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NONLINEAR CONTROLLER DESIGN OF A SHIP AUTOPILOT
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The main goal here is to design a proper and efficient controller for a ship autopilot based on the sliding mode control
method. A hydrodynamic numerical model of CyberShip II including wave effects is applied to simulate the ship autopilot
system by using time domain analysis. To compare the results similar research was conducted with the PD controller, which
was adapted to the autopilot system. The differences in simulation results between two controllers are analyzed by a cost
function composed of a heading angle error and rudder deflection either in calm water or in waves. Simulation results show
the effectiveness of the method in the presence of nonlinearities and disturbances, and high performance of the proposed
controller.

Keywords: sliding mode control, nonlinear control, disturbance rejection, ship control.

1. Introduction

When a ship sails on the sea, its autopilot system is usu-
ally used for leading the ship along the desired course via
automatic changes in the rudder blade deflection. In re-
cent years, numerous publications have been devoted to
investigating those properties of autopilots which would
make it possible to steer the ship both in calm water and
in the presence of additional disturbances, such as wind,
sea waves, and/or sea currents. The motion of the ship is
highly susceptible to the action of the approaching wa-
ves and, consequently, the ship, which always sails in the
presence of waves, will behave in a different way from
that defined for calm water. The ship behaviour in various
environmental conditions is predicted using mathematical
models developed to model kinetic movements of the ship
and the dynamics of the phenomena taking place (Fang
and Luo, 2005).

The ship motion is described by a set of six compli-
cated differential equations which describe six degrees of
freedom. The models used for designing control systems
change depending on the goals of the control. These goals
can be divided, in a most general way, into low-speed po-
sitioning and high-speed steering. The first type is named
dynamic positioning (DP) and includes keeping constant
position and low-speed manoeuvering. For a DP systems,
the model with six degrees of freedom is reduced to a sim-
pler one with three degrees of freedom. This model is li-

near in the kinetic part. High-speed steering includes au-
tomatic steering along the desired course, steering along
the trajectory (high speed position tracking) and path fol-
lowing. In those applications, centripetal and Coriolis for-
ces, along with the nonlinear viscous effect, are domina-
ting, and that is why the kinetic model is nonlinear. For
ships moving at a constant speed only the first approxima-
tion of viscous damping is taken into account, and there-
fore in this case linear approximations of ship dynamics
can be used (Fossen, 2002). A historical overview of the
development of mathematical models of ships was given
by Clark (2003).

Nowadays we can observe great interest in mathema-
tical models of ships, in particular those developed in the
time domain, as they can be used in designing control sys-
tems and computer simulations. Models of this type can
be found in (Galbas, 1988; Gierusz, 2001; Fossen, 1994;
Kallstrom and Ottosson, 1982; Skjetne et al., 2004).

A conventional autopilot system used for controlling
the ship motion is a PD controller with constant parame-
ters values. These controllers can work properly in preci-
sely defined operating conditions, but the quality of their
work is worse when these conditions change. Ship dyna-
mic characteristics can change as a consequence of chan-
ges of the ship speed, load, and external disturbances such
as waves, wind, and/or sea currents. In many cases manu-
al tuning of control parameters is necessary. Therefore a
lot of research activities have been oriented to improving
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Fig. 1. Inertial earth-fixed frame and the body-fixed frame for a ship with the earth-fixed position (x, y), the heading ψ, the ship course
ψc , the sideslip β, the corresponding body-fixed velocities (u, v), and the rotation rate r (Skjetne et al., 2004).

the quality of operation of these controllers using adaptive
mechanisms which automatically change ship model pa-
rameters, depending on operating conditions. Ship model
parameters are estimated directly and then used for tuning
the controller’s parameters (Fang and Luo, 2005).

