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The research on incomplete fuzzy soft sets is an integral part of the research on fuzzy soft sets and has been initiated
recently. In this work, we first point out that an existing approach to predicting unknown data in an incomplete fuzzy soft
set suffers from some limitations and then we propose an improved method. The hidden information between both objects
and parameters revealed in our approach is more comprehensive. Furthermore, based on the similarity measures of fuzzy
sets, a new adjustable object-parameter approach is proposed to predict unknown data in incomplete fuzzy soft sets. Data
predicting converts an incomplete fuzzy soft set into a complete one, which makes the fuzzy soft set applicable not only
to decision making but also to other areas. The compared results elaborated through rate exchange data sets illustrate that
both our improved approach and the new adjustable object-parameter one outperform the existing method with respect to
forecasting accuracy.
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1. Introduction

A number of real life problems in engineering,
social and medical sciences, economics, etc., involve
uncertainties. Classical mathematical tools are not
sufficient to handle those. Various theories such
as fuzzy set theory (Zadeh, 1965), rough set theory
(Pawlak, 1982; Zhong and Skowron, 2001), vague set
theory (Gau and Buehrer, 1993) and intuitionistic fuzzy
set theory (Atanassov, 1986) have been proposed and
proven to be useful mathematical approaches to modeling
uncertainties. However, all the above theories are
associated with an inherent limitation—the inadequacy of
the parametrization tool.

Molodstsov (1999) initiated soft set theory as a new
mathematical tool for dealing with uncertainties. This
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tool is free from the limitation mentioned above, which
affected other commonly used approaches. The absence
of any restrictions on the approximate description in soft
set theory makes it easily applicable in practice. We can
use any parametrization we prefer: with the help of words
and sentences, functions, mappings, real numbers, and
so on. Since then, the generalized models of soft sets
have been developed rapidly to meet various demands in
practical situations by combining soft sets with fuzzy sets
(Maji et al., 2001), rough sets (Feng et al., 2011), vague
sets (Xu et al., 2010), interval-valued fuzzy sets (Yang
et al., 2009), interval-valued intuitionistic fuzzy soft sets
(Jiang et al., 2010), and with other theories. Currently,
research on soft set theory and hybrid soft set theory
has been very active and there has been some progress
concerning practical applications (Roy and Maji, 2007;
Jiang et al., 2011; Herawan and Deris, 2011; Quin et al.,
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2012b; Jun et al., 2009; Xiao et al., 2009; Kong et al.,
2011; Alcantud, 2016; Muthukumar and Krishnan, 2016;
Zhao and Guan, 2015; Li et al., 2015a; 2015b; Li and Xie,
2014; Xie et al., 2015).

All of the data sets mentioned above are based
on complete information. However, incomplete data
sets widely exist in practice. A slight mistake in the
process of measuring, a restriction of data collecting, an
error of data understanding and many other factors may
directly result in missing data. For example, if some
attendees ignore or misunderstand some questions when
filling out a questionnaire, missing data or incomplete
information will appear (Nowicki, 2010); if the detection
equipment for some atmospheric features is backward
or inaccurate, missing data or incomplete data will
appear when data mining for prediction of air pollution
(Siwek and Osowski, 2016). Data sets under incomplete
information are referred to as incomplete data sets. For
example, soft sets under incomplete information are
referred to as incomplete soft sets, fuzzy soft sets under
incomplete information are referred to as incomplete
fuzzy soft sets, etc. The simplest approach to transforming
an incomplete data set to a complete one is to delete all
objects related to missing information and transform an
incomplete data set to a complete one. However, this
method will of course result in a loss of information.
On the other hand, predicting unknown data is a more
effective method for dealing with incomplete information.

Zou and Xiao (2008) initiated the study on data
analysis approaches under the incomplete soft sets
environment. They presented a weighted-average method
for incomplete soft sets and an average-probability
method (called a fuzzy method) for incomplete fuzzy
soft sets to predict unknown data in the corresponding
information tables. For an incomplete crisp soft set,
the weighed-average method can only predict the sum
of values of every object on all parameters but cannot
quantify each individual unknown entry in information
tables, which makes the method only applicable to
decision making problems. For an incomplete fuzzy
soft set, although the average-probability method can
predict each individual unknown entry of fuzzy soft sets,
the predicted values of all unknown entries in a certain
parameter column are equal, which makes this method of
low accuracy. Qin et al. (2012a) propose a data filling
approach for incomplete soft sets. In their approach, the
missing data are filled in terms of the association degree
between the parameters when a strong association exists
between the parameters or in terms of the distribution of
other available objects when no strong association exists
between the parameters. However, the approach cannot
be used for predicting unknown data in incomplete fuzzy
soft sets.

Deng and Wang (2013) proposed an
object-parameter approach (or the “Deng–Wang

approach”, to distinguish it from other methods in
this work) to predict the unknown entries in fuzzy soft
sets. They introduced the notions of “the complete
distance” between two objects and “the average dominant
degree” between two parameters to reveal hidden
information in a fuzzy soft set. Compared with the two
approaches mentioned earlier, the Deng–Wang method
has three main advantages: (i) the predicted values of
different objects on a certain parameter vary from their
entries; (ii) it takes both the information between objects
and the information between parameters into account;
(iii) it can predict unknown data in incomplete soft sets as
well as in incomplete fuzzy soft sets. However, it suffers
from two main limitations: (i) the estimated value may
be not in the interval [0, 1]; (ii) the information between
the objects considered is not comprehensive, just like the
information between parameters.

