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In counter-terrorism actions, commanders are confronted with difficult and important challenges. Their decision-making
processes follow military instructions and must consider the humanitarian aspect of the mission. In this paper, we aim to
respond to the question: What would the casualties be if governmental forces reacted in a given way with given resources?
Within a similar context, decision-support systems are required due to the variety and complexity of modern attacks as well
as the enormous quantity of information that must be treated in real time. The majority of mathematical models are not
suitable for real-time events. Therefore, we propose an analytical model for a time-dependent prediction of terrorist attacks
(ATiPreTA). The output of our model is consistent with casualty data from two important terrorist events known in Tunisia:
Bardo and Sousse attacks. The sensitivity and experimental analyses show that the results are significant. Some operational
insights are also discussed.

Keywords: terrorist attacks, attack classification, mathematical modeling, dynamic behavior simulation, damage predic-
tion.

1. Introduction

To create a general climate of instability and fear in a
population, many armed groups resort to violence. The
harmfulness of planned violence has an impact on the
socio-economic situation and on government authority.
The main objective of these groups is to put pressure on
the government to submit to their political demands. This
adversarial situation underpins the concept of terrorism
(Willis et al., 2005).

To generate widespread fear, attackers carefully
choose their victims as well as the location of terrorist
actions. They have to carry out increasingly dramatic
attacks to attract media attention. Thus, crowded urban
areas are the preferred field of action for terrorists
(Sandler, 2018). With the purpose of confronting
terrorism and providing safety for all potential targets,
decision-makers should establish a proactive strategy.
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This includes infiltrating and destructing terrorist training
camps, intelligence gathering securing funding sources,
and also the use of new technologies to estimate the
victims of a planned attack.

Estimating the number of victims is the cornerstone
for deciding the possible course of actions against
terrorist attacks. Based on estimation results, experts
could re-manage their human and material resources
and provide an adapted plan. In a fast-growing
and technologically sophisticated theatre of operations,
the amount of information available for planning has
increased significantly while time has remained constant.
The battle of time management is still the hardest one
to win. Static modeling of interventions is inefficient in
modern operations where time is an essential and decisive
factor for success.

In an attempt to solve this problem, we propose
our contribution that consists in creating an analytical
model for time-dependent prediction of terrorist actions.
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The strength of our novel analytical model for a
time-dependent prediction of terrorist attacks (ATiPreTA)
consists in predicting the extent of human casualties
incurred by governmental forces and terrorists during an
entire operation. It is useful for assessing possible losses
in a terrorist attack on likely and sensitive targets as
well as evaluating the efficiency of pre-planned response
scenarios.

ATiPreTA integrates new parameters such as stress
and intelligence. In fact, human behavior is very sensitive
to the former. During extreme danger, the body and the
brain maintain a state of high alert that affects how a
solder fights. The reactions generally converge to two
main axes. The first one introduces the combat stress
syndromes that include tiredness, slower reaction times,
and indecision leading to a decrease in the combatant’s
fighting efficiency. The second one, called focused stress,
helps the combatants to be more situationally aware.
This refines their security consciousness and sense of
responsibility. This kind of stress is vital for survival
and accomplishing the mission (Army, 2006). Throughout
our model, we consider two types of focused stress. The
level of available intelligence during a counter-terrorism
mission is estimated from the information flows collected
during the operation. Besides, we assume that terrorists do
not all pose the same level of threat. This estimation helps
to reduce casualties among the civilian and government
forces and to recognize the danger level. To our
knowledge, this is the first attempt to model the effect of
parameters like terrorist types and stress on the victims in
dynamic combat settings in general and terrorist attacks
in particular. Moreover, in this paper, we propose a
classification of terrorist attacks adapted by ATiPreTA due
to the variety of terrorist attacks, the widespread field of
operation, and the difficulty of creating a model that fits
all cases.

The remainder of this paper is organized as
follows. In the next section, we present and detail
related contributions on modeling and classifying terrorist
attacks. Section 3 is dedicated to describing our new
model as well as its main assumptions. In Section 4,
through experimental analysis, we provide the different
results offered by our contribution, according to some
evaluation criteria with discussions. Then, we test the
sensitivity of ATiPreTA by analyzing the effect on the
outputs. Finally, we sum up and draw some conclusions.

2. Related works

In this section, we address different aspects that
correspond to our model. We begin by reviewing
the different concepts of terrorist-attack classification,
highlighting the main criteria used by each, and citing
visual analysis systems used to present the results.
Through this analysis, we will be able to recognize the

work paths of the different models. Furthermore, we move
to the analysis of the mathematical models that issue from
the Lanchester one (Lanchester, 1916) by focusing on
the purpose addressed by each model and on the adapted
evolution of Lanchester equations. Then, we emphasize
the shortcomings of the mathematical models giving rise
to revolutionary decision support systems (DSSs). Finally,
we list the various DSSs that unpack the major problems
of counterinsurgency operations.

2.1. Terrorist attack classification models. There
is very little academic literature regarding the analysis
of categorical classification of terrorist groups and
the body of knowledge is minimal when it comes
to the classification of terrorist acts. This is due
to the heterogeneity, the variety of attacks and the
confusing definitions of terrorism that have changed
over time without even saying about the geopolitical
environment. In this context, classification methods are
used to analyze terrorism data and extract significant
results. The evaluation parameters of a classification are
selected according to the phenomenon to be analyzed.
Based on the five Ws (who, what, where, when, and
why), a visual analytical system was developed by
Vilanova et al. (2008). The parameters of the five
Ws represent one of the most fundamental concepts in
investigative analysis. With this approach, an investigator
can categorize terrorists efficiently by discovering the
reasons for attacks, identifying temporal or geo-spatial
patterns between multiple terrorist groups, and combining
different methods or modes of attack. Data Rivers
(Pagán, 2010) is another interactive visual analysis tool
for the Global Terrorism Database1 (GTD) created at the
University of Maryland. This tool allows users to analyze
temporal trends in terrorism in the GTD by choosing
important variables from the database and creating a
comprehensible visualization. Five different classes are
selected: Countries Attacked, Regions Attacked, Target
Nationalities, Types of Targets and Types of Weapons.

