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CURVE SKELETON EXTRACTION VIA K–NEAREST–NEIGHBORS BASED
CONTRACTION
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We propose a skeletonization algorithm that is based on an iterative points contraction. We make an observation that the
local center that is obtained via optimizing the sum of the distance to k nearest neighbors possesses good properties of
robustness to noise and incomplete data. Based on such an observation, we devise a skeletonization algorithm that mainly
consists of two stages: points contraction and skeleton nodes connection. Extensive experiments show that our method
can work on raw scans of real-world objects and exhibits better robustness than the previous results in terms of extracting
topology-preserving curve skeletons.
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1. Introduction

The curve skeleton is a 1D representation which captures
the essential topological invariant of 3D models. Due to
its property of topology preserving (Cornea et al., 2007),
the curve skeleton has been widely applied in animated
cartoon, shape registration, 3D reconstruction, and many
other fields. The unorganized point cloud is the most
often used model for capturing the shape of real-world
objects. Therefore, extracting the curve skeleton from an
unorganized point cloud is an important research topic in
computer graphics.

The challenges in skeleton extraction are mostly
discussed in three aspects: noise, heavy data occlusions
and non-uniform points distribution. Until now a large
number of algorithms have been proposed to overcome
these challenges (Sharf et al., 2007; Tagliasacchi et al.,
2009; Huang et al., 2013). Their effort makes it possible to
extract the correct skeleton from a point cloud with large
amounts of missing data and noise. However, we notice
that there are some problems with the existing work. First,
there still remains some space for improvement in the
extract topology-preserving skeleton on low-quality point
clouds. On the other hand, it takes too much running time
for existing algorithms to extract a curve skeleton from the
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point cloud which has too many points.
In this paper, we introduce our key observation that,

once the point cloud has a uniform density, the local
center, which is obtained via optimizing the sum of the
distances to k nearest neighbors, shows good robustness
to noise and missing data. Meanwhile, such a contraction
process takes fewer iterations than L1-median based
optimization. Based on such an observation, we propose
a fast and novel skeletonization algorithm consisting of
two steps. First, in order to obtain a set of uniformly
distributed points, we down-sample the point cloud using
a 3D grid and re-sample it using the weighted locally
optimal projection (WLOP) method (Huang et al., 2009);
then we quickly contract the sample points into a skeletal
point cloud. Second, we down-sample the skeleton points
and connect the skeleton nodes according to the result of
confidence computation.

To demonstrate the effectiveness and robustness of
the proposed method, we test it and recent techniques
on extensive point cloud models. The visual assessment
shows that our method extracts a topology-preserving
and well-connected curve skeleton from point cloud
models that contain noise, incomplete data, and complex
structures. Our method outperforms the latest techniques
on some challenging point cloud models. Additionally,
the actual experiment results show that our method
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Table 1. Comparison of several skeletonization methods in terms of six aspects. The second column indicates that the input point cloud
is required to be pre-processed, including computing normals, re-sampling, etc. The third column indicates that the method
aims at processing tree-like point clouds. The fourth column indicates that the input point clouds should satisfy the shape
prior knowledge that local regions are generally cylindrical. The three rightmost columns indicate that the robustness of the
method to low-quality point clouds. In these three columns the symbol � indicates that the method is very robust and � that
it is moderately robust.

Method Preprocess
Shape Robustness

Tree-like
topology

Cylindrical
Non-uniform
density

Noise Missing data

LS (Verroust and Lazarus, 2000) 7 3 7 � � �
GR (Bucksch et al., 2010) 7 7 3 � � �
BSG (Livny et al., 2010) 7 3 3 � � �
LC (Cao et al., 2010) 7 7 7 � � �
ROSA (Tagliasacchi et al., 2009) 3 7 3 � � �
L1 (Huang et al., 2013) 7 7 7 � � �
DF (Song et al., 2018) 3 7 3 � � �

possesses better computing efficiency compared with the
recent work.