In order to overcome these limitations of the
Deng–Wang approach, we redefine the notion of the
dominant degree, distinguish the roles of the average
distance and the dominant degree when predicting
unknown data, and then give an improvement of the
Deng–Wang method.

The remainder of this paper is organized as follows.
Section 2 presents the notions of soft sets, fuzzy soft
sets and incomplete fuzzy soft sets. In Section 3, the
Deng–Wang approach for predicting unknown data in
incomplete fuzzy soft sets is reviewed. In Section 4,
a counterexample and some analysis are presented to
illustrate the limitations of the Deng–Wang approach. An
improvement of the Deng–Wang method is presented in
Section 5. A new adjustable object-parameter approach
based on the similarity measures of fuzzy sets is presented
in Section 6. Experiments are implemented in Section 7,
and conclusions are drawn in Section 8.

2. Preliminaries

In this section we briefly recall some concepts that are
useful for subsequent discussions.

The theory of fuzzy sets, first introduced by
Zadeh (1965), provides an appropriate framework for
representing and processing vague concepts by allowing
partial memberships.

Definition 1. (Zadeh, 1965) A fuzzy set F in the universe
U is defined as

F = {(x, µF (x))/x ∈ U, µF (x) ∈ [0, 1].}
where µF is called the membership function of F and
µF (x) indicates the membership degree of x to F . We
denote the set of all fuzzy sets on U by F (U).

The fuzzy intersection, union, and complement are
respectively defined as follows:

µA∩B(x) = min{µA(x), µB(x)},
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µA∪B(x) = max{µA(x), µB(x)},
µ¬A(x) = 1− µA(x),

where A,B ∈ F (U) and x ∈ U .
If µA(x) ≤ µB(x), A is called a subset of B, and

this relationship is denoted by A ⊆ B. Obviously, A = B
if A ⊆ B and B ⊆ A.

To overcome the inadequacy of the parametrization
tools of fuzzy set theory and other commonly used
approaches to deal with uncertainty, Molodtsov (1999)
introduced the concept of soft set theory.

Let U be the initial universe of objects and E be the
set of parameters in relation to objects in U . Both U and
E are assumed to be nonempty finite sets. Let P (U) be
the power set of U and A ⊆ E.

Definition 2. (Molodtsov, 1999) A pair (F,A) is called a
soft set in the universe U , where F is a mapping given by
F : A −→ P (U).

For any parameter e ∈ A, F (e) ⊆ U may be
considered the set of e-approximate elements of the soft
set (F,A). In other words, the soft set is not a kind of
set in the ordinary sense, but a parameterized family of
subsets of the set U .

Maji et al. (2001) initiated the study on hybrid
structures involving both fuzzy sets and soft sets. They
introduced the notion of fuzzy soft sets, which can be seen
as a fuzzy generalization of crisp soft sets.

Definition 3. (Maji et al., 2001) A pair (F,A) is called a
fuzzy soft set over U , where A ⊆ E and F is a mapping
given by F : A −→ F (U) .

A fuzzy soft sets can be viewed as an information
table. In the information table of a fuzzy soft set, each
entry belongs to the interval [0, 1] and is decided by the
membership degree of an object on a parameter.

In the foregoing discussion, assume that the domain
of every fuzzy soft set is U = {x1, x2, . . . , xm} and the
parameters set is E = {e1, e2, . . . , en}. For an object
xi ∈ U and a parameter el ∈ E, denote by hil the value
of xi on el. If incomplete data exist in the information
table of a fuzzy soft set, then the fuzzy soft set is called
an incomplete fuzzy soft set and the unknown data are
denoted by the sign ‘∗’. For example, in the following
fuzzy soft set (F,A) shown in Table 1, all membership
values of objects on parameters are known except those of
x2, x3 on e2. The unknown data are denoted by ‘∗’ in the
information table, i.e., h22 = ∗ and h32 = ∗.

3. Deng–Wang approach

In this section, the object-parameter approach presented
by Deng and Wang (2013) is reviewed.

Let Uk = {i|hik �= ∗, 1 ≤ i ≤ m} and set 0/0 = 0.
Consider an incomplete fuzzy soft set (F,E) over U and
let hjl be the unknown value which is to be predicted.

Table 1. Tabular representation of the incomplete fuzzy soft set
(F,A).
U e1 e2 e3 e4 e5 e6

x1 0.9 0.4 0.5 0.4 0.8 0.8
x2 0.8 ∗ 0.5 0.7 0.6 0.3
x3 0.4 ∗ 0.9 0.9 0.5 0.9
x4 0.9 0.8 0.9 0.4 0.7 0.5

Definition 4. (Deng and Wang, 2013) Let (F,E) be a
fuzzy soft set over U . For xi, xj ∈ U and ek ∈ E, if hik

and hjk are already known, the relative distance from xi

to xj with respect to ek is defined by

dikjk =
hik − hjk∑

{l∈Uk} |hlk − hjk| . (1)

Moreover, the complete distance from xi to xj on all the
parameters is defined by

dij =

∑n
k=1 d

ik
jk

|{k|(i ∈ Uk) ∧ (j ∈ Uk)}| . (2)

The quantity dikjk is used to evaluate the difference
between the values of objects xi and xj on the parameter
ek. The complete distance dij is used to measure the
average distance from the values of xi to the values of
xj (the average distance from xi to xj , for brevity).

