27(p27) · Uσ25,27
k=0 (p25)]

= L[1 · 0.219] = maxH [1 · 0.219] = 0.332,

U
σhj

k=0(p28) = L[σ27,28(p28) · Uσ27,28
k=0 (p28)]

= L[2 · 0.332] = maxH [2 · 0.332] = 0.271.

The firing transition vector is

u′′ =
1 1 1 1 1 1
q22 q23 q24 q25 q27 q28

.

A hierarchical decomposition of decision process Petri nets for modeling complex systems 363

Observe that, since U
σhj

k=0(p21) is greater than
U

σhj

k=0(p28), small accidents must be handled by the garage
whenever possible.

4. Conclusions and future work

A formal framework for hierarchical decision process
Petri nets was presented for modular modeling of com-
plex systems. The hierarchical refinement process gener-
ates simple nets with equivalent behavior. Consequently,
the complexity of the analysis of the DPPN is consider-
ably reduced. The analysis of the HDPPN is supported
by the hierarchical structure. In this sense, several steps
can be performed locally, thereby drastically reducing the
size of its upper levels. An algorithm for optimum hier-
archical trajectory planning used to identify the optimum
point was described. The traditional notions of local and
global stability in the sense of Lyapunov used to character-
ize the stability properties of the HDPPN were explored.
Illustrative examples where the properties of the HDPPN
were shown to hold were addressed.

References
Bellman, R.E. (1957). Dynamic Programming, Princeton Uni-

versity Press, Princeton, NJ.

Bouyakoub, S. and Belkhir, A. (2008). H-SMIL-Net: A hierar-
chical Petri net model for SMIL documents, 10-th Interna-
tional Conference on Computer Modeling and Simulation,
Cambridge, UK, pp. 106–111.

Buchholz, P. (1994). Hierarchical high level Petri nets for com-
plex system analysis, in R. Valette(Ed.) Application and
Theory of Petri Nets, Lecture Notes in Computer Science,
Vol. 815, Springer, Zaragoza, pp. 119–138.

Clempner, J., Medel, J. and Cârsteanu, A. (2005a). Extending
games with local and robust Lyapunov equilibrium and sta-
bility condition, International Journal of Pure and Applied
Mathematics 19(4): 441–454.

Clempner, J. (2005b). Optimizing the decision process on Petri
nets via a Lyapunov-like function, International Journal of
Pure and Applied Mathematics 19(4): 477–494.

Clempner, J. (2005c). Colored decision process Petri nets:
Modeling, analysis and stability, International Journal
of Applied Mathematics and Computer Science 15(3):
405–420.

Dai, X. , Li, A.J. and Meng, Z. (2009). Hierarchical Petri net
modelling of reconfigurable manufacturing systems with
improved net rewriting systems, International Journal of
Computer Integrated Manufacturing 22(2): 158–177.

Gomes, L. and Barros, J.P. (2005). Structuring and composabil-
ity issues in Petri nets modeling, IEEE Transactions on In-
dustrial Informatics 1(2): 112–123.

Hammer, M. and Champy, J. (1993). Reengineering the Corpo-
ration: A Manifesto for Business Revolution, HarperBusi-
ness, New York, NY.

Howard, R.A. (1960). Dynamic Programming and Markov Pro-
cesses, MIT Press, Cambridge, MA.

Huber, P., Jensen, K. and Shapiro, R. (1990). Hierarchies in
colored Petri nets, Lecture Notes in Computer Science
Vol. 483, Springer-Verlag, pp. 313–341.

Jensen, K. (1992). Coloured Petri Nets. Basic Concepts, Anal-
ysis Methods and Practical Use, Vol. 1: Basic Concepts,
EATCS Monographs in Theoretical Computer Science,
Springer-Verlag, New York, NY.

Kalman, R.E. and Bertram, J.E. (1960). Control system analysis
and design via the second method of Lyapunov, Journal of
Basic Engineering 82: 371–393.

Lakshmikantham, V., Leela, S. and Martynyuk, A.A. (1990).
Practical Stability of Nonlinear Systems, World Scientific,
Singapore.