2. Related work

There are many algorithms which aim at extracting a
curve skeleton from the 3D model. The latest survey on
the skeleton is by Tagliasacchi et al. (2016). We will only
introduce the related work that extracts the skeleton for
mesh models and unorganized point cloud models.

Some researchers focus on extracting skeletons from
the mesh or the closed shape. Levet and Granier (2007)
use a variational implicit surface to approximate the
silhouette curve that is sketched by the user, and find
the local minima of the implicit function to generate the
skeleton. Au et al. (2008) apply the Laplace operator
(Desbrun et al., 1999) on the mesh models to extract
skeletons. Their method moves vertices along their
approximate curvature normal direction and then converts
the contracted mesh into a 1D curve skeleton through a
connectivity surgery process. Inspired by the work of
Au et al. (2008), Tagliasacchi et al. (2012) propose a
method that uses a mean curvature flow for curve skeleton
extraction. Yan et al. (2016) propose a global significance
measure which can be used to guide the creation of
topology-preserving and clean skeletons of 3D shapes.
Li and Wang (2018) compute a medial surface from 3D
models of enclosed surfaces using the distance field, and
then extract a curve skeleton from the medial surfaces
using a locally optimal projection operator (Lipman et al.,
2007).

Compared with the mesh, extracting a skeleton from
unorganized point clouds is more challenging due to
unavailable information of vertices connectivity and the
noise, as well as incomplete data in the point cloud.

Verroust and Lazarus (2000) as well as Lazarus and
Verroust (1999) propose a level-set based method (LS)
to extract the skeleton of a point cloud model which
has a tree-like structure. Sharf et al. (2007) devise an
algorithm which captures the object’s volumetric shape
and compute its curve skeleton on-the-fly through a
deformable model evolution process. Bucksch et al.
(2010) build a neighborhood graph from the point cloud
and then extract a curve skeleton using a graph-reduction
(GR) method. Cao et al. (2010) extend the work of Au
et al. (2008) and use Laplacian based contraction (LC)
to extract skeletons from point cloud models. Livny
et al. (2010) use the branch-structure graph (BSG) for
the representation of the tree skeleton. They extract
a minimum spanning tree as the initial BSG from the
raw scan of the tree and then obtain the skeleton via a
biological-priors-driven global optimization.

Currently, the works of Tagliasacchi et al. (2009)
and Huang et al. (2013) represent the state of the art.
Tagliasacchi et al. (2009) assume that the branches of
shapes could be covered by generally cylindrical regions,
and thus the curve skeleton can be thought of as a
generalized rotational symmetry axis (ROSA) of such
shapes. The ROSA method utilizes this shape prior
to extracting curve skeletons from point cloud models
with large missing data. Huang et al. (2013) propose
an L1-median (L1) method which utilizes the statistical
tool L1-median and extracts a clean and well-connected
skeleton from raw point scans. Their method does not
place strong requirements on the shape or quality of point
cloud models. The latest work is by Song et al. (2018).
They utilize the distance field (DF) to generate an initial
skeleton and use it to guide the L1-median optimization.
Though their method outperforms the L1 approch on some
models, it fails to extract a skeleton from point clouds
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(a) (b) (c) (d)

Fig. 1. We compare the KNN-median (denoted by ◦) and the
L1-median (denoted by ×) of a set of generated points:
set of uniformly distributed points (a), remove a portion
of the points in (a) (b), add more noise to the set of points
in (b) (c), set of points with missing data, noise and vary-
ing density (d).

which have flat regions or a large amount of missing data.
We compare and contrast these methods in six aspects; see
Table 1.

Our method is similar to the L1 one. Both need
to iteratively contract sample points while gradually
increasing the neighborhood size. However, our iterative
contraction process is totally different from that of the L1

method and runs faster than it. Additionally, we start to
connect skeleton nodes after the end of the contraction
process while in the L1 method these two processes are
performed simultaneously.