Several classifications even use an assessment model
that combines multiple factors (Hu et al., 2019). The
majority of terrorist attack classifications take as their
guidelines only basic parameters. To our knowledge,
all research within this framework is partially concordant
due to the scarcity of significant exploitable classification
criteria. Such classification proposals generally suggest
works aiming to assign each terrorist attack to a given
class. To model these kinds of attacks, other works have
also been proposed to predict terrorist behaviors.

2.2. Lanchester based mathematical models. The
first use of mathematical models to describe a battle
between two parties was proposed by Lanchester

1www.start.umd.edu/gtd.
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(1916), who created two nonlinear differential equations
to analyze the time dependence of the strengths
of two armies. Then, researchers developed this
model using various techniques and approaches that
are described below. Their results were expanded
during World War II to support strategic planning
for ground, air, and maritime operations. After
the WWII, the military research achievements pushed
the early development of the simulation field and
notably influenced the institutionalization of military
research organizations. Besides, the ascendance of
other approaches, e.g., asymmetric warfare, which
employed innovative nontraditional tactics obliged leaders
to develop their resources. For that reason, Lanchester’s
model has been modified and adapted to distinguish a
type of asymmetric warfare such as guerilla (Deitchman,
1962). However, students of military tactics still
appreciate the Lanchester model and its universal
application because, above all, it stimulates in-depth
reflection on the impact of the conditions of engagement
(Lucas and McGunnigle, 2003). This appreciation is
shown by the Kress and Szechtman (2009) model,
which is based on Lanchester equations and studies
anti-insurgent operations including the effect of imperfect
intelligence. The authors, there, affirm that collateral
damage may lead to an increase in terrorist recruitment.
They also explain why terrorists cannot be completely
eliminated. Without reliable intelligence, government
forces can incur population casualties if they miss their
targets. This collateral damage generates support for
insurgency, which is demonstrated by new recruits joining
their ranks.

Recently, Kress et al. (2018) adapted the
two-dimensional Lanchester square law to fit a three-part
engagement. The work of Coulson (2018) is based on
the Lanchester model and extends it to a hyperbolic
system of partial differential equations (PDEs) to analyze
the influence of intelligence on warfare tactics. A
Lanchester-type battle model is offered by Bongers and
Torres (2019) to simulate battles in which one or two of
the fighting groups are not able to use all forces at the
same time due to certain limitations such as topographical
constraints that create a bottleneck on the battlefield.

We note that all the previously mentioned models are
based on the mathematical Lanchester one (Lanchester,
1916) and the majority of them suffer from the absence of
the dynamic aspect. The lack of dynamics is associated
with all mathematics-based models, such as those by
Okoye et al. (2020) or Gambo (2020). Okoye et al. (2020)
study the dynamism of terrorists and counter-terrorism
measures that can mitigate their effects in a given
location. Okoye et al. (2020) have not been inspired
by the Lanchester model, but they aim to conduct a real
case and make predictions on the terrorism dynamics in
the presence or absence of counter-terrorism measures.

In addition, Gambo (2020) designed a mathematical
model of counter-terrorism with military strategies and
rehabilitation of terrorists. The model is developed to
control the spread of terrorist ideologies in society and to
describe terrorist groups. In the following subsection, we
cite and discuss the merging of the defence sphere and
decision support systems.

2.3. Decision support systems in military field. The
merging of the defence sphere and DSSs gives life to
dynamic and revolutionary models without needing the
Lanchester model (Lanchester, 1916). The project Deep
Green was established in 2008 and sponsored by the
Defense Advanced Research Projects Agency (DARPA).
It represents the initiation of the modern perspective
on DSSs in military operations. This project involved
the development of a decision support system for US
Army commanders. All the information published on this
project regards only basic theoretical data and the detailed
results are considered classified (Surdu and Kittka, 2008).

Şuşnea (2012) selects the possibilities and
constraints for the development of an intelligent DSS
to support military decision-makers in issuing real-time
orders at the appropriate moment with a reasonable
cost. Later, the empirical research presented in the
work of Lee and Zo (2017) focuses on the factors
influencing the assimilation of the military group decision
support system (MGDSS) and the mediating impact
of structural appropriation in the Korean military in
a technology, organization and environment (TOE)
framework. Maureen (2017) created a DSS called the
mission combat efficiency estimator (MCEE) that helps
military commanders to assess the best combination
of soldiers for different military operations, based
regarding intelligence on the enemy’s combat experience.
Furthermore, a dynamic causal model of public support
for insurgency and terrorism was proposed by Osoba and
Kosko (2017). It models the structure of public support
for insurgency and terrorism using feedback in the form
of fuzzy cognitive maps.

Pechenkina and Bennett (2017) propose another
dynamic model of insurgent–soldier interactions that
handles two strategies for peacefully recruiting citizens
and conducting military engagements against the
adversary. Moreover, Chmielewski et al. (2018) propose
a method for developing situational awareness as well
as a support tool developed for individual soldiers and
low-level commanders. Seehuus et al. (2020) introduced
a research prototype (SWAP) of a DSS for military
planning. The aim of their research is to convince
Norwegian Armed Forces commanders about the value
of simulation in tactical operations (cf. Kebir et al.,
2020a; 2020c). Udoh and Oladejo (2019) developed
and analyzed a differential equation model of terrorist
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organizational dynamics. They mainly aim to study
the possible strategies to allocate the available human
resources toward an optimal counter-terrorism operation.

Oladejo et al. (2020) analyze an evolutionary game
theoretic model for an interaction between security
agencies and terrorist group. They study security
implications of undermining a given community’s optimal
supports.

