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This paper aims at three aspects closely related to each other: first, it presents the state of the art in the area of thinning
methodologies, by giving descriptions of general ideas of the most significant algorithms with a comparison between
them. Secondly, it proposes a new thinning algorithm that presents interesting properties in terms of processing quality
and algorithm clarity, enriched with examples. Thirdly, the work considers parallelization issues for intrinsically sequential
algorithms of thinning. The main advantage of the suggested algorithm is its universality, which makes it useful and versatile

for a variety of applications.
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1. Introduction

As a digital image processing technique, thinning has be-
en around for many years. Thinning (also termed skele-
tonization) is an image pre-processing technique that is
important in a number of applications like pattern reco-
gnition, data compression and data storage (Gonzalez and
Woods, 2007). The history of thinning covers over fifty
years. In the 1950s Dinnen (1955) found that an averaging
operation over a square window with a high threshold re-
sulted in a thinning of the input image. Then Kirsch ef al.
(1958) mentioned that the “custer” operation was an early
attempt to obtain a thinline representation of certain cha-
racter patterns. However, still there is no ultimate solution
suitable for each individual area of application (Jaisimha
et al., 1994; Jang and Chin, 1992; Lam et al., 1992; Lee
et al., 1991). This is due to the complicated nature of
the processing as well as various evaluation measures that
should be considered.

There are more than one thousand algorithms that ha-

ve been published on this topic. The thinning algorithms
mentioned in this paper have been selected from among
the best known published works. These selected works are
given here for comparison to show and evaluate the ef-
forts of other researchers and authors in working out and
implementing a number of algorithms and approaches for
a variety of applications.

The first trials conducted in this field by the au-
thors of this paper date back to 1999 (Saeed and Nie-
dzielski, 1999). This was to aid recognition algorithms of
cursive-character letters, which required thinning before
classification. This work is an attempt to propose a new
criterion and employ it to various applications. The pre-
sented method leads to a fast recognition algorithm of both
typewritten and handwritten texts with the possibility of
applying it to thin images of a variety of objects. The ba-
sic idea of thinning according to this approach lies in the
generation of a skeleton with a one-pixel width. Howe-
ver, to serve more complicated cases, some modifications
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Fig. 1. Thinning algorithms taxonomy using two criteria: processing and methodology.

have been made to the whole criterion. The method sugge-
sted by the authors is universal and simple. It consists of
several fast and easy-to-implement deleting phases. The
obtained experimental results have also shown a success-
ful application of the method in image pre-processing as
well as image preparation for feature extraction and clas-
sification. The method proved its universality—not only
does it work for printed words, but it has also shown a
remarkable success rate on thinning handwritten scripts,
signatures, numbers, characters of non-Latin-based alpha-
bets (Arabic, Japanese) and even biometric images such
as faces or fingerprints. The paper is organized as follows.
Section 2] presents the state of the art in the following or-
der: the proposed taxonomy of thinning algorithms, a de-
scription of general ideas of the most significant ones and
a short comparison in terms of efficiency. Section [3 pre-
sents the thinning algorithm proposed by the authors in
detail. Sectiondl presents the results of the K3M algorithm
and the comparison with other algorithms. Section [3] de-
scribes the concepts for the parallelization of intrinsically
sequential thinning algorithms. Finally, Section |6/ conclu-
des the work and shows perspectives for future develop-
ment.

2. State of the art

The survey presented in this section introduces a historical
review covering over 40 years of works on thinning algo-
rithms, together with their basic principles and the state of
the art.

This survey is mainly based on algorithms mostly
known to the authors, available either as papers in inter-
national conference proceedings, periodical and journal
transactions or book chapters. The central role in the su-
rvey was played by Pavlidis (1982a), Lam et al. (1992),
Malina et al. (2002) and, finally, Klette and Rosenfeld
(2004). This is in addition to lots of individual works sho-
wing different methods and algorithms of thinning.

Generally, each of the presented algorithms has its
own advantages and disadvantages, and each has its appli-
cations where it performs better than others. Therefore, it
is often difficult to directly compare the results.

2.1. Taxonomy. All thinning algorithms can be clas-
sified as either iterative or non-iterative. In iterative me-
thods, thinning algorithms produce a skeleton by exami-
ning and deleting contour pixels through an iterative pro-
cess in either sequential or parallel way.

Parallel algorithms may also be further classified ac-
cording to their performance, i.e., in 4-, 2-, or 1-subcycle
manners. The latter (1-subcycle parallel algorithms) ha-
ve always received more considerable attention in the re-
search area of parallel thinning as they have reduced the
computation time in a number of iterations, and that is
why they are sometimes called one-pass or fully parallel
algorithms (Chen and Hsu, 1989b; Chen, 1996; Guo and
Hall, 1992).

In sequential thinning algorithms, contour points are
examined for deletion in a predetermined order, and this
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can be accomplished by either raster scanning or follo-
wing the image by contour pixels. In parallel thinning al-
gorithms, pixels are examined for deletion on the basis of
results obtained only from the previous iteration. That is
why parallel thinning algorithms are suitable for imple-
mentation in parallel processors.

Non-iterative (non-pixel based) thinning algorithms
produce a certain median or centre line of the pattern to
be thinned directly in one pass, without examining all the
individual pixels.

The methods used in the works presented in this sec-
tion may also be categorized as one of the following me-
thodologies (Fig. [T).

2.2. General ideas and examples. In this section a de-
tailed description of most of the basic algorithms of thin-
ning is presented in order to show how others attack the
problem of skeletonization. Some of them are explained
in detail in (Saeed, 2004).

Rutovitz (1966) proposed a parallel algorithm that
formed a basis for many thinning algorithms. Image pixels
are examined for deletion in an iterative process (not divi-
ded into subcycles). Contour pixels with at least two black
neighbours, and where all its neighbours are 4-connected
(sticking together with its edge), are marked for deletion.
This may result in excessive erosion, it does not reduce
diagonal lines to a unit pixel width and the skeleton is not
located centrally (due to the asymmetric nature of its con-
ditions).