3. k-Nearest-neighbors based contraction

In this section, we introduce a contraction method that
is inspired by the optimization process of the sum of
k-nearest-neighbors distance. We will call this method
KNN contraction.

Given a set of sample points X = {xi}i∈I ⊂ R
3,

consider the following optimization:

argmin
X

∑

i∈X

∑

j∈Ni,k

||xj − xi||2, (1)

where Ni,k indicates the initial k nearest neighbors of
xi in X . A gradient descent based optimization makes
all points accumulate into a local center, which we call
the KNN-median. To further understand its properties,
we generate four sets of points and compare their
KNN-median and L1-median. We select the L1-median
for comparison because it is known to be robust to noise
and outliers (Weber and Friedrich, 1929), and widely
utilized in the L1 method. The number of neighbors k is
set to one-forth of the size of the points set. From Fig. 1,
we can see that the KNN-median is robust to the missing
data and noise. Figure 1(d) shows that the KNN-median is
more sensitive to the density of points than the L1-median,
but its robustness to noise is sufficient to drive us to
investigate the possibility of utilizing k nearest neighbors
for skeleton extraction.

3.1. Contraction with fixed k. Supposing that the k
nearest neighbors of a point xi are natural neighbors (Zhu
et al., 2016), and computing the gradient of the energy
given in Eqn. (1), we have the following displacement
vector ui with which the point xi in X moves in each
iteration:

ui =
1

ki

∑

j∈Ni,k

(xj − xi). (2)

Each time before we move all points, we perform the
principal component analysis (PCA) on the neighborhood
of each point. There are two reasons for this. First, the
result of the PCA can help determine when to terminate
the contraction. Second, the principal direction can help
reserve radial contraction and avoid axial contraction. We
decompose the displacement vector ui into two vectors;
one parallel to the local principal direction and the other
perpendicular to the local principal direction. The former
will lead all points accumulating into a local center, and
we choose to scale this vector in each iteration.

When we perform the PCA, the neighborhood G
of point xi is defined as its neighboring points within
the distance 3d3nn, where d3nn is the average length of
edges in the three-nearest-neighbors graph built on initial
sample points; then we get a symmetric 3 × 3 positive
semi-definite matrix:

M =
∑

xj∈G(xi)

(xj − xi)⊗ (xj − xi),

where ⊗ denotes the outer product vector operator. Let
λ1
i ≥ λ2

i ≥ λ3
i denote the eigenvalues of matrix M

associated with unit eigenvectors v̂1
i , v̂

2
i , v̂

3
i , respectively.

We compute σi = λ1
i /(λ

1
i + λ2

i + λ3
i ) to measure the

linearity of the neighborhood G. The principal direction
vp
i of point xi is v1

i or −v1
i if cos〈v1

i ,ui〉 < 0. We
set the scaling factor to (1 − σi), and get the following
displacement vector:

Δxi =|ui| cos〈vp
i ,ui〉(1− σi)v

p
i

+ (ui − |ui| cos〈vp
i ,ui〉vp

i ).
(3)

The average of all linearity measurements, denoted
as σ, indicates how many sample points have formed a
skeletal structure. As this contraction process iterates,
σ will be close to 1. We set a threshold η (η is 0.995
by default) to control when the contraction process stops.
The contraction process is elaborated in Algorithm 1.

As shown in Fig. 2, when fixing ki throughout the
contraction, this contraction process can work on some
simple objects like cylinders, rings and boxes. However,
the objects in a natural world usually have complex
structures which make it difficult to set a proper k. We
are inspired by the strategy for updating the neighborhood
size in the L1 method (Huang et al., 2013), and therefore
devise a algorithm for updating parameter k.
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3.2. Updating the number of nearest neighbors. The
symbol kti denotes the number of nearest neighbors of
sample point xi at the t-th iteration. When contraction
begins, ∀i ∈ I, k0i = 	dbb/( 3

√|X |d3nn)
, where dbb is
the diagonal length of the bounding box of initial sample
points.

