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The dark channel prior has been successfully applied to solve the blind deblurring problem on different scene images. Since
the dark channel of the blurry-noise image is similar to that of the corresponding clear image, the sparsity of the dark channel
is less effective for image blind deblurring. Inspired by the fact that a fractional order calculation can inhibit the noise and
preserve the texture information of the image, a fractional order dark channel prior is proposed for image deblurring in this
paper. It is appropriate for kernel estimation where input images and intermediate images are processed by using a fractional
order dark channel prior. Furthermore, the non-convex problem is solved by the half-quadratic splitting method, and some
metrics are used for deblurring image quality assessment. Finally, quantitative and qualitative experimental results show
that the proposed method achieves state-of-the-art results on synthetic and real blurry images.
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1. Introduction

The single image blind deconvolution (SIBD) algorithm
is very significant in computer vision, being applied
to camera image stabilization, medical image clarity,
security monitoring, etc. Particularly, the blurring issue of
images captured by hand-held cameras has become more
common, which is caused by the relative motion between
the object and the camera during camera exposure (Gao
et al., 2019). On the other hand, it is always difficult
and unrepeatable to make a secondary image of the same
scene. Therefore, it is necessary that blurry images can
be restored to relatively high-resolution and discernible
high-quality images.

If the blur is uniform and spatially invariant, then the
blurry image model can be described as follows:

b = k ⊗ f + n, (1)

where b, k, f , and n denote the blurry image, blur
kernel, latent image and noise, respectively. Moreover, ⊗
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denotes the convolution operator. The purpose of single
image deblurring is to estimate the relative blur kernel
k and the latent image f from the single blurry image b
simultaneously. It is a highly ill-posed problem because
there are many diverse versions of latent image f and blur
kernel k, which can lead to the same blur image b.

The challenge of SIBD in the past decade has been
mainly focused on model establishment and problem
optimization. There are some significant algorithms in
SIBD (or motion deblurring), including efficient inference
methods (Shan et al., 2008; Cho and Lee, 2009; Xu
and Jia, 2010; Levin et al., 2011; Xie, 2016; Kotera
et al., 2017), various image priors (Wang et al., 2018; Yan
et al., 2017; Joshi et al., 2009; Ren et al., 2016; Kotera
et al., 2013; Yin et al., 2014), L0 norm form (Xu et al.,
2013; Pan et al., 2014a; Li and Lu, 2016), and the camera
anti-shake algorithm (Fergus et al., 2006). Among them,
image deblurring methods based on image sparsity are an
important aspect. For example, some image deblurring
methods (Pan et al., 2018; Xu et al., 2013) are proposed
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exploiting image sparsity. Pan et al. (2018) set forth an
image deblurring algorithm based on the dark channel
prior (DCP). However, since significant noise changes
the sparsity of the dark-channel result of a blurry image,
the estimate of the blur kernel and the intermediate
image would be affected seriously. Therefore, fusing
image-processing approaches into the DCP may yield
accurate estimates from blurry images.

In this paper, we propose an image blind deblurring
method based on a fractional order dark channel prior
(FODCP) which uses a fractional order operator to
process blurry images. We observe that the dark channel
result of the blurry image becomes darker when the blurry
image has significant noise or less bright pixels. Further,
the dark-channel result of the noise-blurry image is similar
to that of the clear image. Thus, the dark-channel prior is
less effective for restoring the noise-blurry image directly.
By contrast, we find that fractional order theory, including
the fractional differential operator and fractional integral
operator, can effectively process the anomaly signal (Li
and Xie, 2015; 2016). Therefore, the proposed FODCP
can produce the robust dark channel of a noise-blurry
image and estimate the blur kernel by restraining the noise
of the image. Further, the L0 regularized term is used for
computing the sparsity of the FODCP according to Pan
et al. (2018); the optimization with the L0 regularization
term is implemented by using the half-quadratic splitting
method. The contributions of this paper are as follows:

• We analyze the low effect of the dark channel prior
when the blurry image includes typical noise (such
as Gaussian noise).

• For the blurry image, we propose a fractional order
dark channel prior (FODCP), which can suppress the
noise of image and obtain a more significant dark
channel robustly.

• We develop an efficient framework for solving
the optimization problem of the proposed blind
deblurring method.