Blum (1967) presented skeletonization as transfor-
mation for the aim of shape description. He called this
transformation MAT—Medial Axis Transformation. Figu-
re [2 shows examples of obtaining skeletons from some
objects by this method.

Fig. 2. Illustration of the result of thinning shapes by Blum’s
algorithm.

Hilditch (1968; 1969) worked out a sequential ap-

proach, in which he defined the ‘crossing number’—the
number of times one crosses over from a white point to
a black point when the eight neighbours of a tested pixel
are traversed in sequence. The image is scanned from left
to right and from top to bottom, and pixels are marked
for deletion under additional conditions to prevent ero-
sion, maintain connectivity and preserve two-pixel wide
lines. This method was also used with gray-scale images.

Rosenfeld (1975) showed many new aspects and so-
Ived serious problems commonly met in thinning algori-
thms. He was the first to evaluate the necessary and suf-
ficient conditions for preserving topology while deleting
border points in parallel process. Thereby, he solved the
problem of erosion in the thinning of diagonal lines. In his
algorithms, he considered a 3 x 3 local neighbourhood. He
proved that ‘a border pixel is removed only if its neighbo-
urhood has only one black component (i.e., the Hilditch
crossing number is 1) and has at least two black neighbo-
urs.

Arcelli’s parallel behaviour algorithm (Arcelli and
di Baja, 1978) uses two 3 x 3 thinning windows toge-
ther with their 90° rotations as masks for pixel deletion.
It removes pixels from eight borders in the following or-
der: north-west, west, and so forth. However, it does not
remove all deletable pixels.

Dyer and Rosenfeld (1979) introduced the algorithm
for thinning gray-scale pictures. It is based on a generali-
zed concept of pixel connectivity: two pixels are “connec-
ted” if there is a path joining them with no pixel lighter
than either of them. Using this idea, the thinned version
on an image can be obtained by changing each pixel gray
level to the minimum of its neighbor’s gray levels.

Pavlidis (1980; 1981; 1982a; 1982b) introduced the
definition of “multiple pixels” for the first time—points
that are traversed more than once during contour tracing,
points with no neighbours in the interior and points on
two-pixel-wide lines. If only the “multiple pixels” from
every tracing are retained, the result may not be a connec-
ted skeleton. Therefore, “multiple pixels” are called ske-
letal, as well as eight neighbours of skeletal pixels from
a previous iteration. This does not result in a one-pixel-
wide skeleton. Contour pixels are traced sequentially.

Then, Pavlidis (1982a) proposed a combination of
parallel and sequential operations—a pattern could be di-
vided into fields, which are processed independently by
parallel processors, each operating sequentially on its own
segment.

Arcelli’s algorithm (Arcelli, 1981) is of a sequential
type. It uses contour tracing to find the pixels for deletion.
This approach allows reducing the computational time ne-
eded to obtain the skeleton. Contour analysis is performed
to find regions to be represented by the skeleton branches.

The method of Arcelli and di Baja (1981) is also a se-
quential algorithm—successive iterations consider the re-
moval of contour elements. Regions that can be regarded
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as significant protrusions are detected before applying the
removal operations. In (Arcelli and di Baja, 1987), the au-
thors used the Pavlidis concept of ‘multiple pixels’ (pixels
are placed where the contour self-interacts). The paper gi-
ves a necessary definition to satisfactorily detect such pi-
xels. Then Arcelli and di Baja (1989) developed a sequ-
ential algorithm that used a 4-distance transform to find
a set of skeletal pixels (two-pixel wide, at most) within
one raster scan of the image. Then, another inspection of
the picture removes the unnecessary pixels.

The algorithm of Favre and Keller (1983) covers one-
subcycle parallel thinning using syntactic rules and a ca-
scade of tables to determine a new pixel code, on the
basis of the distance to the background. Two-scan post-
processing is applied to obtain the final skeleton.

Ammann and Sartori-Angus (1985) proposed a fast
thinning algorithm where the image is compressed to a re-
duced gray-scale representation. This is then thresholded
(with connectivity constraints) to a binary image to which
an existing thinning algorithm (Arcelli and di Baja, 1981)
was applied. The resulting skeleton is then expanded to its
original scale.

Chin et al. (1987) wrote a paper presenting a one-
subcycle thinning algorithm and its parallel implementa-
tion. They called it a ‘one-pass algorithm’. They paid at-
tention to the idea of bias skeletons, the basic approach
used later by Chen (Chen and Hsu, 1989b; Chen, 1996) in
his modified algorithm. Bias skeletons appear in the junc-
tion of lines that form angles less than 90° (Fig. Bla)).
They mentioned two reasons behind generating bias ske-
letons. One is that the restoring templates are of an even
size and hence the pixel removal process is not symme-
trical, unless we are dealing with systematic design, as re-
storing templates are only used in maintaining the connec-
tivity of the final skeleton. The other factor is due to the
side effect of the thinning templates, that is, they remove
pixels from convex corners faster than from concave cor-
ners. A sample of thinning results using this algorithm is
given in Fig.Bla).

Baruch (1988) presented a noniterative, non-pixel ba-
sed algorithm, which produces a skeleton in one pass, by
line-following. The line is followed by a window of va-
riable size, the skeleton is the line connecting centres of
successive windows. The method is less sensitive to noise
than conventional thinning algorithms.

The algorithm of Guo and Hall (1989; 1992) is ano-
ther example of parallel thinning. The contour pixels are
examined for deletion in an iterative process. The decision
is based on a 3 x 3 neighbourhood. Each iteration is di-
vided into two subcycles—one deleting the north and east
pixels and the other for south and west. This algorithm do-
es not give a one-pixel-wide skeleton. Although it shows
very good results in thinning and provides a rather good
skeleton, the algorithm and its 1-subcycle modified ver-
sion (Guo and Hall, 1992) do not preserve all significant

geometric features of the image (see Fig.[B(b)).