2.4. Criticism and a discussion. We note that
models presented in this section are designed to provide
suggestions for decision making in certain situations.
They can only sustain recurring decision cases and depend
on a specified set of models to work. Besides, we mention
that even if the Lanchester based mathematical model
(LBMM) presents effective approaches for analyzing
different aspects of asymmetric engagements, it does
not deal with the dynamic aspects of an armed conflict
(El-Douh et al., 2022; Junosza-Szaniawski et al., 2022).
Because asymmetrical wars are limited in time and
governed by tactical rules adapted to temporary situations,
we aim to integrate the dynamic aspect into a modified
Lanchester model. Therefore, integrating time in
prediction models and simulations is a crucial requirement
for operation assessment.

Using equations from the Kress and Szechtmann
model, we create an analytical model for time-dependent
prediction of terrorist attacks to tackle the latter problems
and forecast fluctuations in numbers during a terrorist
attack.

By studying the literature, we found that military
decision support systems (MDSSs) are generally based
on specific models and dedicated to particular users to
clarify some interactions (Sumithra and Vadivel, 2021;
Chabir et al., 2018). Hence, we aim to be more
flexible for our generic model to be adaptable to multiple
scenarios. In Fig. 1, we summarize how we linked
three disciplines connected with the military field to
establish our ATiPreTA. The first, presented in white
rectangles, shows different methods of terrorist attack
classifications. The second, presented with rectangles,
is about hierarchical interrelations between mathematical
models based on Lanchester’s equations. The third, with
hexagon shapes, concerns a DSS designed for decision
makers to support making correct decisions in stressful
situations (obtaining the most accurate decision). In
our work, we seek to exploit and combine the strengths
of different state-of-the-art works such as dynamics and
efficiency. In addition, we estimate, through our model,
human casualties during terrorist attacks by integrating the
stress level and the effect of the type of terrorist on their
behavior (Kebir et al., 2022).

3. Problem statement and contributions

This section presents the assumptions proposed for our
research that will be evaluated in the model (Section 3.1).
The last assumption made gives rise to a new classification
concept of terrorist acts (Section 3.2). Finally, we proceed
to detail and describe our own model (Section 3.3).

3.1. Assumptions. The model has three components:
government forces, terrorists and a population. As shown
in Fig. 3, ATiPreTA is divided into two phases. The
first consists in analyzing the effect of terrorists on a
population when government forces do not intervene. The
second phase starts with the intervention of government
forces. It takes into account the interactions between the
three actors based on a three-step process. Consequently,
let us define and explain our main assumptions for this
work:

A1. Government forces neutralize terrorists and seek to
minimize civilian casualties while terrorists attack
both government forces and civilians.

A2. During terrorist acts combat is asymmetric. We
assume that terrorists initially have good situational
awareness regarding governmental forces. However,
the advantages of this situation disappear due to the
scarcity of intelligence resources during the attack.
Over time, government forces acquire an increasing
amount of information about the situation and are
also supported by a constant number of agents.

A3. Well-trained combatants in defensive fighting
positions are capable of facing conventional enemy
forces double their size (Aylwin-Foster, 2005).

A4. Our model predicts the values of each component in
a minute. This time unit is the most appropriate for
two reasons: first, the lack of accurate data on real
attacks presents serious difficulties for result analysis
and model sensitivity studies. Second, this time unit
maintains the dynamic aspect and continuity of the
analyzable result.

A5. The process is considered to end at tfinal, when either
government forces, terrorists, or civilians are reduced
to zero.

A6. The model considers specific classes of attacks that
refer to our scenarios mentioned in the previous
five assumptions. As in Section 2, the majority of
terrorist-attack classification methods are burdened
with serious problems. They are designed either for a
particular context to fit well-defined criteria or to be
very generic, which makes them hard to adjust (Kebir
et al., 2021). We propose a method for classifying
terrorist attacks in the next subsection that obeys
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Fig. 1. Related works.

the key notions of terrorist risk (Willis et al., 2005),
highlights the main classes handled by our model,
and precisely identifies the characteristics of targets
without abandoning the generic aspect.

3.2. Terrorist attack classification. Classifying
terrorist attacks is difficult since they are influenced by
various real-world variables and parameters. Hence,
regarding the concept of the proactive strategy and using
ATiPreTA to anticipate consequences, we offer a new
classification of terrorist attacks referring to the nature of
terrorist risks. We base our method of classification on
two principal rules: (a) the threat level of the assaults
and (b) the vulnerability level of the target. Hence, as
our starting point, we choose to rely on the definition by
Willis et al. (2005), who quantify the terrorist risk as the
product of the occurrence probability of a terrorist attack
(threat), the probability that an attack of a given type will
be successful once it has been launched (vulnerability),
and the expected value of the distribution of damage
(consequences).

We highlight that we are not using consequences
as a parameter of classification. In our classification,
which is useful for victim-estimation models since its
criteria are linked to real-time situations, we deal with
attacks after their occurrence and with those that are

ongoing. The threat level of an attack depends on
terrorists’ effectiveness and capacity to cause damage to
a specific target. This effectiveness arises from several
factors. For example, a terrorist with only assault weapons
presents a medium threat level, but it increases with a
suicide bomber. That is why we use the types of weapons
as a factor to define the level of threat.

In addition, a large number of terrorists could present
an important threat even if the individual risk of each
one is low. The size of the terrorist group is the second
factor. It has a major impact on the threat level. In our
case, a terrorist group’s strategy in an urban area involves
fast concentrated attacks, which maximizes the chances
of achieving the desired damages. This strategy does not
require a large number of terrorists as they need discretion.
In ATiPreTA, we are working with a small number of
terrorists along with high and medium threats (see Fig. 2).

A quantification based on threat is focused on a
specific type of a certain level of threat on specific targets.
We cite three examples of the effect of the same threat on
specific targets:

• A bombing attack represents a different threat to a
specific target than a chemical attack.

• Attacks on stadiums represent a different threat from
attacks on military bases.

• A terrorist armed with a white weapon presents a
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lower threat to government forces than for a civil
population.