The parameter {ki}i∈I is fixed most of the time and
updated every c iterations, where c is empirically set to 12.
Note that, when updating the parameter {ki}i∈I , we only
increase the number of nearest neighbors of points where
σi is smaller than a threshold τ (τ = 0.99 by default).
First, we define a growth rate a (a = 1.0 by default) for
parameter ki; then the anticipated increment Δkti for ki is
calculated as follows:

Δkti = k0i (a
2(2(t/c)− 1) + 2a)

× exp

(
− (σi − σmin)

2

(0.95− σmin)2

)
.

We do not expect a sudden change in the value of
kt+1 around the points where σi is close to the threshold
τ , hence a Gaussian weighting and PCA weighting are
incorporated to determine kt+1

i :

kt+1
i =

∑
j∈Nj,k

(ktj +Δktj)θ(||xi − xj ||)∑
j∈Nj,k

θ(||xi − xj ||)

where θ(t) is a Gaussian weighting function θ(t) =

e−t2/(r0/2)
2

. The support radius r0 = dbb/
3
√|X |.

The parameter ki is restricted to the range
[20, 0.25|X |]. Armed with such a parameter update
policy, the iterative point contraction process extracts a
topology-preserving skeletal structure from more complex
point cloud models, as shown in Fig. 3.

Algorithm 1. KNN contraction.
Require: Sample points X = {xi}i∈I

1: iteration number t = 0
2: compute {σi}i∈I , {v1

i }i∈I , {k0i }i∈I , {Ni,k}i∈I ,
3: repeat
4: ∀i ∈ I , compute the displacement vector Δxi

5: ∀i ∈ I, xi = xi +Δxi

6: ∀i ∈ I , compute σi and v1
i

7: if t%c == 0 and t > 0 then
8: ∀i ∈ I , update kt+1

9: ∀i ∈ I , search kt+1
i nearest neighbors for xi

10: else
11: ∀i ∈ I, kt+1

i = kti
12: end if
13: t = t+ 1
14: until σ < η
15: return X

(a) t = 2 (b) t = 4 (c) t = 6 (d) t = 8

(e) t = 1 (f) t = 2 (g) t = 3 (h) t = 4

(i) t = 2 (j) t = 4 (k) t = 6 (l) t = 8

Fig. 2. KNN contraction on simple objects: cylinder, 5821
points, k = 300 (a)–(d), ring, 2485 points, k = 130,
(i)–(l), box, 4064 points, k = 500 (e)–(h). The light
gray points are a point cloud, the gray points are mov-
ing points, the black points are moving points whose σ
is larger than η.

(a) t = 4 (b) t = 8 (c) t = 20

(d) t = 36 (e) t = 48 (f) t = 64

Fig. 3. KNN contraction with gradually increasing k on the
horse model: points belonging to the horse’s limbs firstly
complete the contraction(a)–(b), as the number t of iter-
ations increases, points belonging to the larger branches
of horse models are contracted to a skeletal structure (c)–
(f).

4. Skeletonization algorithm

In this section, we present a skeletonization algorithm
consisting of two stages. First, we re-sample the raw
point cloud and perform the KNN contraction operation.
Second, we extract a graph based representation of the
curve skeleton from the skeletal point cloud. Figure 4
shows an overview of our algorithm.

4.1. Constructing a skeletal point cloud. The
aforementioned KNN contraction process can extract the
skeletal structure from uniformly distributed samples.
However, the sample points of raw scans are usually
non-uniformly distributed, and a non-uniform distribution
may make the contraction process fail to work on the raw
scans. Therefore, to make use of the KNN contraction
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to extract a curve skeleton from raw scans, we acquire
a set of uniformly distributed samples via a re-sampling
process at the very start.

