Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 2, 261-274
DOI: 10.2478/amcs-2019-0019

SOLVING SAT IN A DISTRIBUTED CLOUD: A PORTFOLIO APPROACH

YANIK NGOKO *>* CHRISTOPHE CERIN ®, DENIS TRYSTRAM ¢

“Department of Research and Development
Qarnot Computing, 40/42 Rue Barbés, Montrouge, France
e-mail: [yanik.ngoko@garnot-computing.com

*Department of Computer Science
University of Paris 13, 99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
e-mail: christophe.cerin@lipn.univ-parisl3.fr

“Department of Computer Science
University of Grenoble Alpes, 700 avenue Centrale, 38401 Saint Martin, d’Héres cedex, France
e-mail: |[denis.trystram@imag. fr

We introduce a new parallel and distributed algorithm for the solution of the satisfiability problem. It is based on an algo-
rithm portfolio and is intended to be used for servicing requests in a distributed cloud. The core of our contribution is the
modeling of the optimal resource sharing schedule in parallel executions and the proposition of heuristics for its approxi-
mation. For this purpose, we reformulate a computational problem introduced in a prior work. The main assumption is that
it is possible to learn optimal resource sharing from traces collected on past executions on a representative set of instances.
We show that the learning can be formalized as a set coverage problem. Then we propose to solve it by approximation
and dynamic programming algorithms based on classical greedy algorithms for the maximum coverage problem. Finally,
we conduct an experimental evaluation for comparing the performance of the various algorithms proposed. The results
show that some algorithms become more competitive if we intend to determine the trade-off between their quality and the
runtime required for their computation.

Keywords: resource provisioning and scheduling, parallel distributed SAT, algorithm portfolio, maximum coverage prob-
lem.

1. Introduction cryptography, etc. Since we are increasingly reaching the
limitations of computability (see the work of Vardi (2014)
for the end of Moore’s law), we believe it is essential to

develop new techniques for solving fundamental problems

This paper deals with the parallelization of the classical
satisfiability problem (SAT) (Kautz and Selman, 2007).

Given a propositional formula defined as a conjunction
of clauses, the objective in SAT is to state whether or
not the formula is satisfiable. We are interested in a
distributed solution that can be deployed in any volunteer
computing-like framework such as the heating cloud]] of
the Qarnot computing companyE

SAT is a highly investigated NP-hard problem; it
has several applications in combinatorial equivalence
checking, automatic test generation, model checking,

*Corresponding author

'A heating cloud is the one whose datacenters are units of a district
heat network. See the work of Ngoko et al. (2018) for other examples.

Zwww . garnot.com,

of computing such as SAT.

Several parallel solvers have been proposed for
SAT. As mentioned in prior works (Martins et al.,
2012; Audemard et al., 2014), they can be grouped
into two classes: divide-and-conquer and portfolio based
solvers. In the former the parallel algorithm operates by
partitioning the search space of the formula to evaluate
among several concurrent workers. GradSAT (Chrabakh
and Wolski, 2003) and Psato (Zhang et al., 1996) are some
solvers that are based on this mechanism. In contrast, in
portfolio solvers, the same search space can be assigned to
concurrent workers. The particularity is that each worker

mailto:yanik.ngoko@qarnot-computing.com
mailto:christophe.cerin@lipn.univ-paris13.fr
mailto:denis.trystram@imag.fr
www.qarnot.com

s \ED)

Y. Ngoko et al.

will use a different search strategy for finding the solution.
At first sight, the lack of search space partitioning could
be considered a weak point since we might have redun-
dant exploration of the search space. But, let us observe
that several portfolio solvers like Ppfolio (Roussel, 2011)
or Penelope (Audemard et al., 2012) were awarded at
the SAT competitiorE and sometimes they outperformed
divide-and-conquer solvers.

In this paper, we focus on parallel portfolio
approaches. The motivation for this choice is that,
in the reference distributed cloud we target (the one
of Qarnot), communications between nodes could be
too slow (Internet-based architecture). Fortunately, in
portfolio approaches, we can formulate efficient parallel
algorithms that require scarce communication between the
concurrent executions.

There exist two classes of parallel portfolio solvers
for SAT. The first one is that of pure portfolio solvers,
based on independent concurrent sub-solvers. This is
the case of Ppfolio or those based on the more advanced
resource sharing schedules studied by Goldman et al.
(2012). A run of such solvers consists in concurrent
execution of several SAT algorithms. The concurrent SAT
algorithms do not share knowledge during their execution.
An interruption signal is sent to each algorithm once a
solution has been found in an algorithm. The second
class of portfolio approaches is based on knowledge
sharing. Solvers like Penelope or Plingeling (Biere, 2010)
are based on sophisticated mechanisms, inspired by the
conflict-driven clause learning (CDCL) technique (Silva
and Sakallah, 1996), for sharing knowledge between
sub-solvers. Unfortunately, such solutions are not
necessarily suitable for distributed clouds in which the
communication time could be important. Thus, the solver
proposed in this paper is a pure portfolio one.

There exist distributed portfolio solvers that are close
to what we propose in this work (Audemard et al., 2014;
Goldman et al., 2012). Compared with them, we mainly
contribute in three original points. Firstly, we introduce
a new hierarchical scheme for the portfolio resolution of
SAT in a cloud context. The parallel scheme is built
to run in a cloud-service deployed in a volunteer-like
cloud. The scheme includes two portfolio levels. At the
upper level, the scheme consists of portfolio execution
of parallel solvers that are run on cloud nodes. This
level also includes a planning engine for deciding on
the resource sharing schedule and an execution engine
that deploys the solvers on a cloud and watches their
execution to capture and react to messages, faults or
errors. The parallel solvers of the upper level are based
on an algorithm portfolio. More precisely, at the lower
level, a parallel solver execution consists of the run of
several distinct sequential SAT solvers in threads. Parallel

Swww . satcompetition.org.

solvers’ executions are done in containers. It is important
to note that we consider a cloud context where the
resources are not strictly dedicated to our parallel scheme.
Requests to a general cloud dispatcher must be done to
deploy parallel SAT solvers.