Chen and Hsu worked out an interesting algorithm
modifying it through a series of papers (1989b; 1989a;
1990; 1988). Chen (1996) reached a 1-subcycle parallel
thinning algorithm producing a one-pixel-wide skeleton
that preserves significant geometric features of patterns
(Fig. Blc)). He developed a method embedded in a pa-
rallel algorithm (Chen and Hsu, 1989b) to produce bias-
reduced skeletons using, as a major factor, what he defined
the HDP—Hidden Deletable Pixel detected by algorithms
of vector analysis. The HDP is detected and removed, so
that the bias skeleton can be reduced. Despite the satis-
factory results of thinning, Chen’s algorithm did not show
any significant application to object-images, handwritten
words or at least machine-written alphabets of a cursive
character. The results of thinning curved parts of machine-
written English letters, for example, are not as good as
those of straight lines. This is demonstrated by the thin-
ning results of this algorithm in Fig.[Bl¢).
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Fig. 3. Thinning by CWSI (Chin et al., 1987) (a), AFP3 (Guo
and Hall, 1992) (b), CYS (Chen, 1996) (c).

Parker et al. (1994) introduced the force-based ap-
proach with a new idea for thinning strategy based on a de-
finition of a ‘skeletal pixel” as being as far from the object
outline as possible while maintaining basic connectivity
properties. Accordingly, the basic idea is that a skeleton is
a global property of a binary object, and that the boundary
should be used to locate the skeleton pixels. The criterion
is summarized as follows: the background pixels which
are adjacent to the boundary act as if they exerted a for-
ce; the skeletal pixels lie in areas having the ridges of this
force field and are located by searching where directions
of the force vectors change significantly. Figure @] shows
how to compute the force at a pixel location and the vector
sum of forces.

Zhang and Wang (1996) created the 2-Subiteration
Parallel-Thinning Algorithm with Templates—PTA2T.
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Fig. 4. Force-based thinning: computing the force acting at a gi-
ven pixel (a), vector sum of forces (b).

This algorithm actually represents a modification to Guo
and Hall’s approach. In an iterative process the deletion
decision is based on eleven 3 x 3 thinning templates. There
are two subcycles—the second uses templates rotated by
180 degrees. The algorithm preserves the connectivity of
patterns and produces one-pixel-wide skeletons (Fig. [3)).
In the paper, Zhang claimed this algorithm was faster than
Guo and Hall’s.

(a) (b) ©

Fig. 5. Thinning results of the image in (a) using Guo and Hall
(b) and Zhang (c) methods. Empty rectangles indicate
the places of the removed pixels

The Altuwaijri algorithm—ART2 NN (Altuwaijri and
Bayoumi, 1998) is a data-image-clustering based thinning
algorithm that employs neural networks and adaptive reso-
nance theory for image clustering. The image is an Arabic
character (Altuwaijri and Bayoumi, 1998). Altuwaijri cla-
ims the algorithm produces skeletons which are superior
to the outputs of the conventional algorithms. He com-
pared it (Fig.[6) with Zhang’s algorithm given in (Zhang
and Wang, 1996). ART2 showed higher data-reduction ef-
ficiency and much simpler skeletons with less noise spurs
and reduced time complexity.

The main advantage of this method, however, is its
ability to remove the redundant loops appearing in the fi-
nal thinned shape in many thinning algorithms. This pro-
blem may not seem particularly important for the prese-
rvation of essential geometric features in most alphabe-
tical scripts. However, in Arabic and many other cursive

Original ~ Altuwaijri Zhang’s | Original
Image Thinning Thinning| Image

Z 8 2 d &j L{j
2 o oe | XU
D L
o o~ o |90 W

Fig. 6. Altuwaijri’s thinning of images with added noise com-
pared with thinning by Zhang’s algorithm.

Altuwaijri Zhang’s
Thinning Thinning

character alphabets such a problem is serious as the re-
sulting letter may resemble another letter, rather than the
correct one. Figure[7] shows how the redundant loop may
change the letter Seen into the letter Ssad.

=

Fig. 7. Redundant loops may transform the script Seen into ano-
ther one—Ssad.

Andreadis et al. (2000) proposed a method for obta-
ining a skeleton from a color image using morphological
operations on vectors defined in the HSV color space. In
the presented method the extraction of a skeleton is pre-
ceded by the ordering of vectors based on their individual
components (hue, saturation and value).

KMM (Saeed and Niedzielski, 1999; Saeed, 2001;
Saeed et al., 2001) is the authors’ original contribution
based on an original approach described in (Saeed and
Niedzielski, 1999) and modified in a series of works
(Saeed, 2001; Saeed et al., 2001). The algorithms acro-
nym comes from the initials of the authors: Khalid, Marek
and Mariusz. Basically, the algorithm is a sequential itera-
tive one. It produces a one-pixel-wide continuous skeleton
from an image. The details of the thinning algorithm are
given in (Saeed et al., 2001). The main goal of the algori-
thm was

1. to obtain a continuous line of symmetry (the name
given by Blum to the skeleton (Blum, 1967)), and

2. to thin all kinds of images to their skeleton—digits,

aamcs
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alphabet letters, signatures, pictures and medical
images in their two-dimensional views.

The ideal skeleton was not the aim of the criterion. In
fact, there is no algorithm that yields an ideal skeleton in
any case. The most important thing is usually the retaining
of pixels that preserve the significant geometric features
of the given pattern in all kinds of images. Figure[8]shows
KMM thinning results when applied to the same figures
given in (Malina et al., 2002) and shown earlier in Fig.
Notice that the two circles differ from each other by one
pixel-length in their diameters. The circle of a diameter
with an even number of pixels is thinned to a dot, while
that of a diameter with an odd number of pixels is thinned
to an angular shape. Note also that a rectangle is thinned
to a line and seems to be more appropriate than Blum’s
skeleton (Blum, 1967).

KMM was under continuous modification. Its latest
version for universal use will be given in Section [3 as
K3M—Khalid, Marek, Mariusz, Marcin.

Fig. 8. Figures presented in (Malina et al., 2002) thinned with
KMM (Saeed, 2004) (compare with Fig.[2)).

The algorithm presented by Ahmed and Ward (2002)
is an example of parallel thinning with the decision of de-
letion made upon an algorithm based on quantity and po-
sition of neighbours of each pixel. With 20 a rules, a pixel
is classified into one of four classes, and then a decision is
made. Two-pixel-wide lines are treated separately.

