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Reachability and minimum energy control of descriptor fractional discrete-time linear systems with different fractional
orders are addressed. Using the Weierstrass–Kronecker decomposition theorem of the regular pencil, a solution to the state
equation of descriptor fractional discrete-time linear systems with different fractional orders is given. The reachability
condition of this class of systems is presented and used for solving the minimum energy control problem. The discussion is
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1. Introduction

Solutions to the minimum energy control problem for
linear time-invariant systems produce an input sequence
that will bring the system to a desired state with minimum
energy expenditure. This subject has been considered in
many papers and monographs (Kaczorek and Klamka,
1986; Kaczorek, 2014; Klamka, 1991; 2009; 2010; 2014).
LTI (linear time-invariant) systems theory deals with
numerous types of systems, e.g., positive (Kaczorek
2002; 2013a; 2013c; 2011d), descriptor (Campbell et al.,
1976; Dai 1989; Dodig and Stosic, 2009; Guang-Ren,
2010; Van Dooren, 1979; Van Dooren and Beelen, 1988)
or fractional (Nishimoto, 1984; Oldham and Spanier,
1974; Podlubny, 1999). Recently fractional systems
have received more attention since fractional differential
equations have been used by engineers for modeling
various processes (Dzieliński et al., 2009; Ferreira and
Machado, 2003; Popović et al., 2013).

From a mathematical point of view, fractional
calculus is well known (Nishimoto, 1984; Oldham
and Spanier, 1974; Podlubny, 1999; Miller and Ross,
1993); however, some new results appear, e.g., a
new definition of the fractional derivative (Caputo and
Fabrizio, 2015) or fractional systems with different
fractional orders (Kaczorek 2010; 2011a; 2011b). The
resulting combination of descriptor fractional systems

with discrete-time linear ones, which are commonly
used for process modeling, becomes a source of interest
in this paper, which deals with descriptor fractional
linear systems described by difference equations of
different fractional orders. A solution to the state
equation of descriptor fractional discrete-time linear
systems with regular pencils was given by Kaczorek
(2011d; 2013b), along with that for continuous-time
systems (Kaczorek, 2013a; 2013c). A solution to the
descriptor fractional continuous-time linear systems with
two different fractional orders was introduced by Sajewski
(2015). Reduction and decomposition of descriptor
fractional discrete-time linear systems were considered by
Kaczorek (2011c). The reachability and minimum energy
control problem for continuous-time systems with two
different fractional orders was considered by Sajewski
(2016a). A comparison of three different methods for
finding the solution of descriptor fractional discrete-time
linear systems can be found in the work of Sajewski
(2016b), along with the case of fractional systems with
two different fractional orders (Sajewski, 2016c).

This paper is devoted to the minimum energy
control problem of descriptor fractional discrete-time
linear systems with different fractional orders. In most
cases, the solution for descriptor systems is accomplished
by the Shuffle algorithm, which leads to more complex
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fractional systems with delays (see, e.g., Kaczorek, 2014).
A new approach, based on the Weierstrass–Kronecker
decomposition theorem, will be given. This solution is
proven by an example for greater efficiency .

The organisation of this paper is as follows. In
Section 2 the descriptor fractional discrete-time linear
system with different fractional orders is presented
and a solution to the system, with the use of
the Weierstrass–Kronecker decomposition theorem, is
given. An example of decomposition is also presented
in Section 2. Section 3 is devoted to reachability
of descriptor fractional systems, and the reachability
condition is given. The minimum energy control problem
of descriptor fractional discrete-time linear systems with
different fractional orders is formulated and solved in
Section 4, where an illustrating example is also given.
Concluding remarks are included in Section 5.

2. Descriptor fractional discrete-time linear
systems of different orders and their
solution

Consider a descriptor fractional discrete-time linear
system with two different fractional orders,

E1Δ
αx1(k + 1) = A11x1(k) +A12x2(k)

+B1u(k),

E2Δ
βx2(k + 1) = A21x1(k) +A22x2(k)

+B2u(k),

(1)

where 0 < α, β < 2, k ∈ Z+, x1(k) ∈ R
n1 and

x2(k) ∈ R
n2 are the state vectors, u(k) ∈ R

m is the input
vector, Ei, Aij ∈ R

ni×nj , Bi ∈ R
ni×m; i, j = 1, 2;

R
n×m is the set of n×m real matrices and Z+ is the set

of nonnegative integers.
The fractional difference of order α (β) is defined by

(Kaczorek, 2011a)

Δαx(k) =

k∑

j=0

cα(j)x(k − j),

cα(0) = 1,

cα(j) = (−1)j
(
α

j

)

= (−1)j
α(α − 1) . . . (α− j + 1)

j!
,

j = 1, 2, . . .