The paper is organized as follows. The related works
on image deblurring and fractional order calculation
are reviewed in Section 2. Section 3 introduces and
analyzes the proposed FODCP. Section 4 shows how
to solve the single image deblurring problem based on
FODCP. In Section 5, experimental results regarding the
proposed method and other state-of-the-art approaches are
demonstrated. Finally, Section 6 presents the conclusions.

2. Related work

We discuss the related work on image deblurring methods
and introduce the fractional order method for the image
vision problem.

2.1. Image deblurring methods. Recently, deep-
-learning methods have been proposed for solving the
image deblurring problem (Gong et al., 2017; An et al.,
2020). For instance, Li et al. (2019) combined the
traditional deblurring framework to estimate the latent
image after learning the image prior by a non-linear
DNN network. Furthermore, end-to-end models are
used for directly obtaining deblurring results. Kupyn
et al. (2018) proposed an image deblurring network
based on conditional generative adversarial networks,
which can reach a higher processing speed. Further,
edge information (Zhichao et al., 2019) or semantic
information (Fuhai et al., 2019) of the input image
are extracted to modulate the intermediate feature of a
deblurring network. Zhang et al. (2019) proposed a deep
hierarchical multi-patch network for image deblurring,
which can represent the fine-to-coarse hierarchical
feature. However, these methods are designed based on
the black-box principle, which means that it is hard to
explain the mechanism behind their operation.

Therefore, in order to estimate the latent image and
the blur kernel from the blurry image, there are various
deblurring methods adding some image priors, which can
avoid the trivial solutions for the blur kernel.

Some papers proposed a deblurring method based
on different image priors. Chen et al. (2010) proposed
a method combining an image gradient histogram to
fit the distribution of the image gradient and used that
for image deblurring. Shan et al. (2008) designed a
two piece-wise continuous function to fit the logarithmic
gradient distribution of natural images and used it to
deblur an image. Fergus et al. (2006) used a zero-mean
mixture of Gaussians to represent the distribution of
gradient magnitudes of the image, and image deblurring
was proposed by the maximum a-posteriori (MAP)
solution. In the work of Kotera et al. (2013), heavy-tailed
priors of the image and alternating MAP solutions
were used to construct the deblurring image framework
whose non-convex optimizing problem was solved by the
augmented Lagrangian method.

Since the above natural image priors favor clear
images, rather than blurry ones, heuristic edge selection
has been used for estimating the kernel. Cho and Lee
(2009) proposed a multi-scale framework by predicting
solid edges of the intermediate image, which can
accelerate the estimation of the blur kernel. Xu and Jia
(2010) set forth a two-phase method for kernel estimation
by further expansion of the results of Cho and Lee (2009).
Sun et al. (2013) proposed a patch prior by constructing
a set of edge patches from example patches and used
that to recover the intermediate image. Further, Lai
et al. (2015) introduced intermediate shape patches for
image deblurring by added normalized color-line priors
into Sun’s method (Sun et al., 2013). However, these
methods would be inefficient when there are not enough
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step edges in the input image.
On the other hand, low-rank priors of the image

have been developed and successfully applied to image
modeling. Pan et al. (2014b) estimated the blur kernel
based on salient edges and a low rank prior. Yan et al.
(2017) observed low-rank properties of image intensity
and image gradient maps and used these to recover the
blur kernel and an intermediate image. In addition,
Wang et al. (2018) proposed an elastic-net regularization
of singular values computed from similar patches of an
image and used it to guide the kernel estimation. However,
a low rank prior would be a problem when an image
contains rich textures located in most regions or nearly
in the whole image.

Recently, L0 sparsity has been developed as the
regularization term and used for image deblurring (Xu
et al., 2013). Pan et al. (2014a) proposed a method for text
image deblurring, which used the L0 regularization term
for image intensity and image gradient. Furthermore, Li
and Lu (2016) introduced a blind image motion deblurring
method by adopting L0 regularized priors both in the
kernel and latent image estimation. Pan et al. (2018)
proposed a deblurring method by using the dark channel
prior and an L0 regularization term for the image gradient
and the dark channel image. Pan et al. (2018) proved that
the dark channel of the clear image was sparse, and it
was different from that of a blurry image. However, the
dark channel prior is less effective for estimating the blur
kernel and the intermediate image when the input image
includes significant noise. Therefore, this paper promotes
the method of Pan et al. (2018), which can improve the
quality of the deblurring image.