First, we make use of a 3D grid to uniformly
down-sample the raw point cloud. The size of the voxel
in the grid is d3nn and its barycenter is taken as the
new sample point. Only a 3D grid based re-sample
does not satisfy the demands for the uniformity of the
points distribution. Next, we apply the WLOP (Huang
et al., 2009) algorithm to the previous output, which can
denoise and uniformly re-sample the point cloud. We
randomly pick 7000 sample points by default, and set the
default number of iterations to 10. Other parameters for
the WLOP are set as default in the original paper.

After doing these, we apply the nearest neighbor
contraction to the samples and get a skeletal point cloud
from them.

4.2. Extract curve skeleton. The curve skeleton is
represented as an undirected graph G(V,E), while the
skeletal point cloud remains unorganized. We take two
steps to extract a curve skeleton from the skeletal point
cloud. First, we down-sample the skeletal points, obtain
the skeleton nodes, and connect them. Next, we connect
the disconnected branches in the skeleton and clean the
outliers in the skeleton. To obtain the skeleton nodes, we
first filter the points whose correspondingσ is smaller than
0.99. From the points that have not been visited, every
time we pick out the point xi which has the largest σ,
and search the farthest five points along two directions
v1
i and −v1

i within a ball whose radius is dbb/20. The
median point of these five points is the next skeleton node,
and this node is the next ball’s center. We repeat this
process until all skeletal points have been visited. More
details about this down-sample process are described in
the moving least-squares (MLS) method (Lee, 2000).

After the down-sample step, influenced by the
incomplete data or improper parameter setting, the curve
skeleton may consist of several disconnected branches;
see Fig. 4(e). For the endpoints ve of all branches, we
search all skeleton nodes and compute the corresponding

Algorithm 2. Confidence computation for branch
connection.
Require: Skeleton node vs, endpoint ve

1: γ = 1.0
2: find the previous node ve−1

3: compute angle θ between vectors −−−−→ve−1ve and −−→vevs
4: γ = cos(θ)γ
5: compute the length s of the branch where ve is located

6: γ = γ − (|−−→vevs|/s)
7: return confidence γ

(a) (b) (c)

(d) (f) (f)

Fig. 4. Overview of our proposed skeletonization algorithm:
raw point cloud (a), sample points (b), process of KNN
contraction (c), raw point cloud and a skeletal point
cloud (d), downsample the skeletal point cloud and con-
nect the nodes (e), connect the disconnected branches
and remove outliers (f).

(a) (b) (c)

Fig. 5. Extracted curve skeletons for point clouds with noise;
default parameters are applied to them: noisy-Y model
(a), noisy dinosaur model (b), raw scan of a mimosa (c).

confidence estimate γ. If a skeleton node vs has the largest
confidence γ and the confidence is larger than a preset
threshold λ (λ = 0.6 by default), we connect these two
nodes. The computation of the confidence is summarized
in Algorithm.2.

5. Results and discussions

To validate the effectiveness of our skeletonization
algorithm, we pick out several representative point cloud
models and run the algorithm on them. The results show
that our skeletonization can extract a correct skeleton from
various point clouds and is robust to noise, incomplete
data and non-uniform point distributions. We also discuss
the parameter setting strategy and the main limitation of
our skeletonization algorithm in this section.

5.1. Results. We implement the skeletonization
algorithm under the environment of Java 8 and run it
on a laptop which has 8 GB memory and an Intel Core
i7-8550U processor running at 1.80 GHz. The operating
system for the laptop is Windows 10. We validate the
performance of our algorithm on point clouds which
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(a) (b) (c)

Fig. 6. Extracted curve skeletons for point clouds with missing
data: running man model (a), noisy dinosaur with miss-
ing data (b), lady model (c).

(a) (b) (c)

Fig. 7. Point cloud and an extracted curve skeleton of complex
objects: ficus virens (a), point cloud of the tree (b), curve
skeleton of the tree (c).