(2)

Rewriting (1) in matrix form, we have

E

[
Δαx1(k + 1)
Δβx2(k + 1)

]
= A

[
x1(k)
x2(k)

]
+Bu(k), (3)

where

E =

[
E1 0
0 E2

]
, A =

[
A11 A12

A21 A22

]
,

B =

[
B1

B2

]
.

(4)

In descriptor systems it is assumed that

detE = 0, (5)

and we also assume a regular pencil,

det

[[
E1z1 0
0 E2z2

]
−
[

A11 A12

A21 A22

]]
�= 0, (6)

for some z1, z2 ∈ C, where C is the field of complex
numbers.

Sajewski (2016c) showed that the
Weierstrass–Kronecker decomposition theorem of
the regular pencil (Kaczorek, 2011a; 1998) can be used
for systems with two different fractional orders.

A solution of the descriptor fractional discrete-time
linear system (1) with (5) and (6) is supported by the
following lemma.

Lemma 1. There exist nonsingular matrices
P,Q ∈ R

n×n such that the descriptor fractional discrete-
time linear systems (3) with regular pencil (6) can be de-
composed as

P

[[
E1z1 0
0 E2z2

]
−
[

A11 A12

A21 A22

]]
Q

=

[
Ē1z1 0
0 Ē2z2

]
−
[

Ā11 Ā12

Ā21 Ā22

]
, (7)

where

P =

[
P1 0
0 P2

]
, Q =

[
Q1 0
0 Q2

]
, (8)

and the submatrices of (7) have the following form:

Ē1 = P1E1Q1 =

[
In1

1
0

0 N1

]
,

Ē2 = P2E2Q2 =

[
In1

2
0

0 N2

]
,

Ā11 = P1A11Q1 =

[
Ã11 0
0 In2

1

]
,

Ā12 = P1A12Q2 =

[
Ã12 0
0 0

]
,

Ā21 = P2A21Q1 =

[
Ã21 0
0 0

]
,

Ā22 = P2A22Q2 =

[
Ã22 0
0 In2

2

]
,

P1B1 =

[
B̃1

1

B̃2
1

]
, P2B2 =

[
B̃1

2

B̃2
2

]
,

(9)
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where In is the n× n identity matrix, N1 ∈ R
n2
1×n2

1 ,
N2 ∈ R

n2
2×n2

2 are a nilpotent matrices with the index μi,
i = 1, 2 (i.e., Nμi

i = 0 and Nμi−1
i �= 0),

Ã11 ∈ R
n1
1×n1

1 ,

Ã22 ∈ R
n1
2×n1

2 , Ã1
21 ∈ R

n1
2×n1

1 ,

Ã1
12 ∈ R

n1
1×n1

2 , B̃1
1 ∈ R

n1
1×m,

B̃2
1 ∈ R

n2
1×m, B̃1

2 ∈ R
n1
2×m,

B̃2
2 ∈ R

n2
2×m

rankE1 = n1
1, rankE2 = n1

2,

n1
1 + n2

1 = n1, n1
2 + n2

2 = n2, n1 + n2 = n.

Example 1. Let the system (3) have the pencil E, A
(given by (4)) of the form

E1 =

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ , E2 =

⎡

⎣
−1 −1 −1
2 4 2
1 4 1

⎤

⎦ ,

A11 =

⎡

⎣
1 0 1
0 1 0
−1 0 −1

⎤

⎦ , A12 =

⎡

⎣
4 11 4
2 5 2
0 0 0

⎤

⎦ ,

A21 =

⎡

⎣
−3 2 0
6 2 0
3 7 0

⎤

⎦ , A22 =

⎡

⎣
0.8 1.7 2.8
0.4 0.8 1.4
2.2 4.6 2.2

⎤

⎦ .