A complete classification of terrorist attacks based on
threats only would require consideration of every target
separately (Kebir et al., 2020b; 2020d). In practice,
however, we must focus on a limited number of attack
types, which leads us to consider the vulnerability of a
target as an additional scale to recognize the capacity of
a target to respond to a specific threat. As shown in
Fig. 2, the vulnerability criterion increases from a low
to a high level based on the defensive capabilities of the
target. For example, military bases are less vulnerable
than a police patrol because they have a higher chance to
resist a given type of attack. Crowded places with many
civilians in urban areas are among the most vulnerable
terrorist targets. We consider that kind of target exposed to
medium or high threat (Classes 6 and 9 in Fig. 2). Figure 2
illustrates the proposed classification and shows some
examples of terrorist attacks from the GTD using different
levels of threat and vulnerability. The variation of shades
from lighter to darker shows the increasing probability of
losses such as the and fatalities, numbers of injuries, and
the total property damage in dollars (buildings, building
contents, and business interruption). Every class in this
scale has a number from 1 to 9 for better recognition.

In the following subsection, we present an analytical
model for time-dependent prediction of terrorist attacks
that treats attacks under Classes 6 and 9 (see Fig. 2) of
our proposed classification strategy.

3.3. Analytical model for time-dependent prediction
of terrorist attack behaviors. Let G, T , and P denote
the sizes of government forces, terrorists, and a general
population, respectively. G(t), T (t), and P (t) represent
their corresponding sizes at instant t. We assume that
G(t) and T (t) may vary over time in minutes and that the
size of a general population P (t) decreases throughout.
We denote by N the fraction of well-trained terrorists
in defensive positions, where the effectiveness of each is
equal to that of three untrained terrorists (Aylwin-Foster,
2005), as mentioned in the previous section.

Let us normally explain Assumption A3 by creating
a combat-multiplier factor called CF as follows:

3NT + (1−N)T = (2N + 1)T = CF × T. (1)

As the first phase within attacks (Fig. 3), terrorists
kill civilians in the absence of any government force.
Therefore, we model the number of civilian victims per
one minute (VP), during this phase, with the following
linear function:

VP = λCF × T (0), (2)

where λ is the attrition coefficient defined as the rate
at which terrorists inflict casualties on civilians. We

Fig. 2. Classification of terrorist attacks.
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Fig. 3. Logic diagram of ATiPreTA.

define tinter as the starting time of government forces’
intervention. The initial number of a population P (0) at
t0 = 0 decreases massively and reaches the population
number P (tinter). While t ∈ [t0, tinter], terrorists murder
civilians without any presence of government forces (G =
0); this is a favorable situation for terrorists because they
suffer no losses. Consequently, at the end of this phase,
the population size is formally modeled as follows:

P (tinter) = P (0)−
tinter∑

t0

VP. (3)

In the second phase in real-world attacks as well
as within ATiPreTA (Fig. 3), there is a high interaction
between the different actors. We study the dynamic
interaction between government forces, as well as
terrorists, and their effect on the number of victims.
During this phase, terrorists focus their efforts on
neutralizing government forces as their primary target. In
this analysis, we follow the systematic steps of ATiPreTA
detailed in Figs. 4 and 5.

First (Step 1 of Phase 2 in Fig. 5), government
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forces intervene to neutralize terrorists (Assumption A1).
Following the model of Kress and Szechtman (2009),
which describes the effect of intelligence on the
recruitment rate of terrorists, we use a similar equation
to describe government forces’ effect on terrorists, such
that

VT(t) = γG(t− 1)

[
μ(t) + (1− μ(t))

T (t− 1)

P (t− 1)

]
, (4)

where

• γ is the attrition coefficient interpreted as the general
intensity and effectiveness of counter terrorism
operations;

• μ(t) ∈ [0, 1] is the parameter that defines the
average rate of information obtained about terrorists
in instance t of the operation; besides, the Kress
model (Kress and Szechtman, 2009) reflects the
ability of terrorists to blend into a civilian population
when not actively engaged in attacks;

• the ratio T (t− 1)/P (t− 1) presents the signature of
terrorists, which may be interpreted as the probability
that a randomly selected target is a terrorist (Kress
and Szechtman, 2009).

There is a logic link between the population density
P (t − 1) and the signature of government forces on
terrorists VT(t). The more government forces, the
higher the density of a population and the weaker
the possibility of detecting terrorists. Moreover, the
effectiveness of government forces is lower in crowded
places (Aylwin-Foster, 2005). Consequently, we use
the reciprocal of P (t− 1) to model this assumption.
Without intelligence, government forces have information
on terrorists (Kress and Szechtman, 2009) (μ(t) = 0) and
we obtain

VT(t) = γG(t− 1)
T (t− 1)

P (t− 1)
. (5)

Thereafter, the parameter μ(t) increases linearly with
a constant time step (stepµ) until they will have perfect
intelligence (μ(t) = 1). Moreover, if we change the
size of stepµ (the amount by which μ increases), the
intelligence level obtained after a specific time will change
in the same way (Assumption A2). Consequently, the size
of incrementation has a major impact on the effectiveness
of government forces. When μ(t) = 1, we obtain
the following relation similar to the classical Lanchester
square law of aimed fire (Lanchester, 1916):

VT(t) = γG(t− 1). (6)

Secondly (Step 2 of Phase 2 in Fig. 5), we model
terrorist behaviour toward government forces. Let us

Fig. 4. Three steps of the scenario’s second phase.
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Fig. 5. Sequence diagram of the three steps of the scenario’s
second phase.

denote by VG(t) the number of victims of government
forces and by α the attrition coefficient interpreted as the
general intensity and effectiveness of terrorist operations
on government forces. We formally model this idea as
follows:

VG(t) = α
T (t)

G(t− 1) + T (t)
T (t)CF. (7)

Generally, the more terrorists perceive the weakness
of government forces and their decreasing number, the
more they win in terms of increased effectiveness (ifG(t−
1) increases, then T (t)/(G(t− 1) + T (t)) decreases).
Furthermore, if the number of terrorists decrease, they
will be exposed to a higher level of stress termed focused
stress and their effectiveness will be enhanced (if T (t)
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decreases, then T (t)/(G(t− 1) + T (t)) increases). For
example, terrorists under stress commit acts of bravery
and acts of heroism (Army, 2006). We summarize those
hypotheses by the factor T (t)/(G(t− 1) + T (t)). If
G(t − 1) + T (t) varies over time, the latter factor will
change in the opposite sense.