Based on the complete distance, the unknown entry
hjl is evaluated according to the information from the
relationship between the values of objects on a certain
parameter el by

hobject
jl =

∑
i∈Ul

(hil − dij)

|Ul| . (3)

Definition 5. (Deng and Wang, 2013) Consider an
incomplete fuzzy soft set (F,E) on U . Let xi ∈ U and let
ek, el ∈ E. If hik and hil are already known, the degree of
ek being relatively dominant to el regarding xi is defined
by

rikil =
hik − hil

hik + hil
. (4)

Definition 6. (Deng and Wang, 2013) Suppose (F,E) is
a fuzzy soft set over U . For ek, el ∈ E, the degree of ek
being definitely dominant to el is defined by

ckl =

∑
i∈Uk∩Ul

rikil
|Uk ∩ Ul| . (5)

Moreover, the degree of average dominance of ek to el is
given by

vkl =
ckl∑

{q|Uq∩Ul �=∅} |cql|
. (6)
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The average dominance degree is used to study
the relationship between parameters in an incomplete
fuzzy soft set. Based on the average dominance degree,
the unknown entry hjl is evaluated according to the
information between parameters regarding the object xj

by

hparameter
jl =

∑
k∈Gj

(hjk − vkl)

|Gj | , (7)

where Gj = {k|(hjk �= ∗) ∧ (Uk ∩Ul �= ∅), 1 ≤ k ≤ n}.
Finally, the unknown entry hjl can be predicted by

linearly weighting h
object
jl and h

parameter
jl as follows:

hjl = w1 × hobject
jl + w2 × h

parameter
jl , (8)

where w1 and w2 stand for the weights of objects and
parameters on the impacts on unknown data, respectively.

Given an incomplete fuzzy soft set (F,E) over U ,
hjl stands for unknown data going to be predicted by
the proposed object-parameter method. Based on the
definitions above, Deng and Wang proposed an algorithm
to predict the unknown data in an incomplete fuzzy soft
set presented as Algorithm 1.

Algorithm 1. Object-parameter algorithm to predict the
unknown data in an incomplete fuzzy soft set (Deng and
Wang, 2013).
Step 1. For any object xi ∈ U and any parameter ek ∈ E,
according to Eqns. (1) and (2) we obtain dikjk and dij . Thus
the evaluation of hjl regarding the relationship between
objects is proceeds through Eqn. (3).

Step 2. According to Eqns. (4)–(6), the values of rikil , ckl
and vkl are obtained, respectively.

Step 3. By Eqn. (7) the evaluation of hjl regarding the
relationship between parameters is made.

Step 4. Given a pair of weights w1 and w2, the unknown
entry hjl is predicted by Eqn. (8).

4. Counterexample and analysis

In this subsection, a counterexample is provided to show
that the Deng–Wang approach may be unreasonable in
some cases.

Example 1. In Table 2 an incomplete fuzzy soft set
is given. There are 6 objects and 7 parameters, and 5
unknown entries required to be predicted.

We use Algorithm 1 to predict the unknown data in
Table 2:

1. By Eqns.(1)–(3), we obtain d13 ≈ −0.253, d23 ≈
−0.221, d43 ≈ −0.011, d53 ≈ −0.292, d63 ≈
−0.299, so we have hobject

31 ≈ 1.095 ;

Table 2. Tabular representation of an incomplete fuzzy soft set.
U e1 e2 e3 e4 e5 e6 e7

x1 0.9 0.4 0.1 0.9 0.6 0.3 0.4
x2 0.8 0.6 0.5 * 0.5 0.3 0.3
x3 * 0.8 0.9 * 0.9 0.9 0.9
x4 0.9 0.8 0.9 0.8 * 0.8 0.9
x5 0.9 0.2 0.2 0.6 0.3 0.4 *
x6 0.9 0.2 0.4 0.4 0.4 0.3 0.3

2. By Eqns.(4)–(7), we obtain c21 ≈ −0.448, c31 ≈
−0.410, c51 ≈ −0.329, c61 ≈ −0.380, c71 ≈
−0.335, v21 ≈ −0.247, v31 ≈ −0.212, v51 ≈
−0.170, v61 ≈ −0.197, v71 ≈ −0.173, so we have,
hparameter
31 ≈ 1.080.

In this case, no matter how we select the weights of
objects and parameters, by Eqn. (8) we have that h31 > 1,
which is obviously unreasonable.

To understand why this unreasonable situation would
occur, we have to analyze the principle of the Deng–Wang
approach.

Suppose that hjl stands for missing data to be
predicted in the fuzzy soft set (F,E). To estimate hjl

based on the relationship between elements, Deng and
Wang (2013) firstly calculated the so-called “complete
distance” from each element to xj by Eqn. (2). The
“complete distance”, which can be positive or negative,
is actually used to measure the average distance from
the value of one object to another on all the parameters.
In order to estimate the value of hjl an already known
data hil, the complete distance dij (dij is the complete
distance from xi to xj ) should be subtracted from hil.
Through every hil (hil �= ∗, i ∈ {1, 2, . . . ,m}), Deng and
Wang (2013) obtained an estimate value of hjl. Finally,
the average of these estimated values was calculated by
Eqn. (3). Since hil − dij may be greater than 1 for each
hil (hil �= ∗, i ∈ {1, 2, . . . ,m}), it is no surprise that the
average of these estimates, i.e., hobject

jl , may be greater than
one.