(10)

We wish to find its decomposition (9). It easy to check that
the condition (5) is met since detE1 = 0, detE2 = 0 and
E is diagonal. The condition (6) is also met since

det

[[
E1z1 0
0 E2z2

]
−
[

A11 A12

A21 A22

]]

= z21z
2
2 − 0.3z21z2 − z1z

2
2 + 0.02z21

− 16.7z1z2 − 8.02z1 + 12z2 − 10.2.

Using the row and column elementary operations
(Kaczorek; 1998), we obtain the matrices P and Q of the
form

P1 =

⎡

⎣
0 1 0
1 0 1
0 0 −1

⎤

⎦ , P2 =
1

11

⎡

⎣
1 −2 5
−2 4 1
4 3 −2

⎤

⎦ ,

Q1 =

⎡

⎣
0 1 0
1 0 0
0 −1 1

⎤

⎦ , Q2 =

⎡

⎣
−2 1 −1
1 0 0
0 0 1

⎤

⎦ ,

(11)

which decompose the pencil of the system (3) with the
matrices (10) to the desired form,

Ē1 = P1E1Q1

=

[
In1

1
0

0 N1

]
=

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ ,

Ē2 = P2E2Q2

=

[
In1

2
0

0 N2

]
=

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ ,

Ā11 = P1A11Q1

=

[
Ã11 0
0 In2

1

]
=

⎡

⎣
1 0 0
0 0 0
0 0 1

⎤

⎦ ,

Ā12 = P1A12Q2

=

[
Ã12 0
0 0

]
=

⎡

⎣
1 2 0
3 4 0
0 0 0

⎤

⎦ ,

Ā21 = P2A21Q1

=

[
Ã21 0
0 0

]
=

⎡

⎣
3 0 0
1 3 0
0 0 0

⎤

⎦ ,

Ā22 = P2A22Q2

=

[
Ã22 0
0 In2

2

]
=

⎡

⎣
0.1 1 0
0 0.2 0
0 0 1

⎤

⎦ ,

n1
1 = n1

2 = 2, n2
1 = n2

2 = 1, n1 = n1
1 + n2

1 = 3,

n2 = n1
2 + n2

2 = 3, n = n1 + n2 = 6.

(12)

�
Computation methods for the matrices P and Q have

been discussed, e.g., by Van Dooren (1979), Van Dooren
and Beleen (1988) or Kaczorek (2011a).

Using the decomposition given by Lemma 1, the
system (3) can be written as

⎡

⎢⎢⎣

In1
1

0 0 0

0 N1 0 0
0 0 In1

2
0

0 0 0 N2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

Δαx̄1
1(k + 1)

Δαx̄2
1(k + 1)

Δβ x̄1
2(k + 1)

Δβ x̄2
2(k + 1)

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

Ã11 0 Ã12 0
0 In2

1
0 0

Ã21 0 Ã22 0
0 0 0 In2

2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x̄1
1(k)

x̄2
1(k)

x̄1
2(k)

x̄2
2(k)

⎤

⎥⎥⎦

+

⎡

⎢⎢⎣

B̃1
1

B̃2
1

B̃1
2

B̃2
2

⎤

⎥⎥⎦u(k) for k ∈ Z+.

(13)
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The notation (13) is possible since by premultiplying
the state equation (3) by the matrix P ∈ R

n×n and
introducing the new state vector

⎡

⎢⎢⎣

x̄1
1(k)

x̄2
1(k)

x̄1
2(k)

x̄2
2(k)

⎤

⎥⎥⎦ = Q−1

[
x1(k)
x2(k)

]
, x̄1

1(k) ∈ R
n1
1 ,

x̄2
1(k) ∈ R

n2
1 , x̄1

2(k) ∈ R
n1
2 , x̄2

2(k) ∈ R
n2
2 ,

(14)

we obtain the following state equation:

PEQQ−1

[
Δαx1(k + 1)
Δβx2(k + 1)

]

= PAQQ−1

[
x1(k)
x2(k)

]
+ PBu(k),

k ∈ Z+. (15)

Following Lemma 1, decomposition of (3) allows us to
distinguish two subsystems:
the standard one,

[
Δαx̄1

1(k + 1)
Δβ x̄1

2(k + 1)

]

=

[
Ã11 Ã12

Ã21 Ã22

] [
x1
1(k)

x1
2(k)

]
+

[
B̃1

1

B̃1
2

]
u(k); (16)

and the nilpotent one,
[

N1 0
0 N2

] [
Δαx̄2

1(k + 1)
Δβ x̄2

2(k + 1)