Huang et al. (2003) proposed another parallel thin-
ning algorithm. Pixel elimination rules are based on 3 x 3
windows considering all kinds of relations (256) formed
by 8-neighbours of the object pixel. All the rules are ap-
plied simultaneously to each pixel. In order to keep the
connectivity of even pixel-width lines, additional checks
are applied before deleting the pixels. These additional
checks involve using rules based on 4 x 4, 3 x 4 and

4 x 3 windows. In order to reduce the loss of informa-
tion when thinning shapes like in Fig. B(a), the authors
introduce a parameter R,

ey

where A(s) is the area of s pixels, s; is the image skeleton,
So is the image contour.

Based on its value, the algorithm returns either a thin-
ned image (Fig.[9(b)) or its contour (Fig.[Plc)). If R is less

() (b) ()

Fig. 9. Image (a), its thinned shape (b) and its contour (c).

than the threshold, the image contour is retained. The thre-
shold value used by the authors was 0.4.

Ji and Feng (2004) created a method that interprets
the image as a 2D thermal conductor that consists of pi-
xels, where pixel intensity represents the temperature. Pi-
xels with a higher intensity value have higher temperature,
while the background pixels have the lowest temperature.
The thinning task is considered as an inverse process of
heat conduction. The thinning process follows the inverse
of the temperature flow, from cooler (background pixels)
to warmer areas (object pixels with higher intensity), as in

Fig.[I0

() (b)

Fig. 10. Original image (a) and its heat-flow direction map (b).

The first step of the algorithm is the calculation of the
Heat-Flow Direction Map (HFDM), which gives the di-
rections and magnitude of the time-inversed heat flow for
each point of the image. Then for each pixel of the image
the intensity is subtracted and added to the pixel selected
based on information provided by the HFDM. The latter
step is iterated until a completely thinned image is obta-
ined. The disadvantages of the proposed method lie in the
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fact that it does not guarantee a one-pixel width skeleton
and that the computation of the right number of iterations
to preserve the shape topology is a difficult task.

Quadros et al. (2004) proposed an algorithm to ge-
nerate a disconnected, three-dimensional (3D) skeleton.
A discrete skeleton is generated by propagating a wave
from the boundary towards the interior on an octree latti-
ce of an input solid model. As the wave propagates, the
distance from the boundary and the direction of the wa-
ve front are calculated at the lattice-nodes (vertices) of the
new front. An example of their results is shown in Fig. [Tl

Fig. 11. Example of a 3D skeleton (Quadros et al., 2004) obta-
ined by wave propagation: graphics facets of input (a),
trimmed discrete 3D skeleton (b).

Rockett’s algorithm (Rockett, 2005) aimed at impro-
ving the rule based algorithm presented by Ahmed and
Ward (2002). They observed the number of cases whe-
re the A-W algorithm failed to produce a centre line of a
single pixel width. To eliminate such cases they adopted
a two-stage thinning procedure which used the A-W ru-
les to thin down to a skeleton which includes 2-pixel wide
lines. As a second stage, they examined the 2-pixel wide
lines in the skeleton produced by the first processing sta-
ge to see which pixels can be deleted without compromi-
sing the connectivity of the skeleton. In order to determi-
ne if the deletion of a pixel in a 2-pixel wide line disrupts
connectivity, they built an adjacency matrix from an undi-
rected graph of the local pixel connectivity over its eight
neighbours (Fig.[12).

To retain connectivity, before deleting the pixel the
algorithm checks if every row (or column) of the adjacen-
Cy matrix contains at least one non-zero entry. An example
of Rockett’s results is presented in Fig.[13]

Pervouchine and Leedham (2005) constructed the
skeleton in three steps directly from the greyscale ima-
ge and represent it as a set of curves which in turn are
represented as cubic B-splines. The method was designed
to extract the skeleton which is very close to human per-
ception of the original pen tip trajectory (Fig.[T4).

Ju et al. (2007) proposed a method for computing
skeletons of volumetric models by alternating thinning
and a novel skeleton pruning routine. The presented me-

x| x| % 0 1 0

X |ox | X | 1 0

X, x| X 1 1 0
(a) (b)

(© (d)

Fig. 12. Pixel numbering convention (a), example of pixel con-
figuration (b), resulting graph (c), and adjacency matrix

(d).

(a) (b)

Fig. 13. Example of a skeleton obtained using Ahmed and
Ward’s method (a), compared with the result of Roc-
kett’s algorithm (b).

YN\ H o

Fig. 14. Examples of greyscale images of handwritten letters
and their skeletons extracted by means of the method
presented in (Pervouchine and Leedham, 2005).

thod creates a family of skeletons parameterized by two
user-specified numbers that determine respectively the si-
ze of the curve and surface features on the skeleton.

You and Tang (2007) extracted the skeleton of a cha-
racter on the basis of the wavelet transform (Mallat, 1989).
The skeletonization algorithm starts with the extraction of
a primary skeleton in a regular region followed by amend-
ment processing of the primary skeletons and connecting
them in the singular region (Fig. [I3).

Wan et al. (2008) proposed a three-stage skeletoni-
zation algorithm for shaped fiber recognition. In the first
stage, the Euclidean distance transform is applied to the
fiber image. In the second stage, the local maximal disc
centres are determined as the true skeleton points, regar-
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Fig. 15. Examples of images (a) and their thinned versions (b)
using the algorithm described in (You and Tang, 2007).

dless of their connectivity. In the last step, a full skeleton is
generated by linking isolated skeleton points, and pruning
spurs arising from edge noise (Fig. [16).

® &
vy

Fig. 16. Examples of star and trilobal shaped fibres (a) and their
skeletons (b) obtained using the method presented in
(Wan et al., 2008).

Table [l concludes the presentation of selected works
by giving a summary of their most important features.

3. K3M: A modified KMM algorithm

This section presents the K3M (improved and generalized
KMM) thinning algorithm in detail. First, definitions and
assumptions are presented, and then a detailed algorithm
description is introduced with flowcharts and neighbour-
hood lookup arrays.