Our parallel scheme can be seen as a pure portfolio
of parallel solvers, run in clouds. The intelligence of
our parallelization is in the modeling of optimal resource
sharing to use between parallel solversi The optimal
resource sharing schedule in our model is obtained by
solving an NP-hard coverage problem similar to those
introduced by Goldman et al. (2012). As in that
work, the main assumption in the coverage problem
is that we can learn the optimal schedule from traces
collected in running solvers on a representative set of
instances. However, while Goldman et al. (2012) propose
to optimize resource sharing based on the average or
maximal runtime of the representative instances, in this
paper we propose to maximize the number of instances
that are solved within a time limit.

Our second contribution is to propose algorithms
for computing good resource sharing schedules in our
parallel scheme. The proposed algorithms are based on
the greedy resolution of the maximum coverage problem.
In some cases, we provide theoretical guarantees on their
quality. Finally, we evaluate the different algorithms we
propose for the computation of optimal resource sharing.
The experiments demonstrate that our algorithms largely
overpass naive solutions. In addition, some of them are
more competitive if we want to make a trade-off between
the quality of results and the runtime.

As mentioned before, there are several parallel
solvers proposed for SAT. A survey of the contributions
can be found in the works of Holldobler et al. (2011)
and Martins et al. (2012). Here, we focus on parallel
distributed algorithms.

The Dolius solver (Audemard et al., 2014) is a
parallel solver close to our target. It is based on a
master/slave model and combines the divide-and-conquer
and portfolio parallelism. The master starts its execution
in dividing the SAT formula and sending it to workers.
These later will process the formula with potentially
different types of SAT solvers (portfolio). The parallel
formulation we propose is close to the Dolius model.
However, we differ in two aspects: firstly, we do
not apply divide-and-conquer between workers to avoid
communication costs that this will lead to. The workers
in our model solve the same problem. Secondly, the
portfolio construction in our solution is based on a new
optimization model for resource sharing.

The remainder of this paper is organized as follows.
Section [2| develops our parallel scheme for SAT. The

4This modeling is the main difference compared with other pure port-
folio solvers like PPfolio.

www.satcompetition.org

Solving SAT in a distributed cloud: A portfolio approach

presentation includes the Qarnot cloud architecture.
In Section M we discuss algorithms for computing
approximated or near-optimal resource sharing schedules.
Section[3]is devoted to an experimental evaluation, and we
conclude in Section|[6]

2. Architecture

The Qarnot computing architecture is an Internet
computing architecture whose main computing nodes are
Q.rads. A Q.rad is a heater (~ 500-700 W) whose heat
sink consists of embedded microprocessors (in general
3—4 Intel i7 or AMD Pro-Rizen). Totally silent and
based on free cooling, Q.rads belong to the category
of data furnace servers disrupting volunteer computing,
distributed cloud computing and edge computing (Ngoko
etal., 2018).

Qarnot developed Q.ware, a distributed cloud
computing middleware that operates on top of Q.rads.
Q.ware distinguishes two types of customers: those
interested in heating (hosts of Q.rads) and those interested
in distributed cloud computing (Internet customers). The
main goal of Q.ware is to use the distributed computing
requests for providing heat, where necessary, through
Q.rads. One challenge in Q.ware is that the arrival
law of heating requests will not necessarily follow the
demand in computing. To cope with this difficulty, Q.ware
uses several mechanisms, including the outsourcing to
third party platforms, the reduction of Q.rad power
consumption or the run of scientific/cryptocurrency
mining workloads (Ngoko et al., 2016) (when there are
not enough computations).

Qsat was designed as a cloud-service for Q.ware. To
understand its functioning, it is important to have basic
notions regarding Q.ware. In this section, we briefly
introduce the Q.ware general processing architecture.
Then, we explain how Qsat interacts in this architecture.

2.1. Q.ware architecture. Going into details, Q.ware
implements a decentralized computing architecture made
of geo-distributed compute clusters connected to the
Internet. The middleware was designed for batch and
bare-metal processing with containers (mainly Docker).
In Fig. [l we describe an abstract view of the main
components of a compute cluster.

In such a cluster, a distributed process will generally
be triggered by a request sent by an Internet customer.
The request can be of two types. Firstly, there are general
computing requests; they ask to deploy a container or a set
of containers that are not related to any Q.ware service.
Here, we will typically have public Docker containers.
General computing requests are routed towards a REST
API server. The second type of requests covers those
that are related to a cloud-service supported by Q.ware
(in Fig.[1l service.d denotes such a service). An example

of a cloud-service in Q.ware is the Qarnot 3D rendering
service. Such requests are sent to the front-end server of
the related cloud-service.

Whatever the request, its processing (at REST
API or service.d) will consist of (i) creating a set of
computational tasks and (ii) putting these tasks in the
scheduling queue of the Q.node of the compute clusters
in which we are. Here a task denotes an abstraction that
mainly refers to a container environmentE a set of input
filedd and a command line to be executed on the input files
and in the environment.

The Q.node uses a scheduling agent to dispatch tasks
on Q.rads. For this purpose, the agent needs to have
the state of Q.rads in order to elect nodes that are more
suitable to receive computations (those where there is a
heating demand). The states of Q.rads are aggregated
through Q.boxes. These are servers that are typically
deployed in buildings where there are Q.rads. In general,
there is one Q.box per building and the Q.boxes are
connected to Q.rads through a local network. With the
states of Q.rads, the scheduling agent will use a greedy
principle to assign tasks to Q.rads. Such an assignment
will imply transferring the data of the task (environment,
input files) to the Q.boxes where the processing will be
done.

As already said, in the Qarnot platform, Service.d
will typically (but not only) correspond to the 3D
rendering service[l In our former work, we proposed
to implement a tuning engine for SAT following this
architecture (Ngoko et al., 2016). Next, we explain how to
implement service.d as a cloud-service for the distributed
resolution of SAT.

2.2. Overview of Qsat. The Qsat service consists of
two main components: a library and a server. The former
is to be used in the client part (Internet customer). It
provides functions for sending SAT computing requests
in an appropriate format. The SAT server includes a
front-end and a back-end for the processing of SAT
requests.

Requests sent to Qsat are received by the front-end
process. The front-end analyzes the request and, if there
is no anomaly, it puts it in the queue of the back-end
process. The back-end frequently monitors its queue to
check whether or not there are new data. If that is the
case, it uses a first come first served policy to process
the data. The processing of each request consists of (i)
creating a set of computing tasks for SAT processing, (ii)
submitting the tasks to the scheduling agent and, finally,
(iii) monitoring the execution. Our paper will not discuss
the Qsat library or the front-end server. Instead, we will
focus on the processing performed at the back-end level.