]

=

[
In2

1
0

0 In2
2

] [
x2
1(k)

x2
2(k)

]
+

[
B̃2

1

B̃2
2

]
u(k). (17)

A solution to the standard subsystem (16) is well known
(Kaczorek, 2011a) and can be computed with the use of
the following formula:

[
x̄1
1(k)

x̄1
2(k)

]
= Φk

[
x̄1
1(0)

x̄1
2(0)

]

+

k−1∑

i=0

Φk−i−1

[
B̃1

1

B̃1
2

]
u(i), k ∈ Z+,

(18)

where

Φi =

⎧
⎪⎨

⎪⎩

In1
1+n1

2
for i = 0,

ÃΦi−1 −D1Φi−2 − · · · −Di−1Φ0

for i = 1, . . . , k,
(19)

Φi =

[
Φi

11 Φi
12

Φi
21 Φi

22

]
, Ã =

[
Ã1α Ã12

Ã21 Ã2β

]
,

Di =

[
cα(i+ 1)In1

1
0

0 cβ(i+ 1)In1
2

]
,

Ã1α = Ã11 + In1
1
α, Ã2β = Ã22 + In1

2
β.

(20)

A solution to the nilpotent subsystem (17) depends
on the max nilpotencyindexofmatricesN1 andN2, thatis,
μ = max(μ1, μ2).

If N1 = N2 = 0 (for which the nilpotency index
μ = 0), we obtain the following solution to (17):

[
x̄2
1(k)

x̄2
2(k)

]
= −

[
B̃2

1

B̃2
2

]
u(k), k ∈ Z+. (21)

If

N1 = N2 =

[
0 1
0 0

]

(for which the nilpotency index μ = 1), we have two
equations with two unknown elements per each element
of the state vector, and this lead to the following solution
of (17):

[
x̄2
1(k)

x̄2
2(k)

]
=

⎡

⎢⎢⎣

b̃212
0

b̃222
0

⎤

⎥⎥⎦u(k + 1)−
[

B̃2
1

B̃2
2

]
u(k),

k ∈ Z+, (22)

where

B̃2
1 =

[
b̃211
b̃212

]
, B̃2

2 =

[
b̃221
b̃222

]
.

Continuing for μ = 2, . . . , j, we obtain

[
x̄2
1(k)

x̄2
2(k)

]
= (−1)j+1

[
B̃2

1,j

B̃2
2,j

]
u(k + j)

+ · · ·+
[

B̃2
11

B̃2
21

]
u(k + 1)

−
[

B̃2
1

B̃2
2

]
u(k), k ∈ Z+.

(23)

In general, knowing the solution of the standard
subsystem (16) and the solution of the nilpotent subsystem
(17), we can find the desired solution of the system (3).
Taking under consideration (18), (19), (20) and (23), the
solution of (3) has the form

[
x1(k)
x2(k)

]
= QΨk

⎡

⎢⎢⎣

x̄1
1(0)

x̄2
1(0)

x̄1
2(0)

x̄2
2(0)

⎤

⎥⎥⎦

+

k+μ∑

i=0

QΨk−i−1B̃u(i), k ∈ Z+,

(24)
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where

B̃ =

⎡

⎢⎢⎣

B̃1
1

B̃2
1

B̃1
2

B̃2
2

⎤

⎥⎥⎦ , Ψi =

⎡

⎢⎢⎣

Φi
11 0 Φi

12 0
0 0 0 0
Φi

21 0 Φi
22 0

0 0 0 0

⎤

⎥⎥⎦ ,

Ψ−μ−1 = (−1)μ+1

⎡

⎢⎢⎣

0 0 0 0

0 Ψ−μ−1
1 0 0

0 0 0 0

0 0 0 Ψ−μ−1
2

⎤

⎥⎥⎦ ,

(25)

for i = 0, 1, . . . , k, μ = 0 , 1, . . . and Ψ−μ−1
1 ∈ R

n2
1 ,

Ψ−μ−1
2 ∈ R

n2
2 depends on shape of nilpotent matrices

N1, N2 given by (9); e.g., for μ = 1, we have

Ψ−1
1 =

[
1 0
0 1

]
, Ψ−1

2 =

[
1 0
0 1

]
,

Ψ−2
1 =

[
0 1
0 0

]
, Ψ−2

2 =

[
0 1
0 0

]
.