After a predefined time tsupport, government forces
will be periodically supported by a constant aid called β.
This part is developed in Fig. 5:

G(t) =

{
Val + β if t− tinter + 1 ≡ 0 (mod tsupport),

Val otherwise,
(8)

with Val = G(t).
Such support has a strong influence on the scenario

direction and then governmental forces will be effective
against terrorists (Assumption A2). This situation will
evolve during the operation and is manifested by the
decreasing number of victims and the increasing number
of neutralized terrorists.

Thirdly (Step 3 of Phase 2 in Fig. 5), we simulate the
effect of terrorists on a population in the second phase.
For that purpose, we propose a new coefficient in the
mathematical equation for VP(t) as follows:

VP(t) = λCF
T (0)− T (t)

G(t) + T (t)
T (t). (9)

We model two opposing facts by using the coefficient
T (0)− T (t)/(G(t) + T (t)). On the one hand, terrorists
will be less harmful to a population during government
forces’ intervention because they have limited human
resources and their number is decreasing over time (T (t−
1) ≥ T (t)), faced with government forces’ neutralization
efforts. Conversely, terrorists called “inghimasi”, who are
ideologically similar to suicide attackers, generally make
attacks in urban areas. When such terrorists lose hope
and governmental forces eliminate some of them, they
often forgo elementary self-preservation concerns (Janis
and Mann, 1977) to do greater damage to a population
as an act of revenge. We model the previous certainties
by introducing the factor (T (0)− T (t))/(G(t) + T (t)),
where G(t) + T (t) presents the first fact and T (0)− T (t)
represents the second. Figures 4 and 5 summarize the
three steps of the scenario’s second phase.

To help government forces to be equally prepared for
the risk, we presented the previous model that provides
a perspective on terrorist attacks using many parameters.
Actually, estimating each of them is a challenging task
because the effectiveness of each component is subject
to tremendous uncertainties. As we try to facilitate an
estimation of victim numbers, it is critical to highlight
the important sources of effects on a population and to
validate ATiPreTA using the mean squared error (MSE)
and the Pearson correlation coefficient r as developed in
the following section.

Table 1. Ranges of parameters in terms of threats and vulnera-
bilities.

Low Medium High

Threat

λ [0,0.2] ]0.2,1] ]1,5]
γ [3,5] ]0.2,3[ ]0,0.2]
α [0,0.1] ]0.1,2.5] ]2.5,5]
N 0 ]0,0.6] ]0.6,1]
tinter [0,5] ]5,20] ]20,500]
T (0) 1 ]1,8] ]8,500]

Vuln.

tsupport [0,15] ]15,25] ]25,100]
β [20,100] ]10,20] ]10,0]
G(0) [0,15] ]15,20] ]20,500]
P (0) [0,15] ]15,35] ]35,500]
μ(0) [0.7,1] [0.4,0.7[ [0,0.4[
stepµ [0.03,1] [0.01,0.03[ [0,0.01[

4. Research questions

To validate our model along with the terrorist attack
classification strategy, in Section 4.1 we undertake an
experimental analysis using several evaluation criteria.
In Section 4.2, we study the parameter settings which
influence the resulting class assigned to terrorism attacks.
Then, we discuss the obtained results in Section 4.4. To
simplify the calculation and to be more realistic, in this
section, we use the outputs presented as real numbers.

4.1. Experimental environment. In Section 3.2,
we developed a subjective classification of terrorist
attacks which is governed by two criteria: threat and
vulnerability. In this section, we aim to validate
Assumption A6 by highlighting the relation between
the proposed classification and ATiPreTA. Therefore,
we dissociate those criteria into qualitative numerical
parameters extracted from ATiPreTA. Our prediction
model includes parameters that have an impact on two
basic classification criteria: terrorist threat and victim
vulnerability. Each criterion is influenced by a parameter,
and the degree of influence varies from one parameter
to another. For example, on the one side, the initial
size of a population P (0) has a direct impact on the
vulnerability level of targets. Conversely, it indirectly
influences terrorists’ threat level according to Eqn. (4).
We assume that a parameter is attributed to a criterion
only if it has a direct and high level effect, as will be
shown below. Besides, we do not consider the effect of
any correlation between parameters on the criterion. To
rate those parameters using the different scales shown
in Table 1, we elicited knowledge, for evaluation, from
experts of the field. Then, we used the results of multiple
executions of the simulation to validate them. Thus, we
were able to choose the range of each parameter. The
obtained intervals become the benchmark for simulation



ATiPreTA: An analytical model for time-dependent prediction . . . 503

users to select parameters according to the class of the
terrorist attack.

To quantify the two criteria of the proposed
classification, the experts used 12 parameters of
ATiPreTA. We set λ, α, γ on a scale between 0 and 5,
where tinter, tsupport, G(0), β, P (0) and T (0) vary between
0 and 500. Besides, the parameters N , μ(0), and stepµ

were set between 0 and 1. The range of values, cf.
Table 1, shows the increasing level of the threat and the
vulnerability in terms of those parameters.

To extract the values of the parameters related to the
two terrorist attacks used for validation, we aim to analyze
their real operational circumstances, as presented in the
following subsection (Tables 2 and 3).

4.2. Parameter settings. First, let us briefly describe
facts that happened during a real terrorist attack SA in
Tunisia, when 38 persons were killed. The terrorist
in question stalked through a Tunisian beach resort
in Sousse. He killed people on the beach and then
moved into the grounds of a five-star hotel, picking off
tourists by the pool, near the lobby and in the parking
area. After 22 minutes, government forces intervened
and neutralized him eight minutes later in a street near
the hotel. Superposing information extracted from our
confidential sources onto the attack process, we conclude
that even if the terrorist received good training in Libyan
hotbeds of tension so that N = 1, he would not have
significant impact on government forces. Referring to
the number of victims, we assume the terrorist’s high
impact on a population. Based on our information,
government forces had some knowledge of the terrorist
before their intervention. Table 2 presents the different
parameters used to simulate this attack. Those parameters
are obtained by analysing the real circumstances of the
attack.