Automatic control systems of the ship motion often
make use of sliding mode controllers, which are known
for their good quality of control. This type of controller
is rather well documented and bases on switching con-
trol, which delivers an additional steering action when
plant dynamics characteristics change due to nonlineari-
ties (Castillo-Toledo et al., 2008; Etien et al., 2002; Fos-
sen, 1994; Healey and Lienard, 1993; Healey and Marco,
1992; McGookin et al., 2000; Sadati and Ghadami, 2008;
Slotine and Li, 1991; Solea and Nunes, 2007; Tomera and
Smierzchalski, 2006). The structure of the sliding mode
controller includes a nominal part and a nonlinear swit-
ching part. Switching makes the controller highly resistant
to direct external and internal changes due to the environ-
ment.

Various implementation methodologies for sliding
mode controllers exist. Like other conventional control
structures, the design of sliding-mode controllers needs
the knowledge of the mathematical model of the plant,
which decreases the performance in some applications
where mathematical modeling of the system is very dif-
ficult and where the system has a wide range of parame-
ter variations together with unexpected and sudden exter-
nal disturbances. For those cases we need so-called “in-
telligent” controllers. The idea of combining these intel-
ligent control structures with the sliding-mode approach
has attracted many researchers. These controllers main-
ly work based on neural networks (Bagheri and Moghad-
dam, 2009; Hung and Chung, 2007), or fuzzy control
(Bessa et al., 2008; Chen et al., 2009). Also new me-
thods based on genetic algorithms are available (Demir-

tas, 2009; Moghaddam and Bagheri, 2010).
In the present research, the sliding mode controller

was adapted to analysing properties of the ship autopi-
lot in the situation when the ship is steered in waves. The
analysis was made using the physical model of a ship cal-
led CyberShip II, which provides services to drilling plat-
forms (Lindegaard and Fossen, 2002; Sveen, 2003; Skjet-
ne et al., 2004). In order to compare the obtained results,
reference tests were performed using the PD controller.
Characteristics of the examined controllers were tested in
calm water and in the presence of sea waves with course
changes generated by the change in turning points on the
trajectory of the moving ship. The cost function took into
account the ship course error and rudder blade deflection,
and was used for evaluating the quality of the steering ac-
tion of the controllers.

2. Mathematical model of ship dynamics

The motion of the ship is described using nonlinear dif-
ferential equations in six degrees of freedom (DOFs).
The variables (x, y, z) are respectively referred to as sur-
ge, sway and heave, describing the position in the three-
dimensional space, and the variables (φ, θ, ψ), called roll,
pitch and yaw, are used for describing the orientation of
the ship. Assuming that the ship is stable in surge and
sway directions, with small amplitudes φ = θ = φ̇ = θ̇ ≈
0 we can neglect the dynamics of roll and pitch. Like-
wise, for a ship sailing on water surfaces with z ≈ 0 on
the average we can also neglect the heave dynamics. The
resulting model describing the ship motion in the horizon-
tal plane becomes a model with three degrees of freedom.
The ship motion is described in the inertial frame fixed to
the Earth’s coordinate system, called NED (North-East-
Down), and another coordinate frame attached to the mo-
ving ship (Fig. 1).
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The state variables describing the ship motion are
collected in two vectors (Fossen, 1994), η = [x, y, ψ]T

and ν = [u, v, r]T, where (x, y) denotes the position coor-
dinates, ψ is the heading (yaw) angle, (u, v) are the body-
fixed linear velocities (surge and sway) of the ship, and r
is the yaw rate of the ship. The Earth-fixed velocity vector
defined in the inertial frame is related to the body-fixed
velocity vector through the following kinematic relation-
ship:

η̇ = R(ψ)ν, (1)

whereR(ψ) is the rotation matrix, calculated from the for-
mula

R(ψ) =

⎡
⎣

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤
⎦ . (2)

The ship model selected for designing and testing the
control system with the sliding mode controller was the
mathematical model of the ship CyberShip II, developed
at the Department of Engineering Cybernetics, Norwe-
gian University of Science and Technology (NTNU),
Trondheim, Norway. The physical model of this ship sails
in the Marine Cybernetics Laboratory (MCLab), NTNU,
(http://www.itk.ntnu.no/marinkyb/MCLab).