To estimate hjl based on the relationship between
parameters, Deng and Wang (2013) calculated the
so-called “relate dominant degree ”, “definitely dominant
degree” and “average dominant degree” of each parameter
over el. In order to estimate hjl by already known
data hjk, the “average dominant degree” vkl should be
subtracted from hjk. Through every hjk (hjk �= ∗,
k ∈ {1, 2, . . . , n}), Deng and Wang (2013) obtained
an estimate value of hjl. Finally, the average of these
estimates was calculated by Eqn. (7). Since hjk − vkl
may be greater than 1 for each hjk (hjk �= ∗, k ∈
{1, 2, . . . , n}), it is no surprise that the average of these
estimates values, i.e., hparameter

jl , may be greater than 1.
In fact, the “relatively dominant degree” calculated

by Eqn. (4) is used to measure the distance between values
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of an object on two parameters; the “definitely dominant
degree” calculated by Eqn. (5) is used to measure the
average distance between the values of all objects on two
parameters; the “average dominant degree” (calculated by
Eqn. (6)) is used as the average distance from the values
on one parameter to the values on another (the average
distance from one parameter to another, for brevity) in
Eqn. (7). That is, although Deng and Wang (2013)
introduced the notion of the “dominant degree”, they did
not distinguish the roles of the “average distance” and the
“dominant degree” when predicting unknown data in an
incomplete fuzzy soft set.

Since Deng and Wang (2013) computed the average
of the estimates by Eqns. (3) and (7), they ignored the
varying effects of different elements on a fixed element,
and of different parameters on a fixed parameter. We
present an illustrative example. Let hjl be an unknown
item. Write h1

jl = hil − dij for the estimate of hjl

obtained by considering the distance dij from xi to xj ,
and h2

jl = hi′l − di′j for the estimate of hjl obtained by
considering the distance di′j from x′

i to xj . If xi and x′
i

have different effects on xj , then h1
jl and h2

jl are expected

to have different effects on hobject
jl . That is, one should set

different weights for h1
jl and h2

jl when calculating hobject
jl ,

rather than computing the average by Eqn. (3).
Based on the discussion above, we should present an

improvement of the Deng–Wang approach in this work.
In our improvement, the “average distance” will be used
to predict an unknown item from an already known item,
and the “dominant degree” will be redefined and used
to describe the possibility that the unknown one will be
determined by this already known one. As an illustration,
in Table 2, to predict h45 (h45 = ∗) by h46 (h46 �= ∗)
according to the relationship between parameters e5 and
e6, let c65 be the average distance from e6 to e5 and C65 be
the dominant degree of e6 over e5. Then the value of h45

predicted by h46 is h46−c65. C65 describes the possibility
that h45 is determined by h46, i.e., the possibility that h45

is equal to h46−c65. Besides, the estimated value of every
unknown item will be within the interval [0, 1] by using
our improved approach.

5. Improvement of the Deng–Wang
approach

Consider an incomplete fuzzy soft set (F,E) on U and let
hjl be an unknown item. Let Ul = {i|hil �= ∗, 1 ≤ i ≤
m} and Ei = {l|hil �= ∗, 1 ≤ l ≤ n}. It is obvious that
Ul ⊆ U and Ei ⊆ E. By convention, we set 0/0 = 0.

Definition 7. Let (F,E) be a fuzzy soft set over U . For
xi, xj ∈ U and ek ∈ E, if hik and hjk are already known,
the distance from xi to xj with respect to ek is defined by

dikjk = hik − hjk. (9)

Furthermore, the average distance from the values of xi to
the values of xj on all the parameters (the average distance
from xi to xj , for brevity) is defined by

dij =

∑
k∈Ei∩Ej

dikjk

|Ei ∩ Ej | . (10)

Since hik, hjk ∈ [0, 1], by Eqns. (9) and (10) it is
easy to obtain that dikjk ∈ [−1, 1] and dij ∈ [−1, 1].

Remark 1. It should be noted that one can use different
formulas to calculate the distance from a certain value
to another one. Both Eqns. (1) and (9) can be used to
compute the distance from hik to hjk . Here, we select
the latter, rather than the former because it is simpler to
compute.

The value of hjl predicted by an already known value
hil, which is denoted by hil

jl

′
, can be calculated in the

following manner:

hil
jl

′
= hil − dij . (11)

Since dij ∈ [−1, 1], by Eqn. (11) it is easy to
obtain that hil

jl

′ ∈ [hil − 1, hil + 1]. To assure that
the predicted value can be within the interval [0, 1], we
formalize Eqn.(11) as follows:

hil
jl =

⎧
⎪⎨

⎪⎩

hil if dij = 0,

hil − dij
1−hil

(hil+1)−hil
if − 1 ≤ dij < 0,

hil − dij
hil−0

hil−(hil−1) if 1 ≥ dij > 0,

(12)

i.e.,

hil
jl =

⎧
⎪⎨

⎪⎩

hil if dij = 0,

hil − dij + dijhil if − 1 ≤ dij < 0,

hil − dijhil if 1 ≥ dij > 0.