Second, a summary is presented of what happened
during a real terrorist attack BA. Three assailants attacked
tourists at the Bardo National Museum in Tunis City,
Tunisia. The assailants first opened fire on people in buses
outside the museum. The hostages were rescued several
hours later. At least 21 civilians and a policeman were
killed. After 15 minutes, government forces intervened.
Terrorists were trained in Derna, Libya. This city was
controlled by Islamic groups that proclaimed loyalty to
the Islamic State. After two hours and 30 minutes, two
terrorists were neutralized and one third are currently at
large. Based on this information, we use the parameters
presented in Table 3 to simulate the BA. Then, we
obtained, from different sources, some statistical results
about the real characteristics of a population, government
forces, and terrorists during the course of action. We
note that these data have never been mentioned or used
previously in a scientific paper. We present them, for the
first time, in Table 4, where we show government forces,

Fig. 6. Real and predicted size of government forces (BA).

Fig. 7. Real and predicted size of a population (BA).

Fig. 8. Real and predicted size of a population (SA).

the number of terrorists, and the size of a population in
a five-point time sequence for the SA and a twelve-point
time sequence for the BA.

After mentioning the real data used for the
experimental analysis, we ran our model to predict the
numbers of the three actors in question (G, T , and P ) and
compare them with real metrics in both attacks. Hence,
we show some results in Figs. 6–8, where we note an
almost perfect match of values (the next subsection will
be devoted to discussing the results).

Once applying ATiPreTA using data for prediction,
we use now evaluation criteria to assess and estimate the
quality of our simulation results.

4.3. Performance metrics. For the first part of the
evaluation, the following two criteria are used:

• Mean squared error (MSE): The MSE criterion
measures the average of the squares of the errors.
These errors refer to the differences between the
estimated numbers of the different actors and their
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Table 2. Parameter settings used for the Sousse attack simulation.

Parameters Values Argumentation

N 1 The terrorist receives good training in Libyan hotbeds of tension.
G(0) 15 The initial number of government forces intervening during the attack.
P (0) 100 An average number of civilians in range of the terrorist.
T (0) 1 Only one terrorist committed the attack.
α 0.06 The terrorist presents a low level of threat to government forces due to his location

when they intervene.
λ 0.63 The terrorist presents a medium level of threat to civilians because he is only armed

with an assault rifle and not a weapon of mass destruction or explosives.
γ 0.006 The targets were tourists on a beach and are considered high vulnerability targets.
β 0 There was no support until the end of the mission.
stepµ 0.05 Due to the many witnesses, we obtain a significant volume of information. Therefore,

we use a large incremental step of intelligence.
μ(0) 0.5 Government forces have initial information about the attack due to two policemen

present from the beginning of the attack.
tinter 22 Real time of intervention.
tsupport – There is no support.

Table 3. Parameter settings used for the Bardo attack simulation.

Parameters Values Argumentation

N 0.6 Only two terrorists receive good training in Libyan hotbeds of tension.
G(0) 14 The initial number of government forces that intervened.
P (0) 340 The number of civilians present in the museum.
T (0) 3
α 0.04 The terrorist presents a low level of threat to government forces due to his location

when they intervene.
λ 0.22 The terrorist presents a medium level of threat to civilians because he is only armed

with an assault rifle and did not use a weapon of mass destruction or explosives.
γ 0.0005 Targets are tourists in a crowded museum which are considered high vulnerability

targets.
β 15 There was no support until the end of the mission.
stepµ 0.0065 Due to the panic and contradictory information sources, we use a small incremental

step for intelligence.
μ(0) 0 Government forces have no initial information about the attack.
tinter 15 This is the conventional time for intervention. The attack occurred close to several

bases.
tsupport 20 Information extracted from the course of action.

Table 4. Real information about terrorist attacks.
Time (min) 0 15 20 22 30 45 60 75 90 120 135 150

Sousse attack
G 0 0 0 15 15
T 1 1 1 1 0
P 100 73 62 62 62

Bardo attack
G 0 14 14 27 27 48 48 58 76 88 106 106
T 3 2 2 2 2 2 2 2 2 2 1 0
P 340 326 325 321 321 319 319 319 319 319 319 319



ATiPreTA: An analytical model for time-dependent prediction . . . 505

real dynamic values during the attack in time (Chai
and Draxler, 2014). The MSE is a risk function
corresponding to the expected value of the squared
error loss. Let us define a(t) and p(t) respectively as
the estimated and the observed values over time and
n as the number of observations. Table 5 shows the
scale of every component during the attacks obtained
by the MSE. This criterion is defined as follows:

MSE =
1

n

n∑

t=0

(a(t)− p(t))2. (10)

• Pearson’s correlation coefficient (r): This criterion
refers to the linear association between two sets
of values (e.g, real and predicted). It provides
a coefficient bounded between −1 and 1 and
implies a linear equation that perfectly describes the
relationship between the predicted value at and the
real value pt (Benesty et al., 2009). A value of 1
implies that all data points lie on a line for which at
increases as pt increases. The value −1 implies a
totally negative correlation where pt increases when
at decreases by the same amount. A value of 0
implies that there is no linear correlation between the
variables. If A and P present the two sets of values
over time referring, respectively, to the predicted and
real data, Pearson’s correlation coefficient (rAP ) is
therefore defined as follows:

r
AP

=

∑NbT
t=1(at − a)(pt − p)√∑NbT

t=1 (at − a)2
√∑NbT

t=1 (pt − p)2
,

(11)
where at and pt are the values from A and P ,
respectively, at instant t, ‘NbT’ presents the number
of instances taken into account for a terrorist attack,
and a and p are their mean values.

The results obtained according to the above
evaluation criteria are shown in Table 5 and discussed in
the next subsection.