2.1. Mathematical model of CyberShip II. The phy-
sical model called Cybership II is a scale replica of a sup-
ply ship, made at a scale of 1:70. Its mass is m = 23.8
kg, the overall length is LOA = 1.255 m, and the breadth
is B = 0.29 m. This model was equipped with two main
propellers and two rudders aft, and one bow thruster. The
propellers and the thruster are controlled by the rotational
speed. In a general form, the mathematical model of this
ship is given by the formula

Mν̇ + C(ν)ν +D(ν)ν = τ. (3)

The system inertia matrixM = MRB + MA includes
the rigid-body system inertia matrix MRB , and the hy-
drodynamic matrix included added mass coefficientsMA.
The coefficients of the matrixMRB were calculated using
the data obtained from direct measurements and basic ship
characteristics, such as dimensions, weight, mass distribu-
tion, volume, etc. The coefficients in the matrix MA are
connected with the water surface effect and are evaluated
from semi-empirical formulas (Faltinsen, 1990):

M =

⎡
⎣
m−Xu̇ 0 0

0 m− Yv̇ mxg − Yṙ

0 mxg −Nv̇ Iz −Nṙ

⎤
⎦ . (4)

The Coriolis-centripetal matrixC(ν) includes Corio-
lis and centripetal termsCRB(ν) acting on the ship treated

as a solid body, as well as hydrodynamic Coriolis and cen-
tripetal termsCA(ν) connected with the fluid in which the
ship moves (Fossen, 2002):

C(ν) = CRB(ν) + CA(ν), (5)

where

CRB(ν) =

⎡
⎣

0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

⎤
⎦ ,

CA(ν) =

⎡
⎣

0 0 c13(ν)
0 0 −c23(ν)

−c13(ν) c23(ν) 0

⎤
⎦ ,

c13(ν) = Yv̇v +
1
2
(
Nv̇ + Yṙ

)
r and c23(ν) = Xu̇u.

The damping matrix D(ν) is connected with the hy-
drodynamic damping forces. It consists of the linear part
DL, determined for a selected small and constant surge
velocity ν = ν0 ≈ [u0, 0, 0]T (Fossen, 2002), and of the
nonlinear part DNL(ν), which makes it possible to de-
termine hydrodynamic damping forces at high velocities
(Skjetne, et al., 2004):

D(ν) = DL +DNL(ν), (6)

where

DL =

⎡
⎣

−Xu 0 0
0 −Yv −Yr

0 −Nv −Nr

⎤
⎦ ,

DNL(ν) =

⎡
⎣

−d11(ν) 0 0
0 −d22(ν) −d23(ν)
0 −d32(ν) −d33(ν)

⎤
⎦ ,

d11(ν) = X|u|u|u| +Xuuuu
2,

d22(ν) = Y|v|v|v| + Y|r|v|r|,
d23(ν) = Y|v|r|v| + Y|r|r|r|,
d32(ν) = N|v|v|v| + Y|r|v|r|,
d33(ν) = N|v|r|v| +N|r|r|r|.

The vector of forces acting on the ship’s hull refers
to the forces τth generated by the propellers and rudders
installed on the physical model of CyberShip II and to the
forces τw generated by acting disturbances:

τ = [τX , τY , τN ]T = τth + τw. (7)

2.2. Mathematical models of propellers and rudder
blades. For rotating propellers with a fixed blade rudder
deflection angle, the generated thrust force is more or less
proportional to the square of the rotational speed ωi of the
shaft. For small speeds, the propeller/blade model can be
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divided into two parts, of which the first one describes the
nominal thrust (blade deflection angles δi = 0, i = 1, 2):

Ti =
{

kiTpω
2
i for ωi � 0,

kiTn|ωi|ωi for ωi < 0, (8)

i={1, 2, 3}. The second part refers to additional lift and
drag forces, generated by rudder blades connected with
the propeller screws, i = 1, 2,