(13)

Lemma 1. By Eqn. (13) hil
jl is restricted to the interval

[0, 1].

Proof.
(i) Suppose that dij = 0. Since 0 ≤ hil ≤ 1, it is easy to
get 0 ≤ hil

jl = hil ≤ 1.

(ii) Suppose that −1 ≤ dij < 0. Since
−1 ≤ hil − 1 ≤ 0 and 0 ≤ 1 + dij < 1, we have
hil − dij + dijhil = hil + dij(hil − 1) ≥ hil and
hil − dij + dijhil − 1 = hil(1 + dij) − (1 + dij) =
(hil − 1)(1 + dij) ≤ 0, i.e., hil − dij + dijhil ≤ 1.
Thus we obtain hil ≤ hil

jl ≤ 1. Also, since
hil
jl = hil − dij + dijhil = (hil − 1)dij + hil and

−1 ≤ hil − 1 ≤ 0, we know that the value hil
jl increases

monotonically as dij decreases monotonically. If dij
reaches the minimal value −1, it is easy to obtain that
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hil
jl = hil − dij + dijhil = 1.

(iii) Suppose that 1 ≥ dij > 0. Since 0 ≤ hil ≤ 1
and 0 ≤ 1 − dij < 1, we obtain hil ≥ hil − dijhil =
hil(1 − dij) ≥ 0, i.e., hil ≥ hil

jl ≥ 0. Also, it is obvious
that the value hil

jl = hil − dijhil decreases monotonically
as dij increases monotonically. If dij reaches the maximal
value 1, it is easy to get that hil

jl = hil − dijhil = 0. �

Definition 8. Let (F,E) be a fuzzy soft set over U . For
any xi, xj ∈ U , denote the average distance from xi to xj

by dij ; then the dominant degree of xi over xj (i �= j) is
defined by

Dij =
1− |dij |∑

{p|Ep∩Ej �=∅,1≤p≤m,p�=j}(1− |dpj |) . (14)

Write Ml = {i|(hil �= ∗) ∧ (Ei ∩ Ej �= ∅), 1 ≤ i ≤ m}.
The relative dominant degree of xi over xj with respect to
el is defined by

Dil
jl =

1− |dij |∑
p∈Ml

(1− |dpj |) . (15)

In Eqn. (14), the larger the difference |dij | between
xi and xj , the smaller the dominance degree of xi over xj .
There may be many methods to construct the dominant
degree of one object over another—we just propose one
of these by Eqn. (14).

The relative dominant degree Dil
jl calculated by

Eqn. (15) is used to describe the possibility that the value
of hjl (hjl = ∗) will be determined by hil (hil �= ∗). For
el ∈ E, if there is one and only one object xj such that
the membership value of xj on el (hjl) is unknown, then
the relative dominant degree degenerates to the dominant
degree of xi over xj , i.e., Dil

jl = Dij .
The unknown entry hjl can be evaluated according to

the information between the values of objects on a certain
parameter by

hobject
jl =

∑

i∈Ml

hil
jl ×Dil

jl. (16)

Definition 9. Consider an incomplete fuzzy soft set
(F,E) on U . Let xi ∈ U , ek, el ∈ E, hik and hil are
already known. The distance from ek to el regarding xi is
defined by

cikil = hik − hil. (17)

Furthermore, the average distance from the values of
objects on ek to the values of objects on el (the average
distance from ek to el, for brevity) is defined by

ckl =

∑
i∈Uk∩Ul

cikil
|Uk ∩ Ul| . (18)

Since hik, hil ∈ [0, 1], by Eqns. (17) and (18) it is
easy to get that cikil ∈ [−1, 1] and ckl ∈ [−1, 1].

Remark 2. Both Eqns. (4) and (17) can be used to
measure the distance from hik to hil. Here, we select
the latter, rather than the former because it is simpler to
compute.

Analysing the average distance from ek to el, the
unknown value hjl can be predicted by hjk in the
following manner:

hjk
jl

′
= hjk − ckl. (19)

Since ckl ∈ [−1, 1], by Eqn. (19) it is easy to

obtain that hjk
jl

′ ∈ [hjk − 1, hjk + 1]. To assure that
the predicted value can be within the interval [0, 1], we
formalize Eqn. (19) as follows:

hjk
jl =

⎧
⎪⎨

⎪⎩

hjk if ckl = 0,

hjk − ckl
1−hjk

(hjk+1)−hjk
if − 1 ≤ ckl < 0,

hjk − ckl
hjk−0

hjk−(hjk−1) if 1 ≥ ckl > 0,

(20)
i.e.,

hjk
jl =

⎧
⎪⎨

⎪⎩

hjk if ckl = 0,

hjk − ckl + cklhjk if − 1 ≤ ckl < 0,

hjk − cklhjk if 1 ≥ ckl > 0.

(21)

Lemma 2. By Eqn. (21) hjk
jl is restricted to the interval

[0, 1].