4.4. Results, analysis and a discussion. Our proposed
model is developed using the R software for statistical
computing. In terms of results, Figs. 6–8 show three
plots intended to compare real data with those predicted
by ATiPreTA regarding the scale of government forces
during BA, a population during the BA, and a population
during the SA, respectively. In fact, the links between our
six assumptions presented in Section 3.1 and the obtained
results are obvious. It is also clear, in these figures, that
casualties decrease when government forces intervene.
This due to terrorists’ conduct, which implies that for
government forces terrorists are their primary target that
must be neutralized. Moreover, the staircase shape of the
predicted size of government forces in Fig. 6 is due to

the constant support mentioned in Assumption A2. In
the case of the BA, the scale of support has a greater
effect than terrorists on government force numbers during
a counter-terrorism action.

In addition, Table 6 shows that the ATiPreTA process
prevailed in terrorists being killed in the BA and SA.
This result calls attention to Assumption A5. The real
results are presented in point form because we do not have
immediate information on the entire attack. Besides, the
outputs of our model are real numbers, but to be more
realistic, we have chosen to round them off to integers (as
is the case with the values within Table 4).

In terms of the two evaluation criteria used, the
results, as shown in Table 5, highly support our proposal.
This table offers prediction results obtained by ATiPreTA
according to the mean squared error and Pearson’s
correlation coefficient analyses as well as over five
instances for the Sousse attack and twelve instances for
the Bardo attack. The mean values of both the criteria
have also been calculated.

We remark, from Table 5, that the results also highly
support our proposal. For instance, we note that the MSE
values are null for both the government (G) and terrorist
(T) variables for the Sousse attack. Actually, the best
results are reached when the MSE is closest to zero.

Regarding the second evaluation criterion, for both
attacks, we note a very high correlation average among
the three actors, where the mean r is equal to 0.999 (� 1)
for the Sousse attack and 0.934 for the Bardo attack. This
supports ATiPreTA and reflects its validity since results
mention a good match between the predicted and real
values.

Even though we succeed in proving our model’s
effectiveness, our estimator may not be the most
representative terrorist-attack model. This dilemma is
due to the variety of scenarios during attacks. We
acknowledge that we could not meet all the challenges
of tracking terrorism through scenario generation and
structuring with only a single model or methodology.

Moreover, integrating intelligence awareness during
intervention and the psychology of terrorist behavior
and its effects on targeting victims have assigned a
greater value to ATiPreTA as a well-established risk-based
methodology. We could say that ATiPreTA is a useful tool
with a creative aspect. In the next section, we select the
parameters with a high impact on the number of victims.

In our case, the large number of parameters is a
positive factor because it allows various scenarios to be
simulated. The performance of the method is tested
for two reasons: the scarce information sources and the
secrecy in this field. Hence, we tested ATiPreTA on two
real cases that we were able to collect and provide. In this
paper, our proposed model treats the increasing number of
government forces as a step function.
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4.5. Sensitivity analysis. In this section, we analyse
the stability of ATiPreTA through discussing the effect of
modifying the input values on the final victim numbers
VP(tfinal) and on the time needed for the process to end
tfinal; cf. Assumption A5.

4.5.1. Testing strategy. To visualize the effect of
each variable separately, we follow a three-step process
in this analysis. The process allows us to study the
sensitivity of the inputs by modifying them individually
(“one-at-a-time”: OAT) (Saltelli and Annoni, 2010); the
others remain fixed at a nominal value.

As the first step we select the real case that was
simulated in Section 4. To obtain more useful results,
we choose to perform our sensitivity analysis on the BA.
For the second step, we fix the values of all the input
parameters at a nominal value for the selected real case
excepting the targeted parameter, which varies over its
prescribed range in Table 1. In the third step, ATiPreTA is
executed for each value of the targeted parameter till the
number of terrorists, a population or government forces
reaches zero; cf. Assumption A5. In each run, the results
of three types of sensitivity criteria are saved to identify
those with the greatest impact on the number of victims
and on the time needed for the process to end:

• The first sensitivity criterion is the variation
produced by ATiPreTA shown in the first and third
columns of Table 6. The values are obtained by
subtracting the greatest lower bound from the least
upper bound of the variation range. For example,
if we run ATiPreTA with varying N in its range in
Table 1, the number of victims varies in [9.63, 28.92].
The amplitude of the interval of the number of
victims presents the victim variation for N shown in
the first column of Table 6.

• The second sensitivity criterion is the variance of
VP(tfinal) and tfinal. If a variance is equal to zero,
then this means that all observations are equal to their
values’ mean, implying that there is no variation.
Conversely, the higher the variance, the greater the
dispersion of observations. The different variance
values are shown in Columns 2 and 4 of Table 6.

• The last evaluation criterion is the average speed of
the first criterion in relation to the variation of the
inputs. First, we calculate the instantaneous speed
Sinst, which refers to the derivative for each i-th
execution of ATiPreTA:

Sinst(i) =
output(i)− output(i − 1)

input(i)− input(i− 1)
. (12)

Then, we obtain the average speed by calculating the
mean of the instantaneous speeds. This gives us an
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Table 6. Sensitivity data.

Variation
Variance of the

number of victims

Variation
in the scenario

duration

Variance
of the scenario

duration

Average speed
of victim variation

Average speed
at which the scenario

duration varies

μ(0) 0.4828306 0.02629627 35 147.4727 0.4828306 −35
α 1.114241 0.06946913 156 1541,833 −0,1711104 −28
β 12.34544 2.017563 320 1873.345 −0.02469096 −0.64
λ 338.97 13374.08 160 4755.278 67.79401 −29,6
N 19.29107 40.94239 1 0.2727273 19.29107 1
tinter 337.6689 11592.51 266 2390.2 0.6766912 0.1783567
T (0) 333.15 3294.167 374 1280.341 0.6676352 −0.1883768
G(0) 0.9696636 0.04742185 151 617.7992 0.000124353 0.11
stepµ 0.4655029 0.01813684 17 26.05455 0.4525413 −17
P (0) 22.66085 8.00012 193 1012.49 0.04531443 0.308
tsupport 5.32197 2.399035 219 2943.568 0.0532197 2.19
γ 1.352601 0.09922564 44 45.28314 −0.2705202 −8.8

idea of the rate of variation in the outputs relative to
the inputs. The average speeds are shown in the 5-th
and 6-th columns of Table 6.