(26)

3. Reachability of fractional descriptor
systems

Again consider a fractional descriptor system (1) (or (3)).
This system is called reachable in q steps if for any given
xf ∈ R

n there exists an input sequence u(i) ∈ R
m for

i = 0, 1, . . . , q+μ that steers the state of the system from
x(0) = 0 to xf ∈ R

n, where μ = max(μ1, μ2) and
h = q+ μ+1 is the number of steps in which the state of
the system is transferred from x(0) to xf .

Theorem 1. The descriptor system (1) is reachable in q
steps if and only if the reachability matrix

Rh

= [ QΨk−1B̃ . . . QΨ0B̃ QΨ−μ−1B̃ ]
(27)

contains n linearly independent columns, that is,
rankRh = n, where the matrices Ψ and B̃ are defined
by (25) and the matrix Q follows from Lemma 1.

Proof. Using (24) for k = q, the matrices N with index
μ = 1 and x0 = 0, we obtain

xf = xq

= [ QΨ−2B̃ QΨq−2B̃ QΨq−1B̃ ]

×

⎡

⎢⎢⎢⎢⎢⎣

u(q + 1)
u(q)

...
u(1)
u(0)

⎤

⎥⎥⎥⎥⎥⎦
= Rh

⎡

⎢⎢⎢⎣

u(0)
u(1)

...
u(q + 1)

⎤

⎥⎥⎥⎦ ,

(28)

where Rh is defined by (27). From (28) it follows that
there exists an input sequence u(i) ∈ R

m for
i = 0, 1, . . . , q + 1 if and only if the matrix (27) contains
n linearly independent columns. �

4. Minimum energy control problem

Assuming that the descriptor fractional discrete-time
linear system (1) (or (3)) is reachable, this imply that
there exist many input sequences that steer the state of the
system from x(0) = 0 to the given final state xf ∈ R

n.
Above all, we are looking for a sequence u(i) ∈ R

m for
i = 0, 1, . . . , q + μ that minimizes the performance index

I(u) =

q+μ∑

i=0

uT (i)Ghu(i), (29)

where Gh ∈ R
m
+ is a symmetric positive defined matrix

and AT is the transpose matrix A.
The minimum energy control problem for the

discussed class of fractional systems (3) can be defined
as follows: for given matrices (9), fractional orders α and
β, a number q, a final state xf ∈ R

n and a matrix Gh

of the performance index (29), find an input sequence
u(i) ∈ R

m for i = 0, 1, . . . , q + μ that steers the state
vector of the system from x(0) = 0 to xf ∈ R

n and
minimizes the performance index (29).

Following Kaczorek (2011a) and Klamka (1991), to
solve the problem we define the matrix

Wh = RhG
−1
h RT

h ∈ R
n×n, (30)

where Rh is defined by (27) and

G−1
h = blockdiag [G−1, . . . , G−1] ∈ R

hm×hm
+ . (31)

From (30) it follows that the matrix Wh is invertible if and
only if the matrix RhR

T
h is nonsingular; then the input

sequence

ûh =

⎡

⎢⎢⎢⎣

u(q + μ)
...

u(1)
u(0)

⎤

⎥⎥⎥⎦ = G−1
h RT

hW
−1
h xf ∈ R

hm (32)

steers the system from x(0) = 0 to xf ∈ R
n since

x(q) = Rhûh

= RhQ
−1
h RT

hW
−1
h xf = xf ,

h = q + μ+ 1.

(33)

Theorem 2. Let the descriptor system (3) be reachable
in q steps and the conditions (30), (31) be satisfied. Let
ū(i) ∈ R

m, i = 0, 1, . . . , q+μ, be an input sequence that
steers the state of the descriptor system (3) from x(0) = 0
to xf ∈ R

n. Then the input sequence (32) also steers the
state of the system from x(0) = 0 to xf ∈ R

n and
minimizes the performance index (29), i.e., I(û) ≤ I(ū).
The minimal value of the performance index (29) is given
by

I(û) = xT
f W

−1
h xf . (34)
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The proof is similar to the one given by Kaczorek
(2014).