2.2. Fractional order calculus. Fractional order
calculus is a generalization of the integer order calculus
(Matychyn and Onyshchenko, 2021). It is a mathematical
problem for studying the properties and applications of
an arbitrary fractional order operator. In recent years,
fractional order calculus has been successfully applied
to image processing. Jia and Pu (2008) argued that
the performance image edge detection using fractional
differentials is better than that of integer order mask
operators. Recently, Li and Xie (2015; 2016) proposed
an approach for defining the fractional order value
adaptively and used it for the denoising and enhancement
of medical images. It is shown that the changes in the
signal using fractional order processing are nonlinear.
For example, when fractional order calculus is used
to enhance the signal, the high-frequency component
would be nonlinearly enhanced, and the low-frequency
component of the signal would be preserved as soon as
possible. Fractional order calculus is used for restraining
noise and preserving textures. In order to enforce sparsity
and the constraint of the dark channel of the image,
we propose an FODCP. In this paper, fractional order

calculus is used to restrain the noise and preserve textures,
which effectively extract the dark channels of input and
intermediate images.

3. Fractional order dark channel prior

In this section, we first describe the theory. Then, we
characterize the dark channel prior based on the work of
Pan et al. (2018). Finally, we introduce the theory of the
proposed FODCP.

3.1. Fractional order theory. Fractional order
calculation, whose order is arbitrary, is an extension
of integer calculation. There are mainly three
defining formulas of fractional order calculation,
including the Grunwald–Letnikov (G–L) definition, the
Riemann–Liouville (R–L) definition, and the Caputo
definition. Since G–L is the most popular definition used
in digital image processing, we employ fractional order
calculation with the G–L definition in the paper. Taking
a one-dimensional signal f(t) as an example, the G–L
definition of signal f(t) can be written as follows:

Dv
G-Lf (t) = lim

h→0
h−v

q∑

j=0

(−1)j
(
v

j

)
f (t− jh), (2)

where q = [(b− a) /h], [x] denotes the operator for
extracting the integral part of input x, and h denotes the
step. Here (

v

j

)
=

Γ (v + 1)

j!Γ (v − j + 1)
.

Γ (x) denotes the Gamma function

Γ (x) =

∫ ∞

0

e−ttx−1 dt.

In order to use fractional order theory for image
processing, (2) should be rewritten as an algebraic
expression. For the one-dimensional signal f(t), we get
the following form of (3):

Dv
G-Lf (t) = f (t) + (−v) f (t− 1)

+
(−v) (−v + 1)

2
f (t− 2)

+ · · ·+ Γ (−v + 1)

n!Γ (−v − n+ 1)
f (t− n) .

(3)

When the order is set as v > 0 , Dv
G-L denotes the

fractional differential operator of order v. Otherwise,
Dv

G-L denotes the fractional integral operator of order v
when the order is set as v < 0.

Then, we compute the fractional order of eight
directions at each pixel. Finally we construct the
fractional order operator by fusing the fractional order
calculation of eight directions, cf. Li and Xie (2015;
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2016). The fractional operator Dv
G-L can be constructed

as follows:

Dv
G-L = ξv ×

⎡

⎢⎢⎢⎢⎣

V 0 V 0 V
0 −v −v −v 0
V −v 8 −v V
0 −v −v −v 0
V 0 V 0 V

⎤

⎥⎥⎥⎥⎦
, (4)

where V =
(
v2 − v

)/
2,

ξv =
1

8− 12v + 4v2
.

If an input s(t) is a square-integrable energy
signal, the frequency response of s(t) with a fractional
differential operator and a fractional integral operator is
described as shown in Figs. 1(a) and (b), respectively.
According to Fig. 1(a), the fractional differential operator
can retain the low-frequency part (textures) of signals
(image) while the fractional differential operator enhances
the high-frequency part (edges) of the signal. In addition,
the low-frequency part of the image can be enhanced as far
as possible when the fractional integral operator inhibits
the noise of the image, as shown in Fig. 1(b).