SThe repository of the container image is defined by the customer.
6The input files will generally be uploaded to a CEPH storage.
7https ://render.garnot.com/.

&

https://render.qarnot.com/

Y. Ngoko et al.

(Path to start computations) Internet

ontainers
repository

(0

Ceph
(storage)

Q.box
(Cache and scheduling)

| Q.rad | | Q.rad | | Q.rad |

Local Network

Rest API
(Https accesses ..)

Q.node
(Scheduler)

Service.d

Fig. 1. Main components in the processing of a requests by Q.ware.

2.3. Back-end processing. Back-end processing is
based on two engines: a planning and an execution one.
While the goal of the former is to decide on a plan for
solving SAT requests, that of the latter is to execute the
plan. A request received by the planning engine can be
defined as the triple r = (¢, m, T'). Here, ¢ is a CNF SAT
formula (Jackson and Sheridan, 2005), m—the maximal
number of computing nodes to use in the processing
and T—a timeout after which the processing will be
interrupted.

For servicing r, the planning engine, which will
compute a plan that consists of a set of tasks to deploy
within the time. The tasks specified in the plan are based
on a specific container image designed for Qsat. When
creating the plan, the planning engine does not consider
the real number of available computing nodes. It assumes
that there are m computing nodes that are available.

Once the plans are computed, they are sent to the
execution engine, which will create and submit tasks to
the Q.node (following the plan). The execution engine
will also frequently collect results from the deployed
tasks. After a maximal processing time of 7' units on
compute nodes, the result will be returned to the user.

The interest in defining a number of compute nodes
and timeout is that users pay per compute nodes and time
utilization. In the next section, we will provide a deeper
description of a plan.

2.4. Qsat plans. We define a plan as a special version
of a malleable resource sharing schedule (Goldman et al.,
2012). Below, we define such schedules.

Definition 1. (Resource sharing schedule) Consider
a computing machine with m homogeneous computing

resources. Let us also assume a set H of k parallel
heuristics solving the same problem. We define a resource
sharing schedule as a tuple S = (51, ..., Sk) such that

k
Z S < m.
i=1

Resource sharing schedules are used to combine
several heuristics solving the same problem (parallel
portfolio). Given a computational instance I to be solved
and a resource sharing schedule S, I is solved by a
concurrent run where each heuristic A; is started on I with
S; computing units. All the executions are halted as soon
as a heuristic finds a solution.

Definition 2. (Malleable resource sharing schedule)
Consider a computing machine with m homogeneous
computing resources. Let us also assume a set H of
k parallel heuristics. We define a Q-phase, malleable
resource sharing schedule as a tuple

r=[(S"7),...,(89)

where each S° is a resource sharing schedule and 71 > 0
is a time duration.

Resources h1, h2, h3 are interrupted
hl hl
h4
h2 h5
h2
h3 h3

L
Time

Fig. 2. Example of a malleable resource sharing schedule.

Solving SAT in a distributed cloud: A portfolio approach

(@-phase malleable resource sharing is used to
combine several resource sharing schedules for the
solution of a problem. At date 0, we start the execution of
the resource sharing schedule S*. If in the interval [0, 71] a
solution is found, then the execution is halted. Otherwise,
one continues with the execution of the resource sharing
schedule S2. If we do not have a solution at date 7Q, then
we state that there is no solution.

In Fig. @I we illustrate the run of a four-phase
schedule that combines 5 heuristics on m computing units.
In a malleable resource sharing schedule, each couple
(S*,7,) defines a phase. As one can notice, the same
heuristic can be be used in different phases (its number of
resources is not null in these phases). A question then is
to know if we will continue the execution. This will be
discussed further; for now, we can assume that we will
generally restart heuristics between phases.

A phase is characterized by two values: a starting
date and an ending date. The former is the date at
which we can start the run of any solver of the first.
The latter is the date at which there is at least one
solver of the phase that is interrupted. In the schedule
I =[(SY7),...,(S9, 70)], the starting date of the u-th
phase is >1'~ ' 7; and the ending date is 1, 7.

A Qsat plan is a malleable portfolio schedule. But
the inverse is not true. Indeed, in Qsat plans, we consider
the following additional rules.

1. We assume that the computing units consist of
multi-core processors.

2. We define H as a set of multi-core CDCL solvers.
The solvers are based on a parametric version of
the Penelope solver (Audemard et al., 2012). In
the classical version, for 8 threads, Penelope uses a
specific selection of sequential SAT solvers that are
concurrently parallelized with OpenMP directives.
In the parametric version we created, one can
dynamically define the selection of SAT solvers to
be used. In addition, we created a Docker image for
this version in order to be able to run it on the Qarnot
cloud.

3. On each computing unit, we strictly assign at most
one solver. This means that S, € {0,1}.

4. We assume an input deadline 7" that defines the
timeout for the processing of any instance. This

means that
Q
Z Tq < T.
q=1

Equipped with these definitions, we can summarize
the processing in Qsat as follows. Given a request r =
(¢, m,T), the planning engine will compute a schedule

I =[(SY7),...,(S9 7g)] such that

Q
ZTq <T
g=1

and

k
vSH> S < m.
i=1

The schedule of Fig. [2]is not a Qsat plan. This is
because some heuristics have more than one computing
unit. In Fig.[3] we illustrate a simplified process view of
the resolution of a SAT instance. Here, we assume that we
have a 1-phase schedule and m = 3 computing units.

A more complex plan is considered in Fig. dla).
This plan describes a concurrent execution of 9 parallel
CDCL solvers (P;—Py) within the time. Given this
schedule, the execution engine will proceed as follows.
Firstly, it will create three tasks, each corresponding to
the CDCL solvers Py, P3, Ps, and we will submit them to
the scheduling agent. Three containers will be deployed
to run the CDCL solvers. After a maximal duration of ¢1,
the execution engine will interrupt the three running tasks.
If before this date a solver finds a solution, the others will
be interrupted; otherwise, the execution engine will wait
for the deadline t;. If no solution is found, the execution
engine will next create and submit three other tasks, each
corresponding to the run of P», P, and Ps. These tasks
will run until a deadline set to t5 — t + 1. If we still do not
have a result, the process will be repeated for the last three
sets of portfolio solvers. Once a solver finds a solution or
after the timeout, the execution engine collects the results
and returns them.