Proof. The proof is similar to that of Lemma 1 and,
therefore, omitted here. �

Definition 10. The dominant degree of ek over el (k �= l)
is given by

Ckl =
1− |ckl|∑

{q|Uq∩Ul �=∅,1≤q≤n,q �=l}(1− |cql|) . (22)

Write Gj = {k|(hjk �= ∗)∧ (Uk ∩Ul �= ∅), 1 ≤ k ≤ n}.
The relative dominant degree of ek over el regarding xj is
characterized by

Cjk
jl =

1− |ckl|∑
q∈Gj

(1 − |cql|) . (23)

In Eqn. (22), the larger the difference |ckl| between
ek and el, the smaller the dominance degree of ek over
el. There are various methods to construct the dominant
degree of one parameter over another—we just propose
one of these by Eqn. (22).

The relative dominant degree Cjk
jl in Eqn. (23) is

used to describe the possibility that the value of hjl

(hjl = ∗) will be determined by hjk (hjk �= ∗). For
xj ∈ U , if there is one and only one parameter el s.t.
the membership value of xj on el (hjl) is unknown, then
the relative dominant degree degenerates to the dominant
degree of ek over el, i.e., Cjk

jl = Ckl.
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The unknown entry hjl can be evaluated according
to the information between the values of parameters
pertaining to object xj by

hparameter
jl =

∑

k∈Gj

hjk
jl × Cjk

jl . (24)

Finally, the unknown entry hjl can be predicted by
linearly weighing hobject

jl and hparameter
jl as follows:

hjl = w1 × hobject
jl + w2 × hparameter

jl , (25)

wherew1 andw2 respectively denote the weight of objects
and the weight of parameters quantifying the impact on
unknown data. They satisfy the condition w1 + w2 = 1.

Given an incomplete fuzzy soft set (F,E) over
U , hjl is going to be predicted by the proposed
object-parameter method. It can be viewed as an
improvement of the Deng–Wang approach and can
be implemented through the procedure presented in
Algorithm 2.

Algorithm 2. Improved object-parameter algorithm to
predict the unknown data in an incomplete fuzzy soft set.

Step 1. For any i ∈ Ml, calculate hil
jl by Eqns. (9), (10)

and (13), and then calculate Dil
jl by Eqn. (15).

Step 2. According to Eqn.(16), we estimate the value
of hjl based on the information between objects; the
estimated value is denoted by hobject

jl .

Step 3. For any k ∈ Gj , calculate hjk
jl by Eqns. (17), (18)

and (21), and then calculate Cjk
jl by Eqn. (23).

Step 4. According to Eqn.(24), we estimate the value
of hjl based on the information between parameters; the
estimated value is denoted by hparameter

jl .

Step 5. Given a pair of weights w1 and w2, estimate the
value of hjl by Eqn. (25).

Theorem 1. The value hjl estimated by Algorithm 2 is in
the interval [0, 1].

Proof. By Eqn. (13) and Lemma 1, we deduce that
0 ≤ hil

jl ≤ 1. By Eqn. (15), we obtain that
∑

i∈Ml
Dil

jl =

1. It is easy to obtain that 0 ≤ ∑
i∈Ml

hil
jl × Dil

jl ≤
∑

i∈Ml
Dil

jl = 1, i.e., 0 ≤ hobject
jl ≤ 1. In a similar way,

we conclude that 0 ≤ h
parameter
jl ≤ 1. The weights w1

and w2 satisfy the condition w1 + w2 = 1, so we obtain
0 ≤ hjl ≤ 1 by Eqn. (25). �

Remark 3. Comparing Algorithms 1 and 2, three main
differences are noticeable:

(i) Hidden information between objects revealed. In
Algorithm 1, only the distance from one object

to another is considered. The effect of different
elements on a fixed element is not taken into
consideration. In Algorithm 2, we define the
“dominant degree” of one object over another, and
use the “dominant degree” to measure the effect of
different objects on a fixed element. Both the average
distance between objects and the dominant degree of
one object over another are taken into consideration.

(ii) Hidden information between parameters is revealed.
In Algorithm 1, the roles of the “average distance”
and the “dominant degree” are not distinguished. In
Algorithm 2, we redefine the “dominant degree” of
one parameter over another, and use the “dominant
degree” to measure the effect of different parameters
on a fixed parameter. Both the average distance
between parameters and the dominant degree of one
parameter over another are taken into consideration
in Algorithm 2.

(iii) By Algorithm 1, the final estimated value may be not
in the unit interval [0, 1]. By Algorithm 2, the final
estimated value is restricted to [0, 1].

Example 2. Let us come back to the example shown in
Table 2, and let the weights of objects and parameters be
equal, i.e., w1 = w2 = 1/2. By Algorithm 2, we obtain
h31 ≈ 0.626, h24 ≈ 0.987, h34 ≈ 0.959, h45 ≈ 0.841,
h57 ≈ 0.308. �

6. New adjustable object-parameter
method

In this section, we use the similarity measure of fuzzy
sets to study the information between two objects, and
between two parameters in the information table of a
fuzzy soft set. The similarity measure between two fuzzy
sets is defined by Wang (1983) as follows.

Definition 11. (Wang, 1983) A function S : F (U) ×
F (U) −→ [0, 1] is called a similarity measure of fuzzy
sets if it satisfies the following properties:

(S1) S(U, ∅) = 0 and S(A,A) = 1 whenever A ∈ F (U);

(S2) S(A,B) = S(B,A) whenever A,B ∈ F (U);

(S3) for all A,B,C ∈ F (U), we have S(A,C) ≤
min(S(A,B),S(B,C)) whenever A ⊆ B ⊆ C.