3.1. Assumptions and definitions.

1. According to K3M, the aim of thinning is defined as
the reduction of the number of pixels of an image that

will preserve the structure of the image very well. As
a result, after the transformation, lines that contribute
to the letter are of a shape similar to the original and
cross in a similar way.

2. The input image is binary, where each pixel is either
an image pixel (encoded as 1) or a background pi-
xel (encoded as 0). Therefore, colour and grey-scaled
images are transformed to binary form.

W

. The K3M algorithm is a sequential iterative algori-
thm: the iterations are repeated in sequence until no
modification is made to the image during the whole
iteration.

. Each ifteration involves seven phases (numbered
from O to 6). The number of phases is determined
in an empirical way.

5. Pixel neighbours are image pixels that are in the close
vicinity of the tested pixel.

6. Border pixels are those image pixels that stick to the
background (they have no more than seven neighbo-
urs). Therefore, they are considered potential candi-
dates for deletion.

7. Thinning decisions are made for border pixels, based
on 3 x 3 neighbourhood templates of the tested pi-
xel. The 3 x 3 neighbourhood was chosen because of
its large size capable to provide satisfactory thinning
results. Larger neighbourhoods, however, would de-
mand more computational complexity and execution
time.

8. The thinning decision is either to delete the pixel
(change an image pixel into a background one) or
to retain it (the image pixel is not changed). The
possible neighbourhood configurations are encoded
using values in the range [0, 255] named neighbour
weights. The encoded neighbourhood configurations
represented by neighbour weights are individual for
each phase and are stored in lookup arrays.

9. After the iterations are finished, a supplemental pro-
cedure is required to produce a one-pixel width ske-
leton. This is because the iterative part of the algori-
thm is aimed at producing a fine skeleton and hence
the algorithm is unable to produce a one-pixel width
skeleton.

3.2. Algorithm description. K3M consists of an ite-
rative part of seven phases and a single additional phase
at the end, which is responsible for producing a one pixel-
width skeleton. The overview of the algorithm is presented

in Fig. [
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Table 1. Basic algorithms of thinning.

[ Year | Author | Type | Remarks
1966 | Rutovitz (1966) parallel, iterative, not divided | can result in excessive erosion, does not reduce diagonal
into subcycles lines to a unit pixel width, the skeleton does not lie cen-
trally
1967 | Blum (1967) medial axis transformation, no-
niterative
1969 | Hilditch (1969) sequential maintain connectivity, preserve two-pixel wide lines
1975 | Rosenfeld (1975) parallel solves the problem of erosion in the thinning of diagonal
lines
1978 | Arcelli and di Baja (1978) parallel does not remove all deletable pixels
1979 | Dyer and Rosenfeld (1979) interative directly thins gray-scale images
1980 | Pavlidis (1980) sequential, combined sequen- | does not result in a one-pixel-wide skeleton
tial and parallel
1981 | Arcelli (1981) sequential uses contour tracing to reduce computational time
1983 | Favre and Keller (1983) one-subcycle parallel
1985 | Ammann and Sartori-Angus (1985) | sequential uses image compression before thinning to reduce compu-
tational time
1987 | Chin et al. (1987) 1-subcycle, parallel skeleton biased in line junctions
1988 | Baruch (1988) noniterative produces skeleton in one pass, by line following
1989 | Guo and Hall (1989) iterative, 2-subcycles does not give a one-pixel-wide skeleton
1989 | Chen and Hsu (1989a; 1989b) 1-subcycle, parallel bias-reduced skeletons
1994 | Parker et al. (1994) force-based acquires a skeleton by using force vectors
1996 | Zhang and Wang (1996) 2-subcycles, parallel preserves connectivity, produces one-pixel-wide skeletons
1998 | Altuwaijri and Bayoumi (1998) neural networks based redundant loops removal—disadvantage in certain alpha-
bets
2000 | Andreadis ef al. (2000) interative obtains skeletons from color images
2001 KMM (Saeed et al., 2001) sequential, iterative maintain connectivity, bias-reduced skeletons
2002 | Ahmed and Ward (2002) parallel fails to produce a 1-pixel width line in some patterns
2003 | Huang er al. (2003) parallel
2004 | Jiand Feng (2004) noniterative does not guarantees one-pixel width skeleton, problems
with choosing the right number of iterations
2004 | Quadros et al. (2004) 3-dimensional uses wave propagating from the boundary towards the in-
terior
2005 | Rockett (2005) parallel produces one-pixel-wide skeletons, uses a two-stage thin-
ning procedure
2005 | Pervouchine and Leeedham (2005) gray-scale image thinning represents a skeleton as cubic B-splines
2007 | Juetal (2007) creates a family of skeletons with various sizes of the cu-
rve and surface features
2007 | You and Tang (2007) wavelet based extracted skeleton is centered inside the underlying stroke
2008 | Wan et al. (2008) distance map based three-stage skeletonization algorithm for shaped fiber re-
cognition

@amcs

Iterative part overview e Decision: If any modification was made during the

o current iteration, return to Phase 0.
e Phase 0: Mark borders for examination.

Thinning to a one-pixel width skeleton. This phase
aims at producing skeletons consisting of pixels with only
two neighbours unless located at a junction. This is a si-
gnificant advantage of a one-pixel width skeleton as it po-
tentially allows producing structural graphs of the exami-
ned image.

The essential property of each pixel, which is used
for quick determination of its neighbourhood configura-
tion, is the neighbour weight. It is an 8-bit number, where
subsequent bit values correspond to neighbours, starting
from the pixel above and going clockwise. It is calculated
with the use of the neighbourhood bit values matrix (3)),
as in @), where w(x,y) is the neighbour weight of pixel
(z,y) and img(z, y) is the binary value of the image pixel
at coordinates (x, y).

e Phase 1: Delete the borders that have 3 neighbours
sticking each other.

e Phase 2: Delete the borders that have 3 or 4 neighbo-
urs sticking each other.

e Phase 3: Delete the borders that have 3, 4 or 5 neigh-
bours sticking each other.

e Phase 4: Delete the borders that have 3, 4, 5 or 6
neighbours sticking each other.

e Phase 5: Delete the borders that have 3,4, 5, 6 or 7
neighbours sticking each other.

e Phase 6: Unmark the remaining borders.
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Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

yes
modified?