Li =

{
Ti

(
1 + kiLnωi

)(
kiLδ1 + kiLδ2|δi|

)
δi, ωi � 0,

0, ωi < 0,
(9)

Di =

{
Ti

(
1 + kiDnωi

)(
kiDδ1|δi| + kiDδ2δ

2
i

)
, ωi � 0,

0, ωi < 0.
(10)

For the above-mentioned three rotating propellers
and two rudders, the following surge and sway forces are
obtained:

u =

⎡
⎢⎢⎢⎢⎣

T1(ω1, δ1) −D1(ω1, δ1)
T2(ω2, δ2) −D2(ω2, δ2)

T3(ω3)
L1(ω1, δ1)
L2(ω2, δ2)

⎤
⎥⎥⎥⎥⎦
. (11)

Now we can write the vector of forces applied to the
hull depending on the distribution of the propellers and
rudder blades:

τth = Tu, (12)

where the matrix T is the actuator configuration matrix:

T =

⎡
⎣

0 0 0 0 0
0 0 0 0 0

|LyT1| −|LyT2| |LxT3| −|LxR1| −|LxR2|

⎤
⎦ .

(13)
Numerical values of the parameters used in the presented
mathematical model of CyberShip II can be found in (Lin-
degaard, 2003; Sveen, 2003; Skjetne et al., 2004; Skjetne,
2005).

2.3. Environmental disturbances. Three main types
of environmental disturbances can be named, including

(i) waves generated by the wind,

(ii) ocean currents,

(iii) the wind.

The present analysis limits the list of examined disturban-
ces to surface waves generated by the wind, i.e., the di-
sturbances which are most important for the motion of a
surface ship. The model which was used for simulating
the movement of the ship in waves introduces forces and
moments induced by regular sea on a ship having the sha-
pe of a block. It creates a vector τw = [Xw, Yw, Nw]T ,

which is directly added to the input vector τ using the su-
perposition principle (Fossen, 1994):

Xw(t) =
N∑

i=1

ρgBLT cos(β)si(t), (14)

Yw(t) =
N∑

i=1

ρgBLT sin(β)si(t), (15)

Nw(t) =
N∑

i=1

1
24
ρgBL

(
L2 −B2

)
sin(2β)s2i (t), (16)

where L and B are the ship length and breath, respecti-
vely, T is the average draught of a ship treated as block-
shaped, ρ is water density, si(t) is the wave slope, while
β = ψw – ψ is the angle between the direction of the ac-
ting waves ψw and the ship heading ψ, (in radians). The
wave slope si can be related to the wave spectral density
function S(ωi).

Various spectral densities can be used to calculate
S(ω). Here, the modified Pierson-Mostkowitz spectrum
was used (Fossen, 1994):

S(ω) =
4π3H2

s

(0.710To)4ω5
exp

( −16π3

(0.710To)4ω4

)
, (17)

where To is the modal period (To = 0.80 s), Hs is the si-
gnificant wave height (Hs = 5 mm). The simulated waves
had the significant wave height equal to 3 m, which corre-
sponds to sea conditions 5 (rough sea).

3. Control system for ship course tracking

The reported investigations concerned the control sys-
tem for a ship steering on its course. The input signal in
the examined control system was the desired course ψd,
which resulted from the covered trajectory segment. In a
real coordinate system it can be calculated from the follo-
wing relation:

ψd = arctg

(
yk+1 − yk

xk+1 − xk

)
, (18)

where (xk,yk) are the coordinates of the way point passed
by the ship, while (xk+1,yk+1) are the coordinates of the
next way point. The task of the controller is to generate
the control signal δz for the steering gear. In the examined
ship course control system two controllers were taken into
account, i.e., the PD controller and the SMC (sliding mode
control) controller.

To evaluate the quality of operation of the examined
controllers, the cost function was defined as

J = ψE + δE =
N∑

i=0

(Δψi)2 + λ
N∑

i=0

δ2i

=
N∑

i=0

[
(Δψi)2 + λδ2i

]
.