Fig. 8. Ground truth skeletons that we manually create.

contain noise, incomplete data and complex structures;
then we download the software provided by Huang et al.
(2013) and the code of Tagliasacchi et al. (2009) from
the authors’ repository on Github and compare their curve
skeletons with ours both from the visual and quantitative
aspects. We normalize the point cloud and follow the
authors’ instructions before running their algorithms. For
every presented result of the L1 and ROSA methods, we
have tried at least five groups of parameters to pick out the

best skeleton for comparisons.
We test the robustness of our algorithm to the noise of

the point cloud first. We run the algorithm on three point
clouds that have obvious noise around the boundary; see
Fig. 5. Among these three point clouds, the noise on the
first one and the second one is generated manually, and
the third one is from a raw scan, which has obvious noise
and a non-uniform points distribution. The results show
that the noise and outliers do not affect the correctness
of our skeleton. The quality of the extracted skeleton of
the third point cloud is not as satisfactory as that of the
previous ones, but the topology is correct and no skeleton
nodes are misconnected. We also test the performance of
our algorithm on the point clouds with large amounts of
missing data; see Fig. 6. We use two raw scans and a noisy
dinosaur model as test cases. We manually remove some
points from the dinosaur model to mock the incomplete
data. The results show that our algorithm can handle the
point clouds with incomplete data.

We also test the algorithm on the point cloud yielded
by the multi-view stereo technique (Seitz et al., 2006;
Belter et al., 2016). We take 30 photographs of a ficus
virens and synthesize a 3D point cloud using the open
source software MVE (Fuhrmann et al., 2014). The point
cloud contains much noise, non-uniformly distributed
points and complex structures, which are marked in the
box of Fig. 7. Despite these challenges, our algorithm
extracts a well-centered and topology-preserving tree
skeleton.

We compare our resulting skeletons with the ROSA
and L1 methods; see Fig. 9. The results show that
our approach achieves better performance than current
state-of-the-art works on some challenging models. From
the visual comparison, our method outperforms the L1

one on the spider model and the tree model, and it
outperforms the ROSA method on the human model.
For quantitative comparison, we manually create ground
truth skeletons of these four point clouds using modeling
software, as shown in Fig. 8. We count the number of
incorrect or missing branches in the generated skeleton
and denote it as Nb. We call the skeleton node
that connects more than three skeleton branches as the

Table 2. Number of incorrect skeleton branches and connection
nodes in the skeleton generated by different methods.

Model
ROSA L1 Ours
Nb Nc Nb Nc Nb Nc

Spider 3 4 1 6 0 4
Tree 5 3 8 3 1 2
Bird 2 0 2 0 0 0
Human 7 1 0 0 0 0
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(a) ROSA (b) L1 (c) ours

Fig. 9. Comparisons with the previous skeletonization algo-
rithms: results of the ROSA method (a), results of the
L1 method (b), results of our method (c).

connection node. Then we count the number of the
incorrect connection nodes and denote it with Nc. The
quantitative comparison of these two indicators is shown
in Table 2. It can be seen that the skeleton generated
by our method has fewer problem skeleton branches and
incorrect connection nodes than is the case with the other
two methods.

We also test the running time of our skeletonization
algorithm and compare it with the previous work.
Because the ROSA method (Tagliasacchi et al., 2009)
is implemented in MATLAB, we compare the running
time with the L1 method (Huang et al., 2013), which
is implemented in C++, whereas we write the program
in Java. We take 7000 sample points from the point
cloud when running our method. When we run the L1

approach, we take 1000 sample points and use the default
parameters. From Table 3, we can see that, though Java is
slower than C++ because of the mechanism differences,
our skeletonization method takes fewer iterations for
extracting a curve skeleton and runs faster on most point

(a) a = 0.5 (b) a = 1.0 (c) a = 1.5

(d) a = 0.5 (e) a = 1.0 (f) a = 1.5

Fig. 10. Extracted curve skeleton under different growing
speed a; other parameters are kept fixed for both mod-
els: horse model (a)–(c), part of the tree model (d)–(f).