Now we propose an adjustable method to predict the
unknown data in an incomplete fuzzy soft set. This new
method takes account of both the relationship between
objects and between parameters, so we call it an adjustable
object-parameter method.
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Definition 12. Suppose (F,E) is a fuzzy soft set on U
and xi, xj ∈ U . Let S′ be a similarity measure of fuzzy
sets. The similarity between xi and xj is defined by

S′
ij = S′(Gi, Gj), (26)

where Gi and Gj are two fuzzy sets on Ei ∩ Ej such
that Gi(e) = F (e)(xi) and Gj(e) = F (e)(xj) for ∀e ∈
Ei ∩ Ej . If Ei ∩ Ej = ∅, write S′

ij = 0.

S′
ij is actually used to measure the similarity between

values of xi and xj on parameters Ei ∩ Ej . When the
amount of data in the information table is huge, and the
unknown items are rare, the similarity between values
of xi and xj on all parameters can be approximately
estimated by S′

ij .
The unknown entry hjl is estimated according to the

information from the relationship between the values of
objects on parameter el by

hobject
jl =

∑
i∈{i|hil �=∗} hil × S′

ij
∑

i∈{i|hil �=∗} S
′
ij

. (27)

Definition 13. Suppose (F,E) is a fuzzy soft set on U
and ek, el ∈ E. Let S be a similarity measure of fuzzy
sets. The similarity between ek and el is defined by

Skl = S(Fk, Fl), (28)

where Fk and Fl are two fuzzy sets on Uk ∩ Ul such that
Fk(x) = F (ek)(x) and Fl(x) = F (el)(x) for ∀x ∈ Uk ∩
Ul. If Uk ∩ Ul = ∅, set Skl = 0.

Skl is actually used to measure the similarity between
the values of objects in Uk ∩ Ul with regard to ek and el.
When the amount of data in the information table is huge
and the unknown items are rare, the similarity between
values of all objects on Ek and Ej can be approximately
estimated by Skl.

The unknown value hjl is estimated according to the
information from the relationship between the values of
parameters regarding to object xj by

hparameter
jl =

∑
k∈{k|hjk �=∗} hjk × Skl
∑

k∈{k|hjk �=∗} Skl
. (29)

Finally, the unknown entry hjl can be predicted by
linearly weighing hobject

jl and hparameter
jl as follows:

hjl = w1 × h
object
jl + w2 × h

parameter
jl , (30)

wherew1 andw2 respectively denote the weight of objects
and the weight of parameters quantifying the impact on
unknown data, and satisfy the condition w1 + w2 = 1.

Given an incomplete fuzzy soft set (F,E) over
U , hjl is going to be predicted by the proposed
object-parameter method. Our new approach can be
implemented through Algorithm 3.

Algorithm 3. New adjustable object-parameter algorithm
to predict the unknown data in an incomplete fuzzy soft
set.
Step 1. Select a similarity measure S′ of fuzzy sets. For
all i ∈ {i|hil �= ∗}, calculate S′

ij .

Step 2. Calculate hobject
jl by Eqn. (27).

Step 3. Select a similarity measure S of fuzzy sets. For
all k ∈ {k|hjk �= ∗}, calculate Skl.

Step 4. Calculate hparameter
jl by Eqn. (29).

Step 5. Given a pair of weights w1 and w2, obtain the
final estimate value of hjl by Eqn. (30).

Theorem 2. The value hjl estimated by Algorithm 3 is in
the interval [0, 1].

Proof. Since 0 ≤ hil ≤ 1, we have that hil × S′
ij ≤

S′
ij for ∀i ∈ {i|hil �= ∗}. It is easy to deduce that

0 ≤ ∑
i∈{i|hil �=∗} hil × S′

ij ≤ ∑
i∈{i|hil �=∗} S

′
ij , which

indicates that

0 ≤
∑

i∈{i|hil �=∗} hil × S′
ij

∑
i∈{i|hil �=∗} S

′
ij

≤ 1,

i.e., 0 ≤ hobject
jl ≤ 1.

In a similar way, we can prove that

0 ≤ hparameter
jl ≤ 1.

At the same time, w1 and w2 satisfy the condition
w1 + w2 = 1, so we have that 0 ≤ w1 × h

object
jl + w2 ×

hparameter
jl ≤ 1, i.e., 0 ≤ hjl ≤ 1. �

Example 3. Let us return to the example shown in
Table 2 and let the weights of objects and parameters be
equal, i.e., w1 = w2 = 1/2.

Using Algorithm 3, let

S′(A,B) =
1

n

n∑

i=1

min(A(xi), B(xi))

max(A(xi), B(xi))

(cf. Fan, 2002),

S(A,B) =
1

n

n∑

i=1

2A(xi)B(xi)

A(xi)2 +B(xi)2

(cf. Li et al., 2014). Then we have h31 ≈ 0.580, h24 ≈
0.880, h34 ≈ 0.800, h45 ≈ 0.725, h57 ≈ 0.461. �

Now we pay attention to the principle of this new
object-parameter method.

Algorithm 3 is proposed based on the opinion that,
if hjl is an unknown item to be predicted, the larger S′

ij ,
the more possible is hjl is equal to hil; the larger Skl, the
more possible is that hjl is equal to hjk .