(19)
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The first term of this function refers to the course change,
whereN is the number of iterations during the simulation
process, λ is the weight coefficient, Δψi is the i-th course
error calculated as the difference between the desired co-
urse and the ship heading, δi is the i-th deflection of the
rudder blade. The main task of the weight coefficient λ
is to gain the course error term at the same level as the
term representing the rudder deflection. Without external
disturbances, an decreasing course error will increase the
rudder blade deflection and vice versa: a decreased rudder
blade deflection will increase the course error.

3.1. PD controller. The controller which, due to its
simplicity, is most frequently used in autopilot systems
is the PD controller. It controls the rudder blade deflec-
tion depending on the values of the heading error and the
yaw rate. The PD controller is described by the following
formula:

δz = KP (ψ − ψd) +KDr, (20)

where KP and KD are controller settings, ψd and ψ
are the desired and current ship headings, respectively,
r = dψ/dt is the yaw rate of the ship, and δz is the com-
manded rudder blade deflection.

3.2. Sliding mode controller. Sliding control belongs
to the group of robust control methods, as changes in the
dynamics of the controlled object and external disturban-
ces do not lead to noticeable deterioration of the control
quality. The control action performed using the sliding
mode controller consists in tracking the desired trajecto-
ry, which is obtained by comparing the current values x
of the controlled states with the desired values xz , i.e., by
calculating the tracking error e = xz–x. The structure of
the sliding mode controller consists of the equivalent part
and an additional part used for compensating the action of
disturbances. The equivalent part is usually a linear con-
troller designed for the linearized plant and responsible for
the main control action. The additional part is a switching
controller, in which the minimization of the sliding sur-
face value takes place as a function of the tracking error
σh(e). The control consists in reducing the control error to
zero, e = 0, which is equivalent to the reduction of the sli-
ding surface value to zero. The output signal of the sliding
mode controller, being the input signal for the controlled
object, is composed of two terms,

δz = ueq + usw, (21)

where ueq is the signal of the equivalent part and usw is
the signal of the switching part.

3.2.1. Equivalent part. For the purposes of the line-
ar controller synthesis, being part of the examined sliding
mode controller, simplified mathematical models of Cy-
berShip II were worked out. From a ship moving with a

constant surge speed u = u0, the above nonlinear model
of CyberShip II (3) can be simplified. The surge dyna-
mics are separated from the above mathematical model
assuming the port/starboard symmetry. The steering for-
ces are usually linearly dependent on the rudder blade de-
flection δ, according to the formulas τY = −Yδδ and
τN = −Nδδ.

As a result, the manoeuvring model is obtained
which consists of the surge dynamics

(m−Xu̇)u̇−Xu(u − u0) − (m−Xv̇)vr

−
(
mxg − 1

2
Nv̇ − 1

2
Yṙ

)
r2 = τX (22)

and the yaw-sway dynamics

Mν̇ +N(u0)ν = bδ, (23)

where ν = [v, r]T is the state vector, δ is the rudder angle
and

M =
[

m− Yv̇ mxg − Yṙ

mxg −Nv̇ Iz −Nṙ

]
,

N(u0) =
[ −Yv −Yr +

(
m−Xu̇

)
u0

−Nv −Nr +
(
mxg − 1

2Nv̇ − 1
2Nv̇

)
u0

]
,

b =
[
Yδ

Nδ

]
. (24)

The matrix N(u0) is obtained by the summation of
linear damping DL and Coriolis and centripetal terms
C(u0), that is,

N(u0) = C(u0) +DL. (25)

For each fixed surge speed u = u0, the above characteri-
stics remain linear. That is why u is considered a parame-
ter. Equation (23) constitutes a linearly parameterized mo-
del, written in the form of the Davidson and Schiff (1946)
model. This model can then be converted to the Nomoto
models described by Clarke (2003).