Lakshmikantham, V., Matrosov, V.M. and Sivasundaram, S.
(1991). Vector Lyapunov Functions and Stability Analysis
of Nonlinear Systems, Kluwer Academic Publishers, Dor-
drecht.

Murata, T. (1989). Petri nets: Properties, analysis and applica-
tions, Proceedings of the IEEE 77(4): 541–580.

Passino, K.M., Burguess, K.L. and Michel, A.N. (1995). La-
grange stability and boundedness of discrete event systems,
Journal of Discrete Event Systems: Theory and Applica-
tions 5(5): 383–403.

Puterman, M.L. (1994). Markov Decision Processes: Discrete
Stochastic Dynamic Programming, Wiley, New York, NY.

Julio Clempner has ten years of experience in
the field of management consulting. Currently,
he specializes in applications of high technology.
He has also conducted projects related to project
management, software analysis, design, develop-
ment, information technology strategic planning,
balanced ScoreCard, evaluation of software and
business process reengineering for infusing ad-
vanced computing technologies into diverse lines
of businesses. Dr. Clempner is now involved in

providing e-business solutions including e-business strategy, manage-
ment of technology, operations strategy, project management, contin-
uous quality improvement, and managing total quality transformation.
His research interests are focused on justifying and introducing the Lya-
punov equilibrium point in shortest-path decision processes and shortest-
path game theory. This interest has led to several streams of research.
One stream concerns the use of Markov decision processes for formal-
izing the previous ideas, changing Bellman’s equation by a Lyapunov-
like function which is a trajectory-tracking function, and also an optimal
cost-to-target function for tracking the net. A second stream concerns the
use of Petri nets as a language for modeling decision processes and game
theory introducing colors, hierarchy, etc. Petri nets are used for process
representation taking advantage of the formal semantic and the graphical
display. The final stream examines the possibility to meet modal logic,
decision processes and game theory.

364 J. Clempner

Appendix A

HDPPN mark-dynamic properties

We will identify the mark-dynamic properties of the
HDPPN as those properties related to the DPPN.

Theorem 6. The hierarchical decision process Petri net
HDPPN is uniformly practically stable iff there exists a
Φ strictly positive m vector such that Δv = uTAΦ ≤ 0.

Proof. (Necessity) It follows directly from Proposition 1.
(Sufficiency) Let us suppose by contradiction that
uTAΦ > 0 with Φ fixed. FromM ′ = M +uTA, we have
that M ′Φ = MΦ + uTAΦ > MΦ. Then, it is possible to
construct an increasing sequence MΦ < M ′Φ < · · · <
MnΦ < . . . which grows up without bound. Therefore,
the HDPPN is not uniformly practically stable. �

Theorem 7. The local decision process Petri net
DPPNξ ∈ HDPPN is local uniformly practically sta-
ble iff there exists a strictly positive m vector Φ such that
Δv = uTAΦ ≤ 0.

Proof. This result follows directly from the previous the-
orem for a local condition. �

Remark 11. It is important to underline that the only
places where the DPPNξ and the HDPPN will be al-
lowed to get blocked are those which correspond to equi-
librium points.

Theorem 8. The hierarchical decision process Petri net
HDPPN is uniformly practically stable iff every local De-
cision Process Petri net DPPNξ ∈ HDPPN is local uni-
formly practically stable.

Proof. (Necessity) Let us suppose by contradiction
that for an HDPPN we have that uTAΦ > 0 with Φ
fixed. From M ′ = M + uTA we have that M ′Φ =
MΦ + uTAΦ > MΦ. Then, it is possible to construct an
increasing sequence MΦ < M ′Φ < · · · < MnΦ < . . .
which grows up without bound. Therefore, it is possible
to chose a subsequenceMξΦξ < M ′

ξΦξ < · · · < M l
ξΦ <

. . . for l < n that belongs to the DPPNξ which grows
up without bound. Therefore, DPPNξ is not uniformly
practically stable.
(Sufficiency) It follows directly from the previous theo-
rem. �

Appendix B

HDPPN trajectory-dynamic properties

We shall identify the trajectory-dynamic properties of the
HDPPN as those related to the utility at each place of the
DPPN. In this sense, we shall relate an optimum point to
the best possible performance choice. Formally, we intro-
duce the following definition.