As already stated, the CDCL solver we consider
corresponds to a parametric version of the Penelope
solver, and is a multithreaded portfolio solver for SAT.
Consequently, there are two levels of concurrency in a
Qsat plan. The upper level, where we have a concurrent
execution of parallel solvers, and the lower, where there
are multithreaded executions of SAT solvers.

It is important to note that, due to the overhead
induced by resource management, the execution of the
resource sharing model described in Fig. M(a) may
correspond to what is depicted in Fig. d(b). This is due
to the fact that the scheduling agent must find free nodes
before deploying submitted tasks. An important issue for
the execution engine is, given ¢, to decide on the effective
date ¢} at which it will submit a task for the execution
of P». In our implementation, we propose to adopt an
opportunistic rule: As soon as the execution of a paral-
lel solver P; is ended, the execution engine submits the
solver P! that follows P; according to the ordering de-
fined in the resource sharing schedule. In doing so, we
do not apply the deadline ¢; to a phase but, individually,
to the solvers. Thus, solvers of different phases can run

amcs % Y. Ngoko et al.
Receive r = (¢, m, T)
Creation of a plan
Start the plan on
—_— — 'm computing nodes
[coCL solvers e
in container
| Processing until a solution is found
or the timeout T is reached
- Gathering results
Fig. 3. Simplified execution graph of Qsat with 3 processors (4 cores each).
Resources Resources
| — — — =
Ve N\ Team
Py P, Py — Py Py Py
\\ |/
Ps Py] Ps Ps Pa P
Py P4 P3 P5 PG PQ
> ty to t3 ~.
t1 to t3 Time Time

(a) theoretical resource sharing schedule

(b) practical execution

Fig. 4. Example of resource sharing schedules with three 9 parallel solvers.

concurrently, which will differ from the original resource
sharing. In all cases, however, if a solver finds a solution,
we interrupt the executions.

The execution engine also supports a fault-tolerance
mechanism whose idea is simple: if the execution of
a solver fails, it is restarted automatically. Thus, our
parallelization ensures that, even when faults occur, the
whole processing is not necessarily penalized: we have
independent parallel solvers; the failure of one will not
damage the other runs.

We have explained the concept of a Qsat plan and
its execution. To end this section, we propose to consider
the notion of a team, which we will use in the design of
malleable resource sharing schedules.

2.5. Solver deployment and teams. Until now, we
have assumed that heuristics are restarted between phases.
In Fig.[2] this means that between the first and the second
phase, we restart hg. In practice, however, this might
not be a good option. Indeed, if the solvers are not
randomized, it is not interesting to halt the execution on
a compute node for restarting again the same solver on
the same computing units. The general rule that we will
adopt in the execution engine is that if between consecu-
tive phases there is a solver on one computing unit, we do
not restart it, but we continue the execution.

The question of restarting is related to another
problem we have not discussed: in each phase, on which
computing units do we deploy each server? Let us note
that given S} = 1, we have m distinct computing units
on which we can start the heuristic ;. To address the
question of the deployment, we propose the following
rule: if between consecutive phases there is a solver on
one computing unit, we ensure that the solver will not
be restarted. Otherwise, we randomly pick the computing
unit of any solver.

With these considerations, we can then
see a malleable resource sharing schedule I' =
[(SY,71),...,(59,70)] as a tuple I" = (a1,...,qm),
where each «; corresponds to the assignment of heuristics
that we will have on the computing unit . In other words,
a malleable resource sharing schedule with () phases is
a set of malleable schedules on its different computing
units. In this projection, we will call each «; a team. In
Fig.[la), we provide an example of a team with 3 phases.
At each time instant ¢ € [0, > 7], we assume that «;(t)
defines the solver that is run. For the team that we refer to
in Fig.EKa), 041(0) = P1 and a1 (tl) = P2

We end here the presentation of the Qsat architecture.
Next, we will discuss the algorithmic design of Qsat plans.

Solving SAT in a distributed cloud: A portfolio approach
r=(¢,m,T) ~

Similarity
subset selection

Representative instances

1.0y ®n

Computation of
alleable sharing

<8

Fig. 5. Stages in the generation of a malleable schedule.

3. Generation of plans

3.1. Overview. To generate plans, the planning engine
uses a basis Z of SAT instances. Z defines the know-how
of the engine on the resolution of SAT. For any portfolio
solver P; € ‘H and any computational instance I, this
know-how is modeled by two values: cost(P;,I) and
cover(P;,t). While the former is the average running
time required by P; to process I, the latter is the subset
of Z that can be solved by P; in spending at most ¢ time
units. cost(P;, I) and cover(P;,t) are estimated in an
off-line setting, when there is no request sent to Qsat. By
definition, cover(P;,t) is computed from cost(P;, I).

Both cost(P;,I) and cover(P;,t) are used in the
decision on the most suitable malleable resource sharing
schedule. More precisely, given a request r = (¢, m, T),
the planning engine will start by computing the subset
$ C T of the n instances that are most similar to [
(similarity is discussed further on). For this purpose, a
distance function is used. Here, n is an internal parameter
of Qsat. From the running times cost(P;, I)i=1,. .k 1e1.
the planning engine then builds the malleable resource
sharing schedule that minimizes the maximal running
time in the resolution of any instance in ®.

The two stages described below are illustrated in
Fig.l5l To compute the similarity between SAT instances,
any SAT instance is also described as a set of features,
represented as a multi-dimensional real vector. The
dimensions correspond to different measures, like the
number of variables of the SAT instance, the number
of clauses, the number of variables per clauses, etc.
Generally, the different measures of this vector correspond
to a subset of the features used in the Satzilla solver (Xu
et al., 2008). Given the feature representation of SAT
instances, the similarity between them is computed with
the Euclidean distance: the lower the distance between
two instances, the more similar they are.

3.2. Computation of resource sharing schedules.
Once the subset ® is determined, the planning engine
generates the resource sharing schedule by solving the
following problem:

INPUT: We assume a finite set of solvers H, a request
r = (¢, m,T) and the set of representative instances ®.

Ateach discrete time unit¢ € {1,...7'}, we have for each
P; € H the values of cover(P;, t).