1-pixel width phase

v

END

Fig. 17. K3M algorithm simplified flowchart.

Neighbour weight calculation

1 1
w(z,y) = Z Z N(i+1,j+1)-img(x+i,y+7).
i=—1j=—1
2
Neighbourhood bit values matrix
128 1 2
N = 64 0 4 |. 3)
32 16 8

Figure[T§] presents the flowchart of Phase 0, aimed at
marking borders (pixels that are candidates for deletion).

The iterative phases 1 to 5 are very similar to each
other and aim at deleting pixels with a growing number of
sticking neighbours. The phases may be presented using
a common flowchart with parameter ¢ that changes from
1to 5 (see Fig. and determines the employed lookup
array A;.

3.3. Neighbourhood lookup arrays. In this section
some specific neighbourhood lookup arrays are given.

<€

get next image pixel (x,y)

Y

calculate neighbourhood
weight w(x,y)

no

is the weight w(x,y)
present in border lookup
array 4,?

flag pixel (x,y) as border

was it the last
image pixel?

Fig. 18. Flowchart of phase 0—marking borders.

They serve for marking borders and determining thinning
decisions. The components of arrays A; (Phases 1 to 5)
follow the rules mentioned in the algorithm description
concerning the number of neighbours. The contents of ar-
ray Ajpi, (thinning to a one-pixel width skeleton) was de-
termined on the basis of several experiments and the au-
thors’ original KMM algorithm (Saeed et al., 2001).

List of neighbourhood lookup arrays
e Ay: lookup array for Phase 0—marking borders,

e Aj: lookup array for Phase 1—deleting pixels having
3 sticking neighbours,

o As: lookup array for Phase 2—deleting pixels having
3 or 4 sticking neighbours,

e As: lookup array for Phase 3—deleting pixels having
3,4 or 5 sticking neighbours,
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BEGIN phase i
get next border pixel (x,y)

i«

calculate neighbourhood
weight w(x,y)

is the weight w(x,y)
present in lookup
array A?

set pixel (x,y) to background
colour

was it the last
border pixel?

Fig. 19. Flowchart of Phase 7 (i € {1,2,3,4,5}) deleting pi-
xels.

e Ay: lookup array for Phase 4—deleting pixels having
3,4, 5 or 6 sticking neighbours,

e As: lookup array for Phase S—deleting pixels having
3,4, 5, 6 or 7 sticking neighbours,

o Aipir: lookup array used for thinning to a one-pixel
width skeleton.
Components of neighbourhood lookup arrays

e Ay ={3,6,7,12, 14, 15, 24, 28, 30, 31, 48, 56, 60,
62, 63, 96, 112, 120, 124, 126, 127, 129, 131, 135,

143, 159, 191, 192, 193, 195, 199, 207, 223, 224,
225, 227, 231, 239, 240, 241, 243, 247, 248, 249,
251, 252,253,254},

o Ay ={7,14,28,56, 112,131, 193, 224},

e Ay ={7,14, 15,28, 30, 56, 60, 112, 120, 131, 135,
193, 195, 224, 225, 240},

o As = {7, 14, 15, 28, 30, 31, 56, 60, 62, 112, 120,
124, 131, 135, 143, 193, 195, 199, 224, 225, 227,
240,241, 248},

e Ay =1{7,14,15,28,30,31, 56, 60, 62,63, 112, 120,
124, 126, 131, 135, 143, 159, 193, 195, 199, 207,
224,225,227, 231, 240, 241, 243, 248, 249, 252},

o A5 ={7,14,15, 28,30, 31, 56, 60, 62, 63, 112, 120,
124, 126, 131, 135, 143, 159, 191, 193, 195, 199,
207, 224, 225, 227, 231, 239, 240, 241, 243, 248,
249,251, 252, 254},

o A = {3,6,7,12, 14, 15, 24, 28, 30, 31, 48, 56,
60, 62, 63, 96, 112, 120, 124, 126, 127, 129, 131,
135, 143, 159, 191, 192, 193, 195, 199, 207, 223,
224, 225, 227, 231, 239, 240, 241, 243, 247, 248,
249, 251,252,253, 254}.

3.4. Modifications to KMM. K3M may be seen as
an evolved KMM algorithm as both of them are based
on iterative sequential thinning. K3M is more systematic.
KMM, however, was essentially based on a single lookup
array while K3M uses many of them in an understandable
pattern. Therefore, K3M involves more iterative phases,
namely, six, in comparison with KMM, which contains
only four. The main motivation to develop a new K3M
algorithm comes from the fact that the previous attempt
(KMM) was to develop a more systematic approach to
image thinning. As was verified by experiments, the re-
sults are subjectively better so the attempt has proved its
success rate.

4. K3M results and comparison

In this section the most interesting thinning results of the
K3M algorithm are presented and discussed. We will the-
refore test the algorithm on a variety of inputs—isolated
letters, handwritten words and, finally, graphics and sym-
bols, regarding skeleton continuity, shape preservation
and a 1-pixel-wide skeleton. The goal is to verify if the
performance complies with the expectations.

4.1. Isolated letters. As can be observed in Fig.
K3M preserves the letter shapes. For numerous applica-
tions it is especially important and essential to maintain
the original connectivity of the script lines as well as the
straight angles. K3M does an excellent job here, as can be
seen in the letter ‘B’, for example.

aamcs
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A

Fig. 20. Thinning isolated letters with K3M.

4.2. Handwritten words. In most cases printed words
are thinned (with some exception in the case of bad quality
texts) in the same way as several isolated letters. Handw-
ritten words, however, are interesting as they contain one
or more connections between individual letters, extra lo-
ops, and irregularities, which is worth studying.

20N i
VAR L i)

Fig. 21. Handwritten words thinned with K3M.

As seen in Fig.21] the overall shapes of the examined
words are well preserved. However, for possibly closed-

loops letters, like the second ‘e’ in the word ‘seven’, it
is obvious that some information is lost. It is impossible
to avoid such problems without additional steps to create
areal loop from such a letter. Irregular dots are transferred
to short lines rather than to real dots, which is a common
trait for most thinning algorithms.