4.5.2. Variation analysis. In this subsection, we
establish a connection between the numerical results of
Table 6 and their interpretations in reality. Figure 9 shows
that, when we vary tinter, T (0) or λ, the amplitude of the
interval of the number of victims reaches high values. The
intervals vary with amplitudes of 337.6689, 333.15 and
338.98 (Table 6).

We conclude that the initial number of terrorists
T (0), their capability of inflicting severe damage on their
targets (λ), and the time needed for the first response
to the attack (tinter) are the criteria that have a major
impact on the final victim numbers VP(tfinal). As shown
in Fig. 9, a fast response to terrorist attacks saves lives
and allows us to control the situation and limit material
damage. For that reason, modifying tinter greatly affects
the numbers of victims. In the case of the Bardo attack, a
slow and delayed response led to a total loss of a civilian
population targeted by terrorists. This hypothesis is the
wide amplitude of the victim range that reaches 337.6689.

The duration of the mission tfinal, in the second
column of Table 6, is highly influenced by changing
tinter and T (0). These two inputs have maintained their
influential weight. In addition, although the effect of
the size of the periodic support β is limited after the
intervention of government forces, we note that its impact
on tfinal is interesting. We also find that the size supporting
forces β and the debit of their support during the mission
tsupport highly influence the mission duration, whereas
they have negligible influence on the number of victims.
We notice that the size of the support forces β and the
reduction of their support tsupport during the mission highly

influence the mission duration, while being negligible on
the numbers of casualties. Thus, we assume that those
parameters also impact the numbers of government forces
and terrorists.

Figure 9 shows that β has a wider range of variation
in the scenario duration than tsupport (320 and 219,
respectively). However, the average speed of this variation
is higher for tsupport in Table 6, which means that the size
of supporting forces has a impact than their supporting
debit.

4.5.3. Variance analysis. We have already explained
the meaning of variance in the description of our
sensitivity analysis. We visualize that the casualty count
has a high variance (13374.08) with a high average speed
(67.794) when we vary λ. We conclude that it rapidly
increases when λ increases.

Table 6 shows that the variance of the number
of victims is also high when we vary tinter and T (0)
(11592.51 and 3294.16, respectively). Otherwise, their
average speed is low (0.67 and 0.66, respectively). We
conclude that the number of victims increases until a
certain threshold is reached. At this threshold, the increase
in the input has no effect on the casualty count.

We highlight that the variance of the scenario
duration is important for variations for all inputs except
for parameter N . The effect of N is stable since an
increase in the degree of the training of terrorists can
only lead to a weighted increase in their efficiency, which
implies a similar effect on the duration of the mission.

4.5.4. Average speed variation analysis. By
analyzing the variation in the average speed, we gain
insight into two issues. The first small variation
regards the average sensitivity of the outputs to the
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Fig. 9. Variations the number of victims and the scenario duration (BA).

Fig. 10. Average speed of the variation in the number of victims and the scenario duration (BA).

input throughout the interval. We notice that if the
interval of the output parameter variation is important
and the average speed of this variation tends toward
approximately zero, then the value of the output varies
exponentially. Yet, if the average speed is also important,
then the output value varies linearly. The second issue is
about the direction of variation in the outputs. If we have a
positive speed, this means that an increase in the values of
the inputs implies an increase in the values of the outputs,
and vice versa.

As shown in Fig. 10, the rate at which terrorists
inflict casualties on a civilian population λ has the highest
positive average speed among the number of victims and
a high range of the number of victims, presented in Fig. 9.
We conclude that a small variation in λ involves a constant
increase in the number of victims throughout the input
range. Actually, even if there is a high variation in the
output intervals for tinter, the average speed for those
variations is positive and around zero.

We conclude, also, that a small variation in tinter

involves an exponential modification of the number of

victims and the duration of the event. Besides, we note
that β and tsupport have an opposite effect on our output
criteria because their average speeds have opposite signs.
Finally, once we analyzed the sensitivity of our model, we
noted that it is coherent when we vary the input parameters
over all their ranges, and that some input parameters have
greater impacts than others.

5. Conclusion

The goal of designing ATiPreTA lies in being able to
predict the size of actors during a terrorist attack taking
into account different parameters. This model allows
decision makers to estimate the number of victims and
predict scenarios to begin their own planning. We note
that our work could be a cornerstone for a future active
DSS that produces real-time solutions for decision makers
during terrorist attacks.

We first reviewed several related research works
and noted that most mathematical methods are static.
Therefore, ATiPreTA blended mathematical equations
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with a dynamic aspect. The actors’ relations are described
by the proposed equations of interaction analysis. The
courses of action in these dynamic scenarios are based on
our military knowledge. Therefore, ATiPreTA provides a
mechanism which follows military planning concepts and
rules.

Finally, we analyzed the sensitivity of ATiPreTA to
variants of the input parameters. We conclude that the
most influential factors in a terrorist attack scenario are
the initial size of terrorist forces, their effectiveness, and
the time elapsed till a first government force reaction.
In addition, we found that the effectiveness of terrorists
depends on their force size and level of training. For
that reason, a small number of terrorists could severely
damage their adversary’s lines. Similarly, the effect
of other parameters could not be ignored due to the
importance of human lives.

The results extracted from ATiPreTA are reasonable
for all inputs modified within their prescribed ranges in
Table 1. Hence, the use of ATiPreTA to support decision
making for predicting 650 terrorism events is an adequate
alternative for some types of terrorist attacks.

In future work, we plan to integrate other parameters
that handle irregular conflicts. Furthermore, we aim
to integrate ATiPreTA, as an intelligence agent, in a
multi-agent model for countering terrorism (Kebir et al.,
2020a). This agent predicts the casualty count in different
cases and compares it with the results obtained from the
multi-agent model to refine the process.
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