QUESTION: Let I'(#, T') be the set of resource sharing
schedules whose maximal timeout is 7'. For each schedule
IV € T(H,T), let cover(IV) C & be the subset of
instances for which the run of I'V can state whether or not
we have a satisfiability result in at most T time units. The
objective is to choose the schedule I'*P* such that

opt =arg max _ |cover(IV)|.

1<G<|T(H,T)|

This computational problem is inspired by the
discrete resource sharing problem (dR.SSP) introduced
in a prior work (Goldman et al., 2012). However, it
completely differs from our prior problem formulations,
where we focused on the minimization of the running
times. We adopt this formulation because it is more
suitable for a cloud context where users are more
interested in putting maximal time limits for the execution
in order to minimize the price to pay.

The idea in this problem formulation is to choose the
plan that can solve the maximum number of ® instances
within 7" time units. This is motivated by the fact that,
if ¢ is similar to ®, then we are computing a schedule
that will maximize the probability to have an answer for r
before T time units. The NP-hardness of the problem can
easily be established from a reduction to the maximum
coverage problem (Hochbaum and Pathria, 1998). In
the next section, we will consider the resolution of our
resource sharing problem.

4. Heuristics for approximating optimal
resource sharing

We address the resource sharing problem with the
multi-phase approach introduced by Goldman er al.
(2012). In this approach, instead of considering all
possible schedules, we restrict the solution to a subset
of schedules that we refer to as phase-schedules. For
such schedules, we assume a maximal number of phases
for resource sharing schedules. The optimal solution is
found in an iterative process where local optimizations are
used to build phases. The design of phase-schedules is
discussed in subsequent sections.

&

s\

Y. Ngoko et al.

4.1. 1-Phase schedules. We define a 1-phase schedule
as a schedule I' = (a4, ..., ;) on which the following
rule is satisfied: V¢, ¢ € {1,..., T}, a;(t) = a;(t').

If we restrict the resource sharing problem of
Section 3.2 to 1-phase schedules, then the resulting
computational problem can be mapped onto the maximum
coverage one (Hochbaum and Pathria, 1998). Indeed, an
instance of the maximum coverage is given by an integer k
and a collection of sets C' = {C", ..., C},, }. The objective
is to select at most k sets C’ such that |Uc,;EC/Ci| is
maximized. The mapping with the design of a 1-phase
schedule is simple. Given any resource sharing schedule
I = (a1,...,Qm), it suffices to assume that, in each
team «y, there is a unique solver P, € H that is always
executed. We then build the optimal schedule I'°?* by
selecting the subset of m solvers Py, ..., P, for which
|UP{ cover(P/,T)| is maximized.

Let us assume that ¢ = |H| and n = |®|. Thus we
have the following result.

Theorem 1. There is an 1 — 1/e approximation of the
optimal 1-phase schedule in O(ngm).

The proof follows from the fact that the greedy
algorithm for maximum coverage has this approximation
ratio.

4.2. 2-Phase schedules. In a 2-phase schedule, there
exists at most one date at which the solver of a team
is switched. In Fig. [6l we provide an illustration of
such a schedule. 2-phase schedules generalize 1-phase
ones. Nevertheless, we propose to approximate optimal
2-phase schedules in using again the greedy solution for
the maximum coverage problem. The main observation
that supports this view is that we can again formulate
the construction of the optimal 2-phase schedule as the
solution of a maximum coverage problem.

Indeed, let us consider a 2-phase schedule I' =
(a1,...,0u,). By definition, there might exist a date ¢
where, for a team «;, «;(t) # «;(t + 1). We capture
this with the notation a; = [(P,1,t,1)(P,2,T)]. It states
that the execution of «; consists in rulnninglthe solver P,
from O to ¢,1 and then running P,2 from ¢,1 + 1 to T.
In the case where t,r = 0, we have a 1-pha§e schedule.
With this basis, we pfopose a process with four stages for
the design of 2-phase schedules.

The first stage of the process consists of generating
all the possible combinations with the structure
[(Parstar)(Paz,T)]. Each of these combinations
corresponds to a potential team execution. Let H? be the
set of combinations we generated. In the second stage,
we compute the instances that each [(P,1,%,1)(Paz, T)]

solves. For this, we use the formula

cover([(Pa1,ta1)(Paz, T)))
= cover(Py1,to1) Ucover(Pyz, T —to1 +1).

In the third stage, we iterate over the possible ending
dates of the first phase and apply the greedy algorithm
of the maximum coverage one. More precisely, at the
iteration ¢ € {0, ..., T} in this stage, we select the subset
H2(t) defined by the schedules [(P,1,t,1)(P,z2,T)] such
that ¢,1 = ¢. Given these schedulesz we next address the
local pfoblem of choosing the m schedules (each schedule
is run by a team) of this subset that collectively ensure that
a maximum number of instances are covered. From the
result of the prior section, one can notice that this local
problem corresponds to the maximum coverage problem
restricted to #2(t). In the last stage of the algorithm, we
choose over all possible ending dates (for the first phase),
the schedule that leads to the maximal coverage.

It is easy to notice that the theoretical guarantee of
the greedy resolution of the maximum coverage problem
will characterize the process we describe. On the contrary
to the construction of a 1-phase schedule, the time
complexity of the process is more important because we
have more schedules to explore.

We proposed to build 2-phase schedules in solving
several 1-phase scheduling problems. After the
computation of H2, we iterated over the ending dates of
the first phase because in 2-phase schedules we have at
most one ending date where the schedule of any team is
changed. In practice, it might be interesting to consider
situations where phases are not related to all teams but are
to be considered per team. This means that we could have
two teams for which the ending date of the first phase is
different. We will name such schedules extended 2-phase
schedules. One interest in such schedules is that we could
use a simplified version of the previous process for their
design. This is discussed below.

4.3. Extended 2-phase schedules. For the design
of extended 2-phase schedules, we consider the
following stages: (i) generation of possible combinations
[(Pyi,ta1)(Py2,T)], (i) computation of the instances
that each [(P,1,t,1)(P.2,T)] solves and (iii) selection
of the m schedules (améng the generated ones) when
covering the maximal number of instances. This stage
is achieved with the greedy algorithm of the maximum
coverage problem.