Proposition 2. Let HDPPN be a decision process
Petri net and let p� ∈ P a global optimum point. Then
U(p�) ≤ U(p), ∀p ∈ P such that p ≤U p�.

Proof. From the previous theorem we have U(pξ�) ≤
U(pξi) ∀piξ ∈ Pξ. Then, by the definition of the
HDPPN, the relationship U(p�) ≤ U(p) holds. �

Proposition 3. Let DPPNξ ∈ HDPPN be a local deci-
sion process Petri net and let pξ� ∈ Pξ be a local opti-
mum point. Then U(pξ�) ≤ U(pξi), ∀pξi ∈ Pξ, such that
pξi ≤U pξ�.

Proof. We have that U(pξ�) is equal to the minimum
or an infimum. Therefore, U(pξ�) ≤ U(pξi) ∀pξi ∈ Pξ

such that pξi ≤U pξ�. �

Theorem 9. The hierarchical decision process Petri
net HDPPN is global uniformly practically stable iff
U(pi+1) − U(pi) ≤ 0.

Proof. (Necessity) Let us choose v = Id(U(pi)). Then
Δv = U(pi+1) − U(pi) ≤ 0. By the autonomous version
of Theorem 1 and Corollary 1, the HDPPN is stable.

(Sufficiency) We want to show that the HDPPN is prac-
tically stable, i.e., given 0 < λ < A we must show that
|U(pi)| < A. We know that U(p0) < λ and, since U is
non-decreasing, we have |U(pi)| < |U(p0)| < λ < A.

�

Theorem 10. The local decision process Petri net
DPPNξ ∈ HDPPN is local uniformly practically stable
iff U(pξ,i+1) − U(pξi) ≤ 0.

Proof. From the previous theorem we know the uni-
form practical stable condition, and since in particular, if
U(pξ,i+1) − U(pξi) ≤ 0 the local decision process Petri
net DPPNξ is local uniformly practically stable. �

Remark 12. It is important to note that the HDPPN is
uniformly practically stable in the large, but not necessar-
ily for every local system.

Appendix C

Convergence of the HDPPN mark-dynamic and
trajectory-dynamic properties

Theorem 11. Let HDPPN be a hierarchical decision
process Petri net. If p∗ ∈ P is a global equilibrium point,
then it is a global final decision point.

Proof. Let us suppose that p∗ is a global equilibrium
point. We want to show that its utility has reached an in-
fimum or a minimum. Since p∗ is a global equilibrium
point, by definition, it is the last place of the net and its
marking cannot be modified. But this implies that the
routing policy attached to the transition(s) that follows p∗

A hierarchical decomposition of decision process Petri nets for modeling complex systems 365

is zero (if there is such a transition(s), i.e., worst case).
Therefore, its utility cannot be modified and, since the
utility is a decreasing function of pi, an infimum or a min-
imum is attained. Then, p∗ is a global final decision point.

�

Theorem 12. Let HDPPN be a finite and non-blocking
hierarchical decision process Petri net (unless p ∈ P is
a global equilibrium point). If pf ∈ P is a global final
decision point, then it is a global equilibrium point.

Proof. If pf is a global final decision point, since the
HDPPN is finite, there exists k such that Uk(pf) = C.

Let us suppose that pf is not a global equilibrium
point.
Case 1. Then, it is not bounded. So, it is possible to incre-
ment the marks of pf in the net. Therefore, it is possible
to modify its utility. As a result, it is possible to obtain a
lower utility than C.
Case 2. Then, it is not the last place in the net. So, it is
possible to fire some output transition to pf in such a way
that its marking is modified. Therefore, it is possible to
modify the utility over pf . As a result, it is possible to
obtain a utility lower than C. �

Corollary 2. Let HDPPN be a finite and non-blocking
hierarchical decision process Petri net (unless p ∈ P is a
global equilibrium point). Then, a global optimum point
p� ∈ P is a global equilibrium point.