To eliminate the sway speed v from Eqn. (23) two
other alternative descriptions of the Davidson and Schiff
model are proposed by Nomoto et al. (1957). This way we
arrive at the Nomoto transfer function, which represents
the relation between the ship course ψ and the rudder bla-
de deflection δ:

ψ(s)
δ(s)

=
K(1 + T3s)

s(1 + T1s)(1 + T2s)
. (26)

The parameters of the transfer function are related to
the hydrodynamic coefficients according to the following
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relations:

T1T2 = |M |/|N |, (27)

T1+ T2 = (n11m22 + n22m11

− n12m21 − n21m12)/|N |, (28)

KR = (n21b1 − n11b2/|N |, (29)

KRT3 = (m21b1 −m11b2/|N |, (30)

K = −KR, (31)

where the coefficientsmij , nij and bi (i = 1, 2; j = 1, 2) are
the components of the matrices M, N and B in (22), |M |,
|N | are determinants of the matrices M and N, respective-
ly.

The Nomoto model can be reduced by determining
the substitute time constant using the relation T = T1 +
T2 − T3:

ψ(s)
δ(s)

=
K

s(1 + Ts)
, (32)

and it can be written in the form of the following state
equations:

[
ψ̇
ṙ

]
=

[
0 1
0 a22

] [
ψ
r

]
+

[
0
b2

]
δ, (33)

ψ =
[

1 0
] [

ψ
r

]
+

[
0

]
δ, (34)

where r = dψ/dt, a11 = −1/T , b2 = K/T .
The synthesis of the sliding mode controller was do-

ne based on the simplified Nomoto model (33), (34) writ-
ten in the form of the following dynamic equations:

ẋh = Ahxh +Bhδ, (35)

ψ = Chxh +Dhδ. (36)

The sliding surface σh was defined as

σh = h1(ψz − ψ) + h2(rz − r), (37)

where h1 and h2 are the elements of the right eigenvector
h, rz is the commanded yaw rate, and ψz is the comman-
ded ship heading. In order to stabilize the ship on its co-
urse, a two-element vector K = [k1, k2]T was selected in
such a way that

Ac = Ah −BhK
T =

[
0 1

−b2k1 a22 − b2k2

]
. (38)

Two eigenvalues of the closed system provide opportuni-
ties for determining the required gains k1 and k2. After
calculating the matrix Ac, the required eigenvector h is
calculated as the solution of the equation AT

ch = 0 for the
eigenvalue of the smaller absolute value (module).

In the article, the equivalent part of the sliding mode
controller was executed using the linear controller whose
action was based on the following formula:

ueq = −Nψz +Kx, (39)

where N is the gain to scale the commanded heading ψz ,
which is calculated from

N = Nu +KNx, (40)

[
Nx

Nu

]
=

[
Ah Bh

Ch Dh

]−1 [
0
1

]
. (41)

3.2.2. Switching part. The switching part of sliding
mode control takes the form

usw = hTẋhz − ηh tgh
(
σh

φh

)
, (42)

where ẋhz = [rz , ṙz] is the required state vector, in which
ṙz = drz/dt is the desired yaw acceleration, ηh is the
switching gain and φh is the boundary layer thickness.

3.2.3. Complete form. Finally, the control law of the
sliding mode controller is calculated from the following
formula:

δz = ueq + usw

= −Nψz +Kx

+
[
hTẋhz − ηhtanh

(
σh

φh

)]
.

(43)

The commanded ship heading ψz and the commanded
yaw rate rz were determined using the reference model
described by

[
ψ̇z

ṙz

]
=

[
0 1

−ω2
n −2ζωn

] [
ψz

rz

]

+
[

0
ω2

n

]
ψd,

(44)

where ψd is the desired ship course resulting from the as-
sumed trajectory segment.

In (37) we defined the switching surface for the sli-
ding mode controller that is based on the state variable
errors. The control objective is to drive the system state
to the commanded state. The feedback gain vector K in
the equivalent part was computed by means of pole place-
ment by first specifying the closed-loop matrix Ac. In the
design of the sliding mode controller, an equivalent con-
trol is first given so that the states can stay on the sliding
surface.