For the generation of all possible combinations
[(Par,tq1)(Py2,T)] (where t,» € {0,...,7} and
P ,LPag ‘e 73): we propose to use a brute force approach.
In the worst case, this will lead us to

> ()

Solving SAT in a distributed cloud: A portfolio approach

Py Py

Py Py Py

Ps

P3

Ps Py

Py Py

Ps Ps

1-phase

2-phase

extended 2-phase

Fig. 6. Examples of schedules.

combinations. Therefore, we have the following result.

Theorem 2. There is an 1 — 1/e approximation of the
optimal extended 2-phase schedule in O(ng*Tm).

The interest in extended 2-phase schedules is that,
though they generalize 2-phase schedules, we have for
their construction a simplified process. Indeed, after
the generation of candidate schedules that can be run in
teams, we do not need to iterate over ending dates before
applying the greedy algorithm. As we will see in the
experiments, this can lead to a significant runtime gain.
In the next section, we will consider the case of k-phase
schedules, k > 2.

4.4. k-Phase schedules. The solution we proposed
for 2-phase schedules can be generalized to k-phase
schedules. We will thus have up to O(¢*T) possible
schedules per team. This might be too much to store
in memory. Below, we propose an alternative based on
dynamic programming.

4.4.1. Principle. The dynamic programming solution
operates on a two-dimensional array sol(:) of k x T
entries. The dimensions of the arrays are the duration
of the schedule and the number of its phases. An entry
sol(h, t) refers to the best local solution that uses h phases
and is run until the maximal date ¢. In the first iteration
of the algorithm, we build the column sol(1,:). In the
second, we build sol(2,:) and we repeat until we have
sol(k,:). The column sol(1,:) is computed by applying
the greedy algorithm for 1-phase schedules with different
values of the maximal runtime. The second column refers
to 2-phase schedules. However, we do not generate it
from the greedy algorithm we defined in Section E.2]
Instead, we use a completion algorithm that computes any
sol(h,t) from sol(h — 1,t). The idea of this algorithm
is to complete schedules obtained at phases h — 1 with a
supplementary phase that ends at date ¢. An illustration
of the dynamic programming execution is given in Fig.
We will now focus on the completion algorithm.

4.4.2. Completion algorithm. At the iteration u €
{1,...,T} of the dynamic programming algorithm, let
us assume that the objective is to build sol(h,u). The
completion algorithm will start by selecting the local
solutions sol(h — 1,t), where ¢t < w. Then, the algorithm
computes the set of instances solved by this local solution
and removes them from ®. Let ® be the remaining
instances. The iteration continues with the updates of
the values of cover(P;,t) for instances in ®'. The
update task consists in reducing from the P;s runtime the
processing time already invested in sol(h — 1,¢). Finally,
the completion algorithm runs the 1-phase approximation
algorithm for finding the best phase-schedule to process
&’ assuming the updated runtime. The resulting 1-phase
schedule is added as a supplementary phase at the end of
the execution of sol(h — 1,t) and saved as sol(h,u,t).
For deriving sol(h,w), the completion algorithm iterates
over different values of ¢ < w and returns the schedule
sol(h,u) = sol(h,u, opt) such that

|cover(sol(h,u, opt))|

= rgl<ax{|cover(sol(h —1,u,t))|}.

We end here the presentation of the resource sharing
algorithm used in Qsat. In the next section we report an
experimental evaluation of the algorithms.

5. Experimental evaluation

We report two series of experiments. The objective
in the first one is to compare the quality of results
of the different resource sharing algorithms. In the
second series, we are interested in estimating the runtime
overhead of the execution engine. It is important to note
that the different algorithms we consider are implemented
in the Qsat planning engine. However, for the sake of
reproducibility, in this section we will present the results
of their simulation on a public SAT benchmark.

5.1. Comparison of the resource sharing algorithms.
These experiments consisted of simulations based on the

Y. Ngoko et al.

1 h k
sol(1,1) sol(h — 1, 1) sol(h, 1) sol(k, 1)

sol(h, t) is built
sol(1}2) sol(h — 1,2) 50[(}172) n applyTng the . sol(k, 2)

completion algorithm

onsol(h —1,1)..

sol(h — 1,t)

sol(h — 1,t) sol(h, t)

sol(1,T) sol(k,T)

t

Column generated at iteration h

Fig. 7. Dynamic programming. The element sol(h,t) is generated at iteration h of the algorithm. Its computation is based on the first

t elements of the column h — 1.

Table 1. Experimental plan.

| Ref. | Parameters

Cl1 name = Core_Solvers_Parallel_Application SATUNSAT, n = 300, ¢ = 12

C2 name=Core_Solvers_Parallel_Hard-combinatorial SATUNSAT, n = 300, ¢ = 10

C3 name = Parallel_Application_SATUNSAT, n = 300, ¢ = 14

C4 name = Parallel_Hard-combinatorial SATUNSAT, n = 300, ¢ = 14

C5 name = Paralle]_ Random_SAT, n = 225, ¢ =6

| Exp. | Parameters

exp.1

T = 500, m = 4, instances and portfolio solvers: C1-C5

exp.2 | T'= 1000, m = 4, instances and portfolio solvers: C1-C5
exp.3 | T'= 2000, m = 4, instances and portfolio solvers: C1-C5
exp.4 | T = 500, m = 5, instances and portfolio solvers: C1-C5

exp.5 | T'= 1000, m = 5, instances and portfolio solvers: C1-C5
exp.6 | T'= 2000, m = 5, instances and portfolio solvers: C1-C5

data of the 2013 international SAT competitionﬁ The
selected data are the results of 5 parallel SAT competitions
whose names and settings are given in Table[Il The values
chosen for T capture the median CPU times of the best,
average and worst solvers of the competition. The values
of m were chosen to obtain solutions of the dynamic
programming algorithm in reasonable computing times.
Within these results, for each competition, we have
the runtime measured by evaluating a finite set of SAT
instances with a finite set of parallel SAT solvers. For
the simulation, we assumed that, in each competition,
the evaluated parallel SAT solvers are our set of solvers
(H) and the instances used for the evaluation are the
representative data from which we want to build an
optimal resource sharing schedule. Then, we performed 6
experiments, where we estimated the runtime and quality

8http://Satcompetition.org/edacc/SATCompetitio
n2013.

of the results of the resource sharing heuristics proposed
in this paper. In each experiment, for the resource sharing
problem to be solved, we fixed values of 1" and m. The
choices are summarized in Table[Il Finally, by the quality
of results for a heuristic, we mean the ratio between the
number of instances that the heuristics can solve (for
the resource sharing problem considered) versus the total
number of instances.