Summing up the discussion, to compute the optimal
input sequence (32) and the minimal value of the
performance index (34) first we have to find the matrices
(8) and decompose the state matrices (4) to the form (9).
Then knowing the matrices B̃, Ψ, Gh and using (27),
compute the matrix Rh and check the reachability of
the system. From (30) compute the matrix Wh. Finally,
using (32), we can find the input sequence u(i) ∈ R

m,
i = 0, 1, . . . , q + μ, and using (34), the minimal value of
the performance index I(û).

This approach is also valid in the case when α = β
and also when α = β = 1, where the matrices B̃, Ψ, Gh

are simplified.

Example 2. (Continuation of Example 1) Consider the
descriptor fractional discrete-time linear system (1) with
the fractional orders α = 0.5, β = 0.6, described by the
matrices (10). Find the input sequence u(i) ∈ R

m, i =
0, 1 . . . , that steer the state of the system from the zero
initial conditions

x1(0) = [ 0 0 0 ]T , x2(0) = [ 0 0 0 ]T

to the final state

x1f = [ 2 1 2 ]T , x2f = [ 1 1 1 ]T

for q = 3 and minimizes the performance index (29) with
G = 1× 10−19.

Using matrices P and Q given by (11), we obtain the
decomposition (12) and

Q−1

[
x1(k)
x2(k)

]
=

⎡

⎢⎢⎣

x̄1
1(k)

x̄2
1(k)

x̄1
2(k)

x̄2
2(k)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

x̄1
11(k)

x̄1
12(k)

x̄2
11(k)

x̄1
21(k)

x̄1
22(k)

x̄2
21(k)

⎤

⎥⎥⎥⎥⎥⎥⎦
,

PB =

⎡

⎢⎢⎣

B̃1
1

B̃1
2

B̃2
1

B̃2
2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

B̃1
11(k)

B̃1
12(k)

B̃2
11(k)

B̃1
21(k)

B̃1
22(k)

B̃2
21(k)

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
1
0.545
−0.091
0.182

⎤

⎥⎥⎥⎥⎥⎥⎦
,

n1
1 = n1

2 = 2, n2
1 = n2

2 = 1, n1 = n2 = 3,
n = n1 + n2 = 6.

(35)

Taking under consideration size n1
1, n

1
2, the solution of the

standard part (16) has the form

⎡

⎢⎢⎣

x̄1
11(k)

x̄1
12(k)

x̄1
21(k)

x̄1
22(k)

⎤

⎥⎥⎦ = Φk

⎡

⎢⎢⎣

x̄1
11(0)

x̄1
12(0)

x̄1
21(0)

x̄1
22(0)

⎤

⎥⎥⎦

+

k−1∑

i=0

Φk−i−1

⎡

⎢⎢⎣

B̃1
11

B̃1
12

B̃1
21

B̃1
22

⎤

⎥⎥⎦u(i),

k ∈ Z+,

(36)

where Φi is defined by (19) with

Ã =

[
Ã1α Ã12

Ã21 Ã2β

]
=

⎡

⎢⎢⎣

1.5 0 1 2
0 0.5 3 4
3 0 0.7 1
1 3 0 0.8

⎤

⎥⎥⎦ ,

Di =

[
cα(i+ 1)I2 0
0 cβ(i+ 1)I2

]
,

⎡

⎢⎢⎣

B̃1
11

B̃1
12

B̃1
21

B̃1
22

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
0

0.545
−0.051

⎤

⎥⎥⎦ . (37)

Similarly, taking under consideration the sizes n2
1

and n2
2, the solution of the nilpotent part (17) has the form

[
x̄2
11(k)

x̄2
21(k)

]
= −

[
1
0.182

]
u(k), k ∈ Z+, (38)

since

N1 = N2 = 0, μ1 = μ2 = 0,
[

B̃2
11

B̃2
21

]
=

[
1
0.182

]
.

(39)

To compute matrices Ψi for i = −1, 0, 1, 2, first we
have to compute matrices Φi for i = 0, 1, 2, which in this
example have the form

Φ0 = I4,

Φ1 =

[
Ã1α Ã12

Ã21 Ã2β

]

=

⎡

⎢⎢⎣

1.5 0 1 2
0 0.5 3 4
3 0 0.7 1
1 3 0 0.8

⎤

⎥⎥⎦ ,
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Φ2 =

[
Ã1α Ã12

Ã21 Ã2β

]2

−
[

α(α−1)
2! I2 0

0 β(β−1)
2! I2

]