4.3. Graphical symbols. In thinning graphical sym-
bols (Fig. and graphic-alike alphabets (Fig. 23), it is
especially important to keep the right angles and intercon-
nections close in terms of the shape to the original pictu-
re. One can see that these aspects are well managed by the
K3M algorithm. However, occasional deformations of ori-
ginally straight diagonally placed lines can be observed.

N
Kotk A

(a) (b)

L

Fig. 22. Thinning graphical symbols with K3M: original ima-
ges (a), their thinned shapes (b).

Qiﬁ

Fig. 23. Results of thinning a Japanese symbol with K3M.

4.4. Comparison of results between K3M and other
algorithms. Table[2| shows the results of thinning when
using the K3M approach in comparison with some of the
above-mentioned algorithms.

Table Bl however, presents a comparison between
K3M and other algorithms considering several important
aspects, like the output width, angles preservation and to-
pology preservation.

4.5. Advantages and drawbacks of K3M. K3M has
the following feasible advantages:
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Table 2. Results of thinning by Guo and Hall’s, Zhang’s, A-W, KMM and K3M algorithms.

Image

Bold

Method

Italic

Bold

Guo and Hall’s (Guo and Hall, 1992)

ftalic

Bold

Zhang’s (Zhang and Wang, 1996)

o Yo | ¥

ftalic

Bold

A-W (Ahmed and Ward, 2002)

Ttalic

Rold

KMM (Saeed et al., 2001)

Ttalic

Bold

K3M

oo|ICICICIS
OV LOLHI0
W | 9 S

lialic

Table 3. Comparison of results: K3M and others.

. Guo and Zhang and Ahmed and KMM
Algorithm Hall (1992) Wang Ward (2002) |  Saced K3M
(1996) et al., 2001)
1-pixel wide - + - + +
bias-reduced skeleton (preserves right angles) - - — _ +
preserves topology (no disappearances) - + - + T

1. The algorithm preserves right angles at the lines in-
terconnections, which result in better correspondence
between the original and the modified image.

2. It produces a one-pixel-wide skeleton.

3. The iterative phases are clearly aimed at deleting pi-
xels in a specific neighbourhood, therefore a general
idea of this thinning method is easily found.

4. The universality of the algorithm allows wide and di-
versified applications.

Although the K3M algorithm has successfully pro-
ved its universal performance over many other algorithms,
it is intrinsically iterative in nature, and hence it requires
more computing power than other, non-iterative algori-
thms. Moreover, each iteration contains seven sequential
phases. This increases the computational complexity and
makes the parallelization attempts difficult.

Despite the fact that these drawbacks do not affect
the shape preservation, the authors are currently working
on reducing the algorithm complexity and computational
power requirements. The new results will be the matter of
a future publication after proving their validity.

5. Parallelizing sequential algorithms

Non-one-pass iterative thinning algorithms (sequential al-
gorithms with one or more subcycles) are not intrinsical-
ly suitable for parallel processing. Therefore, they tend to
have difficulties with successful utilisation of modern pa-
rallel data processing techniques like multi-core proces-
sors or processor grids (hardware or network implemen-
ted). With the growing of the usage and popularity of pa-
rallel processing hardware and its techniques, it is basic
to develop solutions that would allow such algorithms to
profit from the use of multi-processors.

aamcs
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In Fig. 24| one can see scanline-type sequential pro-
cessing, where rows are processed sequentially. For each
pixel, a decision is made based on the state of the neigh-
bours.

4

=14

< - --

Fig. 24. Sequential scanline-type processing.

The steps of the iterative thinning algorithm are re-
peated several times in their consecutive iterations. Each
processing step may contain several sub-cycles with ope-
rations such as flagging some pixels (for example, as
candidates for deletion or as non-deletable pixels). Fur-
thermore, sub-cycles perform their operations depending,
among other things, on that information. The final deci-
sion depends on the flags of neighbours set in the previous
subcycles, making the algorithm impossible to perform in
a parallel way as there exists information dependence be-
tween neighbouring pixels (information on the actual state
of neighbours is required at the specified subcycle).

The information dependence area grows with each
subcycle included in the iteration, as the state of neighbo-
urs depends on the states of their neighbours, and so on.
The growth of the effective neighbourhood is presented in
Fig.

Sy

g e ——n

T
1
1
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: :
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R
: :
i |
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Fig. 25. Dependence area growth due to information dependen-
ce.

There may be several solutions that allow parallel
processing of such problematic thinning algorithms:

e Modification of the thinning algorithm to diminish or
eliminate subcycles. In the case of elimination, it le-
ads to the possibility of fully parallel processing. In
the case of decreasing the number of subcycles, it di-
minishes the information dependence area.

e Division of the image in such a way that information

dependence is non-existent or irrelevant. This is not
always possible.

e Division with overlapping regions—regular division
while providing indispensable information (informa-
tion dependence areas from the area of division) for
each parallel processor.

5.1. Division with overlapping regions. In the divi-
sion process, the image is divided into some overlapping
parts to be processed in parallel. These parts are called
regions. Figure [26] shows how an image space is divided
into two regions P1 and P2. Figure 271 however, shows
how they are overlapped.

P1 _5,4 -------

P2 >

Fig. 26. Parallel scanline-type processing on different image re-
gions P1 and P2.

Obviously, in the region edge each pixel has its de-
finite number of neighbours. We can then deduce that the
neighbouring pixel weights have a basic role in the de-
cision taking process during the thinning procedure. The
edge pixels of P1 in the crossing border between P1 and
P2 actually stick the neighbours of other pixels belonging
to P2. That is why the edge pixels from two regions sha-
re neighbours and hence some useful data are available to
both parts.

P1

P2

Fig. 27. Pixel in the region edge.

In most algorithms (including KMM and K3M) the
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neighborhood is of a 3 x 3 character, but the approach is
also valid for 3 x4 or 5 x 5 neighborhood basis algorithms.