In Fig. [8] we present the quality of the results
observed in the different experiments. Here, dp(k) refers
to the run of the dynamic programming algorithm for
k-phase schedules. Here rand refers to the random
1-phase schedule that we build in randomly choosing the
m portfolio solvers. The quality of results is the mean
value obtained from 300 runs.

Regarding the quality of results, one can notice that
the greater the value of T, the higher the quality of results.
This is expected since, the greater 7', the more instances

http://satcompetition.org/edacc/SATCompetition2013
http://satcompetition.org/edacc/SATCompetition2013

Solving SAT in a distributed cloud: A portfolio approach

Ratio of solved instances

Ratio of solved instances

Ratio of solved instances

0.6

0.4

03

0.2

0.1

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0.8

0.7

0.6

0.5

0.4

03

0.2

0.1

07

"rand m— "rand m—
gr-1-phase 4 gr-1-phase
gr-2-phase mm— gr-2-phase s
gr-ext-2-phase m— 06 t-2—_ph: —
dp(3) m— dp(3) me—
dp(4) dp(4)
dp(5) m—| dp(5) m—
0.5 —
@
3
g
s
2 o4
9
B
3
5 03
2
T
i3
0.2
0.1
0
9] c2 c3 c4 Cs C1 c2 c3 Ca C5
Competitions Competitions
(a) ratio expl (b) ratio exp2
T T T 0.8
- 0.7
0.6
@
8
E 0.5
£
°
2 o4
3
k]
£ o3
T
4
0.2
0.1
0
C1 c2 c3 C4 C5 C1 c2 c3
Competitions Competitions
(c) ratio exp3 (d) ratio exp4
T 0.8 T T T
rand m—
gr-1-phase
gr-2-phase e g
gr-ext-2-phase w7 0.7 ext-2-phase mmm— |
dp(3) m— dp(3) m—
dp(4) dp(4)
dp(5) mem— 0.6 dp(5) m—
]
g o5 i
s O
£
°
2 o4
3
5
£ o3
5
4
0.2
0.1
0
C1 c2 c3 C4 Cs5 C1 c2 c3 Cc4 C5
Competitions Competitions
(e) ratio exp5 (f) ratio exp6

Fig. 8. Quality of results of the different heuristics.

Runtime

Runtime

Runtime

10000

1000

100

0.1

0.001

0.0001

10000

1000

100

0.001

0.0001

10000

1000

100

0.1

0.01

0.001

0.0001

10000

1000

T
Runtime

E 0.1

= 0.001

0.0001

c1 c2 c3 C4 C5 c2 c3 C4
Competitions Competitions

(a) runtime expl (b) runtime exp2

Cs

Y. Ngoko et al.

10000

1000

100

E 0.001 |

Runtime
T

0.0001
] c2 c3 c4 Cc5 c1 c2 c3 c4

Competitions Competitions

(c) runtime exp3 (d) runtime exp4

Cc5

10000

I 1000 I

I 100

10

Runtime
T

0.1

0.01 |

0.001

0.0001
c2 c3 c4 Cc5 c1 c2 c3 c4

Competitions Competitions

(e) runtime exp5 (f) runtime exp6

Fig. 9. Runtime of the heuristics (in seconds; we consider the heuristics of Fig. [§).

Cc5

Solving SAT in a distributed cloud: A portfolio approach

we can solve. We also observed the same trend on the
value of m, but the progression was less significant.

The second lesson of these experiments is that there
is a clear difference between the random construction of
the schedules and the other heuristics we proposed in
this paper. This justifies the algorithmic contributions we
made in this paper. Nonetheless, the difference is more
effective on the competitions C1 and C4 than C5. This is
because there is less performance diversity in C5: solvers
in this competition were in most cases unable to solve the
input SAT instances.

The third lesson is that, in general, the greater the
number of phases, the better the quality of results we
could expect. This was predicted, but the performance
variations we observed were not important.

The fourth lesson we learned is that if dynamic
programming was more efficient in terms of the quality
of results, its runtime made it hardly exploitable in
an online setting. As show in Fig. [0l generating
dynamic programming solutions took several hours. In
comparison, the greedy heuristics (and in particular the
greedy-1-phase) were more competitive. Regarding the
runtime, let us mention that the measurements were done
with Qsat.

Summarizing, these experiments show that the best
options for the implementation of (Jsat consist in using
the greedy 1-phase algorithm or the extended 2-phase
solution. Indeed, on representative SAT data (extracted
from the official SAT competition), these two heuristics
take only few seconds for generating solutions that are
competitive in terms of quality. In addition, we could not
tolerate a huge runtime in the determination of the optimal
resource sharing schedule since, in the request/answer
model we considered, the user expects a solution in a
maximal runtime. This conclusion, however, does not
mean that the other heuristics could not be interesting
in some cases. For instance, if we consider instead a
setting where the optimal resource sharing schedule is to
be computed offline (as in the work of Goldman et al.
(2012)), these later solutions could be exploited since we
could have enough time for building the optimal results.

6. Conclusion

In this paper, we introduced a new distributed service
for the resolution of SAT. The proposed service is based
on an algorithm portfolio. It features two components:
a planning engine, which computes an optimal plan (or
resource sharing) for the parallelization, and an execution
engine, which runs this plan. Both the engines work
with a resource sharing model that we introduced in
our prior work (Goldman et al., 2012), but not for a
distributed cloud context. In particular, we explained
how to transform a resource sharing schedule into a pack
of docker containers. Moreover, we introduced novel

algorithms for the generation of near-optimal resource
sharing schedules. We also proposed an experimental
evaluation where we analyzed the quality of results and
the runtime of our algorithms. The results showed that
some of the proposed algorithms have a better trade-off
between the quality of results and the runtime.

For continuing this work, we intend to introduce
rescheduling in @sat. As stated before, the schedule
submitted by @Qsat will not always be executed as is done
by the Qarnot scheduler. For handling these cases, a
good approach consists in enhancing the execution engine
in Qsat for detecting deviations in the execution of the
resource sharing schedule. Once these deviations are
identified, a rescheduling process will be launched.

Acknowledgment

This work was funded by the Greco projectﬁ of the French
National Agency for Research (ANR).