=

⎡

⎢⎢⎣

7.38 6 2.2 5.6
13 12.38 3.6 8.2
7.6 3 3.64 7.5
2.3 3.9 10 14.79

⎤

⎥⎥⎦

(40)

and

Ψ−1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Ψ0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Ψ1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1.5 0 0 1 2 0
0 0.5 0 3 4 0
0 0 0 0 0 0
3 0 0 0.7 1 0
1 3 0 0 0.8 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Ψ2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

7.28 6 0 2.2 5.6 0
13 12.38 0 3.6 8.2 0
0 0 0 0 0 0
7.6 3 0 3.64 7.5 0
2.3 3.9 0 10 14.79 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

(41)

The reachability matrix has the form

R4 = [ QΨ2B̃ QΨ1B̃ QΨ0B̃ QΨ−1B̃ ]

=

⎡

⎢⎢⎢⎢⎢⎢⎣

1.22 1.27 0 0
0.69 0.36 0 0
−1.22 −1.27 0 1
1.51 −0.65 −1.18 −0.18
1.3 0.29 0.55 0
0 0 0 0.18

⎤

⎥⎥⎥⎥⎥⎥⎦
,

(42)

and rankR4 = 4. Taking under consideration (31), the
matrix G4 has the form

G4 = diag [G,G,G,G], (43)

and by the use of (30) with (42) and (43) we can compute

W4

= R4G
−1
4 RT

4

=

⎡

⎢⎢⎢⎢⎢⎢⎣

3.09 1.3 −3.09 0.99 01.95 0
1.3 0.61 −1.3 0.8 1 0
−3.09 −1.3 4.09 −1.18 −1.95 0.18
0.99 0.8 −1.18 4.11 1.12 −0.03
1.95 1 −1.95 1.12 2.07 0
0 0 0.18 −0.03 0 0.03

⎤

⎥⎥⎥⎥⎥⎥⎦

× 1019.

(44)

Now, using (32) with (42)–(44) we obtain

û =

⎡

⎢⎢⎣

û3

û2

û1

û0

⎤

⎥⎥⎦ = G−1
4 RT

4 W
−1
4 xf

=

⎡

⎢⎢⎣

1.06 −0.75 0.07 0.23
1.61 0.22 −0.003 −0.19
−0.52 0.07 −0.09 −0.45
−0.08 0.05 −0.22 −0.004

0.53 1.59
−0.5 −4.77
0.89 0.31

−0.002 6.67

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

2
1
2
1
1
1

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎣

3.88
−2.02
−0.39
6.11

⎤

⎥⎥⎦ .

(45)

Using (34) and (44) we obtain

I(û) = xT
f W

−1
4 xf = 6.5× 10−4. (46)

�

5. Concluding remarks

Descriptor fractional discrete-time linear systems with
two different fractional orders were analyzed. The
Weierstrass–Kronecker decomposition theorem of the
regular pencil was used to find the solution of the
state equation. Based on the proposed solution, a
reachability condition was given. The minimum energy
control problem for descriptor fractional discrete-time
linear systems with two different fractional orders was
formulated and solved. The effectiveness of the proposed
method was demonstrated with numerical examples.
Extension of these findings to systems consisting of
more than two subsystems with different fractional orders
is possible. An open problem is computation of the
solution if the Weierstrass–Kronecker decomposition is
impossible.



40 Ł. Sajewski

Acknowledgment

This work was supported by the National Science Centre
in Poland under the work no. 2014/13/B/ST7/03467.

References
Campbell, S.L., Meyer, C.D., Rose, N.J. (1976). Applications of

the Drazin inverse to linear systems of differential equations
with singular constant coefficients, SIAM Journal on Ap-
plied Mathematics 31(3): 411–425, DOI: 10.1137/0131035.

Caputo, M., Fabrizio, M. (2015). A new definition of fractional
derivative without singular kernel, Progress in Fractio-
nal Differentiation and Applications 1(2): 1–13, DOI:
10.12785/pfda/010201.

Dai, L. (1989). Singular Control Systems, Lectures Notes
in Control and Information Sciences, Vol. 118,
Springer-Verlag, Berlin, DOI: 10.1007/BFb0002475.

Dodig, M. and Stosic, M. (2009). Singular systems state
feedbacks problems, Linear Algebra and Its Applications
431(9): 1267–1292, DOI: 10.1016/j.laa.2009.04.024.
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