The sliding controller is divided into an equivalent
control input and a reaching mode control input if the
switching form is negative (Fossen, 1994).
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Comparing Eqns. (20) and (43), we can see the dif-
ference between these two controllers. The commanded
rudder blade deflection, determined in the PD controller,
is only calculated from the heading error and the yaw rate.
In the sliding mode controller, the commanded rudder bla-
de deflection is calculated from the course error, the yaw
rate, the commanded yaw rate, and the commanded yaw
acceleration.

4. Simulation tests

The simulation tests of the course control systems making
use of the here discussed controllers were carried out for
two cases: in calm waters and in the presence of waves
corresponding to the sea conditions equal to 5 on the Be-
aufort scale. The model selected for the test was the ma-
thematical model of CyberShip II. The rotational speed of
the propeller screws was constant and equal to ω1 = ω2 =
8.13 rev/s. The ship moved at a constant surge speed equal
to 0.3 m/s in calm waters, at zero rudder blade deflections.
For simplicity, the water depth was assumed infinite.

The problem which was to be solved concerned tu-
ning the parameters of the PD controller and the sliding
mode controller. For the PD controller, two parameters
were to be selected: the course error gain KP and the
ship’s yaw rate gainKD. At the same time, for the sliding
mode controller, four parameters were to be selected, i.e.,
two eigenvalues (λ1, λ2) of the closed system, the swit-
ching gain ηh and the boundary layer thickness φh. The
eigenvalues (λ1, λ2) of the closed system make it possible
to calculate the gain vectorK and the nominal eigenvector
h. These calculations were performed using the linearized
Dawidson and Schiff model (22). As a result, for Cyber-
Ship II, moving with a constant surge speed u = u0 =
0.3 m/s, the following linearized mathematical model was
obtained (and used for further calculations):

[
33.8000 1.0948
1.0948 2.7600

] [
v̇
ṙ

]

+
[

0.8897 14.9900
2.3687 2.9948

] [
v
r

]
=

[
0.4304

−0.2363

]
δ.

(45)

The model described by (45) was transformed to the
Nomoto model, described by the dynamic equations (33),
(34), which in the examined case took the form

[
ψ̇
ṙ

]
=

[
0 1.0000
0 0.1057

] [
ψ
r

]
+

[
0.0000

−0.0040

]
δ,

(46)

ψ =
[

1 0
] [

ψ
r

]
+

[
0

]
δ. (47)

The obtained linearized mathematical model of Cyber-
Ship II (46), (47) was used for calculating gains in the

linear controller using the pole location method. The ob-
tained eigenvalues of the system closed by the matrix of
gains from state coupling were equal to λ1 = −0.0005,
λ2 = −7.8128. The formula (43) includes the eigenvec-
tor h corresponding to the eigenvalue λ1. For the nonline-
ar part of the sliding mode controller (43), the following
values were assumed: ηh = 10, φh = 0.3, while for the
PD controller (20), the assumed gains were KP = 2 and
KD = 50. The parameters in the reference model (44)
were ωn = 0.1, ζ = 0.85.

Table 1. Cost function value (in calm water).
Algorithm ψE δE J

PD controller 128.20 128.74 256.94
SMC controller 117.07 117.42 234.49

The examined control systems were modeled in Ma-
tlab/Simulink, and the simulations were carried out in
time domain. The numerical integration was performed
using the fourth-order Runge-Kutta method with the in-
tegration step equal to 0.1 s. The object used for simula-
tions was the nonlinear mathematical model of CyberShip
II, described in detail in (Lindegaard and Fossen, 2002;
Sveen, 2003; Skjetne et al., 2004).

The simulated waves had a significant height equal
to 3 m, which corresponds to the sea conditions equal to
5 on the Beaufort scale. The waves were modelled ba-
sed on the modified Pierson-Mostkowitz spectrum (Fos-
sen, 1994). For the purpose of wave simulation for Cy-
berShip II, whose physical model was made at a scale of
1:70, the modal period was assumed, after scaling, as be-
ing equal to (To = 0.80 s), while the significant height of
the wave was equal toHs = 5 mm, the average draught of
CyberShip II is equal to T = 0.05 m. The direction of the
wave action assumed for the calculations was ψw = 180o.