References

Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M. and
Piette, C. (2012). PenelLoPe, a parallel clause-freezer
solver, SAT Challenge 2012: Solver and Benchmarks De-
scriptions, Helsinki, Finland, pp. 43-44.

Audemard, G., Hoessen, B., Jabbour, S. and Piette, C. (2014).
Dolius: A distributed parallel SAT solving framework, 5th
Pragmatics of SAT Workshop POS-14, Vienna, Austria,
pp. 1-11.

Biere, A. (2010). Lingeling, plingeling, PicoSAT and PrecoSAT
at SAT Race 2010, Technical report, Johannes Kepler
University, Linz.

Chrabakh, W. and Wolski, R. (2003). Gridsat: A
Chaff-based distributed SAT solver for the grid, Pro-
ceedings of the 2003 ACM/IEEE Conference on Super-
computing, SC’03, Phoenix, AZ, USA, pp. 37-50, DOI:
10.1145/1048935.1050188.

Goldman, A., Ngoko, Y. and Trystram, D. (2012). Malleable
resource sharing algorithms for cooperative resolution of
problems, Congress on Evolutionary Computation World

Congress on Computational Intelligence, Brisbane, Aus-
tralia, pp. 1438-1445.

Hochbaum, D.S. and Pathria, A. (1998). Analysis of the greedy
approach in problems of maximum k-coverage, Naval Re-
search Logistics 45(6): 615-627.

Holldobler, S., Manthey, N., Nguyen, V.H., Stecklina, J. and
Steinke, P. (2011). A short overview on modern parallel
SAT-solvers, 2011 International Conference on Advanced
Computer Science and Information System (ICACSIS),
Jakarta, Indonesia, pp. 201-206.

Jackson, P. and Sheridan, D. (2005). Clause form conversions for
boolean circuits, Proceedings of the 7th International Con-
ference on Theory and Applications of Satisfiability Test-
ing, SAT 04, Vancouver, BC, Canada, pp. 183-198.

ghttps ://anr-greco.net/\

& -

https://anr-greco.net/

amcs%

Y. Ngoko et al.

Kautz, H. and Selman, B. (2007). The state of SAT, Discrete
Applied Mathematics 155(12): 1514-1524.

Martins, R., Manquinho, V. and Lynce, 1. (2012). An overview
of parallel SAT solving, Constraints 17(3): 304-347.

Ngoko, Y., Saintherant, N., Cérin, C. and Trystram, D.
(2018). Invited paper: How future buildings could redefine
distributed computing, 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops, IPDPS
2018, Vancouver, BC, Canada, pp. 1232-1240.

Ngoko, Y., Trystram, D., Reis, V. and Cérin, C. (2016). An
automatic tuning system for solving NP-hard problems in
clouds, 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops, IPDPS 2016, Chicago,
IL, USA, pp. 1443-1452.

Roussel, O. (2011). Description of Ppfolio, https://www.c
ril.univ-artois.fr/~roussel/ppfolio/so
lverl.pdfl

Silva, J.a.P.M. and Sakallah, K.A. (1996). GRASP—a new
search algorithm for satisfiability, Proceedings of the 1996
IEEE/ACM International Conference on Computer-aided
Design, ICCAD’96, San Jose, CA, USA, pp. 220-227.

Vardi, M.Y. (2014). Moore’s law and the sand-heap paradox,
Communications of the ACM 57(5): 5-5.

Xu, L., Hutter, F., Hoos, H.H. and Leyton-Brown, K. (2008).
Satzilla: Portfolio-based algorithm selection for SAT, Jour-
nal of Artificial Intelligence Research 32: 565-606.

Zhang, H., Bonacina, M.P. and Hsiang, J. (1996). PSATO:
A distributed propositional prover and its application to
quasigroup problems, Journal of Symbolic Computation
21(4-6): 543-560.

Yanik Ngoko received his BSc in computer science from the Univer-
sity of Yaoundé I (UYI), Cameroon, his MSc in parallel and numerical
computing also from the UYI, and his doctorate in computer science
from the Grenoble Institute of Technology, France (2010). From 2011
to 2014, he was a postdoctoral researcher, first at the university of Sao
Paulo and then at the University of Paris 13. Since October 2014, he has
been a research scientist at Qarnot Computing and an associate member
of the Computer Science Laboratory of Paris Nord (University of Paris
13). His research interests include parallel and distributed computing,
web services, cloud computing, and applications of edge computing to
IoT.

Christophe Cérin has been a professor of computer science at the Uni-
versity of Paris 13, France, since 2005. In 2015, he was involved in
an infrastructure project related to big data and high performance com-
puting for e-sciences for Paris-Sorbonne University. At Paris 13, he
chairs the board for the cluster computing facility available to all cam-
pus scientists. His current industrial experience includes serving as a
local chair for the Wolphin project (Alterway, Gandhi, Objectif Libre
and Paris 6). His recent industrial experience has been for the Wendelin
and Resilience projects related to cloud and big data. He is also active
with RSU (Reéves de Sceénes Urbaines—industrial demonstrator for sus-
tainable cities), Qarnot Computing and Umanis. His research focuses on
high performance computing, including grid and cloud computing, and
he develops middleware, algorithms, tools and methods for distributed
systems.

Denis Trystram has been a professor of computer science at the Greno-
ble Institute of Technology since 1991 (now a distinguished professor).
He was a senior member of Institut Universitaire de France from 2010
to 2014. In 2011 he obtained a Google research award for his contri-
butions in the field of multi-objective optimization. Denis is leading a
research group on optimization of resource management for parallel and
distributed computing platforms in a joint team with Inria. Since 2010,
he has been the director of the international Master program in com-
puter science at the University of Grenoble Alpes. He has been recently
elected the director of the research pole in maths and computer science
in that university.

Received: 26 July 2018
Revised: 10 February 2019
Accepted: 2 March 2019

https://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf
https://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf
https://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf

	Introduction
	Architecture
	Q.ware architecture
	Overview of Qsat
	Back-end processing
	Qsat plans
	Solver deployment and teams

	Generation of plans
	Overview
	Computation of resource sharing schedules

	Heuristics for approximating optimal resource sharing
	1-Phase schedules

	2-Phase schedules

	Extended 2-phase schedules

	k-Phase schedules

	Principle
	Completion algorithm

	Experimental evaluation
	Comparison of the resource sharing algorithms

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