The overlapping area serves as the container of infor-
mation needed for neighbourhood checking. The width of
the region depends on the number of subcycles in the thin-
ning algorithm and the requested number of independent
parallel cycles of the algorithm. Such a configuration may
be presented as read/write privileges of processes (as seen
in Fig. assuming that the processes operate on a shared
memory.

P1
P1 read, write
P2 read only
P2 P1 read only

P2 read, write

Fig. 28. Overlapping regions.

Pseudocode of the non-parallelized thinning algorithm

while not thinned do
foreach pixel in image
check pixel neighbours
do thinning routines
end foreach
end do

Pseudocode of the parallelized thinning algorithm

iteration := 1
while not thinned do
foreach pixel in image
if neighbour in border band then
while neighbour.iteration < iteration-1 do
wait for synchronization
end while
end if
check pixel neighbours
do thinning routines
if pixel in border band then
send synchronization info
end if
end foreach
iteration := iteration + 1
end do

5.2. Prediction of the neighbouring processor deci-
sion. In some cases it is possible to predict the decision
that a neighbouring processor should make. In particular,
if a pixel in the border area is “white,” no change can be
made in conventional thinning (with a possible exception
of thinning algorithms that perform thinned shapes smo-
othing). That may particularly simplify the synchroniza-
tion task as presented above.

6. Conclusions and future work

The first aspect presented in the paper was the survey pre-
sentation of the state of the art in the thinning area. A very
large number of algorithms in this field have been propo-
sed and due to the complicated nature of skeletonization
it is often unclear how the approaches are related to each
other in terms of processing quality and the general idea.
A number of important works ranging from the earliest
to the latest publications on thinning were discussed and
compared. Short summaries with the available results of
those algorithms were also presented. For the sake of ge-
neral comparison, essential and basic traits of the algori-
thms were shown. The main points of view were the ty-
pe of methodology used and the parallelization possibility
(intrinsic or secondary) with final general remarks on the
obtained results or the dedicated application of the studied
algorithm. The survey is considered a background for the
authors’ proposal of the thinning algorithm named K3M.

The second important aspect of the paper is the pre-
sentation of the authors’ algorithm evolved from the ori-
ginal KMM algorithm. The proposed algorithm introdu-
ces its advantages in terms of several important characte-
ristics: thinning quality, a large range of possible applica-
tions and the clarity of processing stages. The examples
shown in Section [ for isolated letters, words and graphi-
cal symbols demonstrate the processing quality of K3M.
The examined examples showed that the K3M algorithm
presents constant quality for printed words, handwritten
scripts, numbers and characters of both Latin and non-
Latin alphabets. This fact proves the universal character
of the K3M algorithm compared with other algorithms
known to the authors, which can be considered the most
important advantage.

The next task, which has been proved to be true in
practical applications, is that the idea of the algorithm is
clear and simple to follow. This was mainly demonstrated
in the detailed description in Section Bl The clarity and
simple nature of the algorithm make it easy to study and
use, which is significant when compared with other, often
empirically obtained, algorithms.

The last important aspect shown and discussed in the
paper regards parallelization issues for sequential thinning
algorithms. This matter was considered in Section [5] and
could certainly benefit in improving many sequential ite-
rative thinning algorithms. It is particularly useful in the
context of the recent popularity of parallel processing har-
dware and software techniques.

Future work is mainly aimed at two directions: the
first is related to fine-tuning of the algorithm in order to
eliminate the slight deformation of some lines currently
occurring. The introduced changes, however, should not
hassle the universality of the applications of the algori-
thm. The second development direction is the reduction of
the number of phases in the iterative part of the K3M al-
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gorithm. That would result in lowering the computational
effort as well as improving the parallelization possibility
of the algorithm.
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Appendix

Pseudocodes of the implemented computer programs

{creating N-lookup arrays}

{alternate to weight calculation}
function lookup (N:integer)

boolean

vector = [pixel.N, pixel.NE, pixel.E,
pixel.SE, pixel.S, pixel.Sw,
pixel.W, pixel.NW]

changes := 0
for i := 1 to 7
if vector[i] <> vector[i+1] then
changes := changes + 1
end if
end for
if changes <= 2 then
ones := 1
for i := 1 to 8
if vector[i] = 1 then
ones := ones + 1
end if
end for

if ones = N then
return true
end if
end if
return false

end function

pixel.N - north neighbour of actual pixel
pixel.NE - northeast neighbour of actual pixel
and so on...

param N - number of sticking neighbours needed
{classic 1-stage}

mark image pixels as 1
mark background pixels as 0
repeat
thinned = true
for each pixel in image
if pixel = 1 then

if (pixel.N mod 2 = 0) or
(pixel.S mod 2 = 0) or
(pixel.W mod 2 = 0) or
(pixel.E mod 2 = 0) then
pixel := 3

end if

end 1if
end for

for each pixel in image
if pixel = 3 then
{ DLA - deletion lookup array }
if weight(pixel) in DLA then

pixel := 0
thinned = false
else
pixel := 3
end if
end if
end for

for each pixel in image
if pixel = 3 then
pixel :=1
end 1if
end for
until thinned
mark even pixels as background
mark odd pixels as image

{neighbour weight calculation}

function weight (pixel) integer
return 1* (pixel.N mod 2) + 2+ (pixel.NE mod 2)+
64 (pixel .W mod 2) + 4*(pixel.E mod 2)+
32x (pixel.SW mod 2) + 16« (pixel.S mod 2)+
8x (pixel.SE mod 2) + 128x* (pixel .NW mod 2)
end function

{single-for 1-stage}

mark image pixels as 1
mark background pixels as 0
phase := 1
repeat
thinned = true
for each pixel p in image
if p mod 2 = 1 then
{ checking if border pixel }
if (p.N <> 2*phase and p.N mod 2 = 0) or
(p.S <> 2xphase and p.S mod 2 = 0) or
(p.W <> 2+phase and p.W mod 2 0) or
(p.E <> 2+phase and p.E mod 2 = 0) then
{ DLA - deletion lookup array }
if weight(p) in DLA then

p := 2 x phase
thinned = false
else
p := 2 % phase + 1
end if
end if

end if
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end for

phase := phase + 1
until thinned
mark even pixels as background
mark odd pixels as image
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