The systems were first tested in calm water. The re-
sults of the simulations are shown in Fig. 2. The left-hand
column collects the data recorded for the control system
with the PD controller, while in right-hand column—for
the control system with a sliding mode controller. The up-
per diagrams show the time-histories of changes in surge
speeds, the central diagrams—heading changes, and the
lower diagrams—real rudder blade deflections.

The presented figures reveal how different formulas
used for calculating control signals affect the behaviour
of the entire control system. At a sudden change of the
commanded heading, the PD controller, described by (20),
immediately calculates a high value of the commanded si-
gnal, which then leads to fast deflection of the rudder bla-
de and a resultant decrease in the surge velocity of the
ship. At the same time, in the sliding mode controller, the
use of the reference model makes the steering signal chan-
ge more slowly. As a consequence, the rudder blade does
not deflect so rapidly and the decrease in the surge veloci-
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Fig. 2. Motion response for simulation in calm waters: left—PD controller, right—SMC controller.

0 100 200 300
0.1

0.2

0.3

0.4

u 
[m

/s
]

PD

0 100 200 300
0.1

0.2

0.3

0.4

u 
[m

/s
]

SMC

0 100 200 300
0

10

20

30

40

50

ps
i [

de
g]

0 100 200 300
0

10

20

30

40

50

ps
i [

de
g]

0 100 200 300

−20

0

20

t  [s]

de
lta

 [d
eg

]

0 100 200 300

−20

0

20

t  [s]

de
lta

 [d
eg

]

Fig. 3. Motion response for simulation in rough sea: left—PD controller, right—SMC controller.

ty of the ship is smaller.
The values of the determined steering cost function

are collected in Table 1. It is noticeable that all perfor-
mance indices determined for the sliding mode controller
are smaller than those calculated for the PD controller.

Figure 3 shows the results of simulations on a regu-

lar 3-meter high wave, for unchanged parameters of both
controllers. The obtained results differ remarkably from
those recorded in calm water.

Comparing the course changes presented in the cen-
tral diagrams, we can see that the presence of the swit-
ching element, having the integrating function in the sli-
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Table 2. Cost function value (in regular waves).
Algorithm ψE δE J

PD controller 259.38 261.40 520.78
SMC controller 194.57 195.98 390.55

ding mode controller, makes it possible to track the ship
along the desired course much more effectively than in the
case of the PD controller, which does not have the integra-
ting function.

The values of steering performance indices determi-
ned for the case of ship steering in the presence of a re-
gular wave are collected in Table 2. Comparing them with
those in Table 1, we can notice that it is much more dif-
ficult to track the ship in the presence of waves than in
calm water, because the cost function values for steering
on waves are much higher than in the case of calm water.

5. Conclusion

The object of the investigations reported in the article was
the course tracking ability by a ship sailing rough sea. Two
controllers were examined, namely, the PD controller and
the sliding mode controller, for which correct values of
parameters were selected. All tests were performed at a
constant rotational speed of the propeller screws situated
at the stern. This speed was equal to 8.13 rev/s. As a re-
sult, the ship moved with a constant surge speed equal to
0.3 m/s in calm water, at zero rudder blade deflection. The
performed computer simulations made it possible to conc-
lude that both controllers properly led the ship in calm
water, and similar cost function values were obtained.

The wave effect on ship autopilot operation is si-
gnificant, which can be observed by comparing the time-
histories shown in Figs. 2 and 3, and the cost function va-
lues of steering performance collected in Tables 1 and 2.
The investigations revealed that the sliding mode control-
ler better tracks the heading at the presence of waves than
the PD controller. The advantage of the use of switching
in the sliding algorithm consists in the fact that is helps to
keep precisely the current course by compensating distur-
bances generated by an external environment, such as the
wave disturbances analyzed in the paper.
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