Proof. From the previous theorem we know that a
global final decision point is a global equilibrium point
and, since, in particular, p� is global final decision point,
then it is a global equilibrium point. �

Remark 13. The finite and non-blocking (unless p ∈ P
is a global equilibrium point) condition over the HDPPN
cannot be relaxed:

1. Suppose that the HDPPN is not finite, i.e., p is in a
cycle. Then the Lyapunov-like function converges to
zero, as k → ∞, i.e., L(p) = 0 but the HDPPN has
no final place. Therefore, it is not a global equilib-
rium point.

2. Suppose that the HDPPN blocks at some place (not
a global equilibrium point) pb ∈ P . Then the
Lyapunov-like function has a minimum at place pb,
let us say L(pb) = C, but pb is not a global equi-
librium point, because it is not necessarily the last
place of the net.

Corollary 3. Let HDPPN be a non blocking hierarchical
decision process Petri net (unless p ∈ P is a global equi-
librium point), and let σ� be a optimum global strategy.
Set

L = min
i=1,...,|α|

{αi}.

Then U�
k (p) is equal to

σ�
0jm

(pς(0)) σ�
1jm

(pς(0)) . . . σ�
njm

(pς(0))

σ�
0jn

(pς(1)) σ�
1jn

(pς(1)) . . . σ�
njn

(pς(1))

.

σ�
0jv

(pς(i)) σ�
1jv

(pς(i)) . . . σ�
njv

(pς(i))

.
︸ ︷︷ ︸

σ�

Uk(p0)

Uk(p1)

. . .

Uk(pi)

. . .
︸ ︷︷ ︸

U

(23)
where p is a vector whose elements are those places
which belong to the optimum trajectory ω given by p0 ≤
pς(1) ≤Uk

pς(2) ≤Uk
· · · ≤Uk

pς(n) ≤Uk
. . . which con-

verges to p�.

Proof. Since at each step of the iteration U�
k (pi) is equal

to one of the elements of vector α, we have that the repre-
sentation that describes the dynamical utility behavior of
tracking the optimum strategy σ� is

σ�
0jm

(pς(0)) σ�
1jm

(pς(0)) . . . σ�
njm

(pς(0))

σ�
0jn

(pς(1)) σ�
1jn

(pς(1)) . . . σ�
njn

(pς(1))

.

σ�
0jv

(pς(i)) σ�
1jv

(pς(i)) . . . σ�
njv

(pς(i))

.
︸ ︷︷ ︸

σ�

Uk(p0)

Uk(p1)

. . .

Uk(pi)

. . .
︸ ︷︷ ︸

U

where jm, jn, . . . , jv, . . . represent the indexes of the op-
timal routing policy, defined by the q′js. �

Plane symmetry involves moving all points around
the plane so that their positions relative to each other
remain the same, although their absolute positions may
change. By analogy, let us introduce the following defini-
tion.

Definition 21. A hierarchical decision process Petri net
HDPPN is said to be symmetric if it is possible to decom-
pose it into some finite number (greater than 1) of local
decision process Petri nets {DPPNξ} in such a way that
there exists a bijection ψ between all the {DPPNξ} such
that

(p, q) ∈ I ⇔ (ψ(p), ψ(q)) ∈ I

and
(q, p) ∈ O ⇔ (ψ(q), ψ(p)) ∈ O (24)

for all of the local decision process Petri nets.

Corollary 4. Let HDPPN be a non blocking (unless p
is a global equilibrium point) symmetric hierarchical de-
cision process Petri net and let σ� be an optimum global
strategy. Set

L = min
i=1,...,|α|

{αi}.

Then
σ�U ≤ σU, ∀σ, σ�,

where the σand σ� are represented by a matrix and U is
represented by a vector.

366 J. Clempner

Proof. From the previous corollary, thanks to the sym-
metric property, we obtain

σ�U ≤ σU, ∀σ, σ�.

�

Received: 22 December 2008
Revised: 8 July 2009

	Introduction
	Preliminaries
	Methods for practical stability
	Petri nets
	Decision processes Petri nets

	Hierarchical decision process Petri net
	Optimum trajectory planning

	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