(a) (b)

Fig. 11. Centeredness of our extracted curve skeletons is not
good on some models; we render down-sampled points
of the armadillo model instead of raw points for better
presentation of the skeleton.

cloud models. On the Armadillo model with over 172 K
points, the running time of our skeletonization algorithm
is about 94 seconds, nearly one-fourth of that of the
L1 method. Additionally, most of the operations in
the contraction process can be parallelized, and thus the
running time of the algorithm can be further accelerated.

5.2. Discussions. There are two important parameters
in our skeletonization algorithm; the initial number of
neighbors k0 and the neighborhood growth rate a. The
former one controls the minimal size of the neighborhood
where we need to extract a skeleton, for example, the
radius of legs in the horse model. In our experiments,
the default value of k0 works very well for most point
clouds. The latter one controls the growth rate of the
number of neighbors. We notice that our algorithm is not
so robust to the change of this parameter. We change the
growth rate a and test the algorithm on two representative
models, which is the horse model and the tree branch one,
respectively; see Fig. 10. The results show that, once
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Table 3. Running time.

Model Points
L1 method Our method

Iterations Running time Iterations Running time

Noisy-Y 7029 55 7.10 s 16 6.08 s
Horse 48485 264 65.88 s 51 41.87 s
Mimosa 40551 161 44.36 s 26 16.58 s
Armadillo 172974 169 362.33 s 89 93.78 s
Lady 11125 142 21.51 s 46 17.31 s
Noisy-Dinosaur 23255 192 34.19 s 62 50.3 s
Spider 18671 214 55.68 s 42 22.64 s
Running Man 11191 147 21.20 s 38 13.45 s
Ficus virens 68103 117 37.31 s 27 17.56 s
Tree 32400 74 20.46 s 31 18.55 s
Bird 11537 106 23.45 s 51 17.81 s
Human 6045 135 27.02 s 33 8.27 s

the rate is too small, the resulting skeleton will contain
unexpected branches; see Fig. 10(a). Conversely, some
branches may lose connectivity to other branches; see
Fig. 10(f). Therefore, the growth rate a should be set
more carefully according to the shape of the object. For
objects consisting of branches of similar size, like trees,
the growth rate a should be set at a smaller value. For
objects consisting of branches with large differences in
size, like horses, it should be set larger.

The main limitation of our skeletonization algorithm
is that the extracted skeleton is not very well-centered
in some point clouds, as shown in Fig. 11. Many
previous works (Huang et al., 2013; Wang et al., 2012)
use an ellipse-fitting step to improve the centeredness
of the skeleton. However, we think such a re-centering
step is not a good solution. The reasons are described
below. First, the ellipse fitting based re-centering step
requests the local cylindrical shape, which cannot be
always satisfied in real-world objects, for example, the
leaves of plants. Second, for one skeleton node, it is
hard to give an automated algorithm to find the correct
subset of point clouds for performing ellipse fitting.
Once the outliers and near-by branches are included, the
centeredness of a skeleton may even deteriorate. In our
view, the centeredness should be best guaranteed during
the points contraction. A better contraction algorithm is
to be studied in the future.

6. Conclusion

In this paper, we proposed a novel skeletonization method
for point clouds. The approach features (i) utilizing the
nearest neighbors to contract sample points into a skeletal
point cloud, (ii) connecting the skeleton branches via a
confidence computation. Extensive case studies suggest
that our method clearly solves the existing challenges in

extracting curve skeleton from point clouds. It is robust
against a noise, outliers, incomplete data and complex
structures in the point cloud. It can handle arbitrary shapes
of real-world objects, including flat regions, tree-like
structures, loops, and so on. Employing this method, we
can extract a clean and topology-preserving skeleton from
raw scans. Also, this skeletonization algorithm can be
further improved in two aspects. First, we need to improve
the points contraction so that the centeredness of a curve
skeleton can be guaranteed. Second, it can be improved
by investigating automated strategies for determining the
neighborhood growth rate a from the point cloud.
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