To illustrate this, let us return to the example shown
in Table 2. It is already known that h11 = 0.9; when
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Table 3. Comparative results of performance of the object-parameter predicting methods.
USD-RMB GBP-RMB CAD-RMB JPY-RMB KRW-RMB

A1 0.128022855 0.132633390 0.133498108 0.147776700 0.1065110061
A2 0.000950457 0.004730404 0.002032659 0.000029923 0.0000058517
A3 0.001749141 0.008605328 0.004158835 0.000049918 0.0000088618

we estimate the unknown item h31 according to the other
already known items in column 1, the more similar ray 1
and ray 3 are, the more possible is that h31 = h11 = 0.9.
It is already known that h32 = 0.8. When we estimate the
unknown item h31 according to the other already known
items in ray 3, the more similar columns 1 and 2 are, the
more possible is that h31 = h32 = 0.8.

In Eqn. (27), we have

hobject
jl =

∑
i∈{i|hil �=∗} hil × S′

ij
∑

i∈{i|hil �=∗} S
′
ij

=
∑

i∈{i|hil �=∗}
(hil ×

S′
ij∑

i∈{i|hil �=∗} S
′
ij

).

Here, S′
ij/

∑
i∈{i|hil �=∗} S

′
ij can be viewed as the weight

of hil when calculating hobject
jl . For el ∈ E, the value

of
∑

i∈{i|hil �=∗} S
′
ij is determined. Hence, we make sure

that the larger S′
ij is and the larger the weight of hil is, the

more possible is that hobject
jl = hil.

In a similar way, by Eqn. (29), we make sure that the
larger Skl is, the more possible is to get hparameter

jl = hjk,
i.e., the more similar hjk and the estimated value of hjl

(based on the relationship between parameters) are.

Remark 4. Algorithm 3 has two main advantages
compared with Algorithms 1 and 2:

(i) If we select different similarity measures, the final
estimated values of the unknown items will be
different, which makes this method adjustable.

(ii) Compared with Algorithms 1 and 2, the
computational complexity of Algorithm 3 is
obviously reduced.

7. Experiment

This section presents an experiment to compare the
efficiency of the modified method to that of the
Deng–Wang approach. The experimental database, which
regards the exchange rate on 2016/01/05 (quoted by the
Bank of China), can be found on the official website of the
Bank of China: http://srh.bankofchina.com/
search/whpj/search.jsp. The experimental
results are analyzed and comparisons are made based on
five data sets, i.e., the USD-RMB exchange rate data set,
the GBP-RMB exchange rate data set, the CAD-RMB
exchange rate data set, the JPY-RMB exchange rate

data set and the KRW-RMB exchange rate data set on
2016/01/05. The Bank of China provided statistics about
6 attributes at 95 different periods on 2016/01/05 in
each database. In order to ensure that the original data
sets are complete, in our experiment we choose four
attributes: “Buying Rate”, “Cash Buying Rate”, “Selling
Rate” and “Cash Selling Rate”. We then obtain five
complete data sets, each of which has 95 objects and four
attributes. These data sets are information tables, rather
than fuzzy soft sets. We transfer these information tables
into fuzzy soft sets by dividing each entry by 1000. After
the division, every entry in the five information tables
is in the interval [0, 1], and every information table is
transformed into a complete fuzzy soft set with 95 objects
and four attributes.

We compare the predicting approaches in terms of
the predictive accuracy, which is described by the mean
error of the missing entries in an incomplete fuzzy soft
set. The mean error is defined as

M =
1

n

n∑

t=1

|At − Ft|, (31)

where n is the number of missing data in an incomplete
fuzzy soft set, At is the actual value and Ft is the forecast
value.

On each complete fuzzy soft set, we randomly delete
1% entries to obtain an incomplete fuzzy soft set, and
then compute the “mean error” by different algorithms. In
order to obtain greater credibility of the results, we repeat
the experiment program 100 times to compute the average
“mean error” as the final one. All the algorithms are
implemented as MATLAB programs. The experimental
results are shown in Table 3.

In Table 3, every figure is accurate to 9 decimal
places. A1 denotes the mean error when predicting
the unknown data by using the Deng–Wang approach
(Algorithm 1), A2 denotes the mean error when predicting
the unknown data by using the improved Deng–Wang
approach (Algorithm 2), whereas A3 denotes the mean
error when predicting the unknown data by using the
adjustable object-parameter approach (Algorithm 3, and
the similarity measures used here are the same as in
Example 3). The experimental results in Table 3 indicate
that both Algorithms 2 and 3 outperform Algorithm 1.
The prediction is always the best when using Algorithm 2.

http://srh.bankofchina.com/
search/whpj/search.jsp.
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8. Conclusion

In this paper, we proposed an improvement of the
Deng–Wang approach for unknown data predicting in
an incomplete fuzzy soft set. Furthermore, using
the similarity measure of fuzzy sets, a new adjustable
object-parameter approach was given to predict the
unknown data in an incomplete fuzzy soft set. All the
three approaches: the Deng–Wang one, its improvement
and the new adjustable object-parameter, can be used to
predict unknown data in incomplete soft sets as well as
in incomplete fuzzy soft sets. The elaborated results
included a comparison between the three approaches
through five rate exchange data sets. They indicate that
the improved Deng–Wang approach performs best with
respect to the forecasting accuracy.
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