3.2. Fractional order dark channel prior. The dark
channel (He et al., 2009) of image f is defined as follows:

D (f) (x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
f c (y)

)
, (5)

where x and y are the pixel location, f c denotes the
c-th channel of the image f , and Ω(x) is a local patch
of the image at x. If the image is a gray one, its dark
channel only processes one channel. According to He
et al. (2009), the dark channel of a natural image, like a
free fog image and clear image, is close to zero. Further,
Pan et al. (2018) observed that the dark channel of a blur
image has fewer dark pixels than the one of a clear image
and proposed a blind deblurring method based on the dark
channel prior.

However, we observe that most pixels in the dark
channel of a noisy blurry image would become darker
when the blurry image has some significant noise. To
explain this phenomenon, we define the blur operator and
analyze the properties of noise-free blurry images and a
noise-blurry image.

For blurry images B, each pixel of B is defined a
linear combination of a patch of clear image I and a blur
kernel k, which can be written as

B (x) =
∑

z∈Nk

I
(
x+

[ s
2

]
− z
)
k (z)

subject to

k (z) ≥ 0,
∑

z∈Nk

k (z) = 1, (6)
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Fig. 1. Frequency response of signal s(t) with each fractional
order based on a different operator: fractional differen-
tial operator (a), fractional integral operator (b).

where Nk and s denote the domain and size of blur kernel
k, and [·] denotes the rounding operator.

To generate the noise-blurry image, we use the
imnoise function of the MATLAB software for
simulating random Gaussian noise. According to the
MATLAB file, the Gaussian noise n in this paper is
defined as follows:

n (x) = M +
√
σ × randn(a), (7)

where M and σ denote the mean and the variance of
n, respectively, and randn(a) denotes the function that
produces a matrix of size a × a with standard normal
distribution.1 Then, the noise-blurry image Bn(x) is
defined that the blurry image B(x) with added Gaussian
noise n(x) (assumed that the mean of n is 0 and the

1In fact, the elements of randn(a) have a high probability of being
negative.
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variance of n is σ in this paper). It can be expressed as
follows:

Bn(x) = B(x) + n(x) (8)

Next, we analyze why the noise-blurry image Bn(x)
would have more dark pixels after processing by the DCP.

Proposition 1. N(x) denotes a patch centered at pixel
x whose size is the same as that of the blur kernel. Let
D(f)(x) denote the dark-channel operator of signal f .
We have

D (I) (x) ≤ D (Bn) (x) ≤ D (B) (x) . (9)

Proof. The detailed derivation can be found in the work of
(Pan et al., 2018). Firstly, based on the definition of (6),
we have

B(x) =
∑

z∈Ωk

I
(
x+

[s
2

]
− z
)
k (z)

≥
∑

z∈Ωk

min
y∈N(x)

I(y)k (z) = min
y∈N(x)

I(y).
(10)

Thus, it is clear that

D (I) (x) ≤ D (B) (x) . (11)

Similarly, we can obtain that

D (I) (x) ≤ D (Bn) (x) . (12)

Secondly, we define two positive numbers, ε1 and ε2.
Based on (7), we have −ε1

√
σ ≤ n(x) ≤ ε2

√
σ. Thus,

we have B(x)− ε1
√
σ ≤ Bn(x) ≤ B(x)+ ε2

√
σ. In this

paper, the size of N(x) is set as 35×35. It is reasonable to
assume that there are some pixel values of Bn(x) that are
not larger than the value of blurry image B on the domain
N(x). Based on statistical regularity and the definition of
the dark channel, we have

D (Bn) (x) = D (B + n) (x)

= min
y∈N(x)

[
min

c∈{r,g,b}
(Bc (y) + nc (x))

]

≤ min
y∈N(x)

[
min

c∈{r,g,b}
Bc (y)

]
= D (B) (x) .

(13)

Based on (11)–(13), we can obtain D (I) (x) ≤
D (Bn) (x) ≤ D (B) (x). �

Note that when the blurry image is corrupted with
significant noise, the pixel values of the dark channel of
the blurry-noise image tend to become smaller, as shown
in Fig. 2. Therefore, after combining some properties
of fractional order calculation, we propose an FODCP
to obtain the robust dark-channel result, improving the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Dark-channel results using DCP and FODCP: clear im-
age (a), blurry image (b), blurry image with Gaussian
noise (c); (d)–(f) are dark-channel results using DCP
with (a)–(c), respectively; (g)–(i) are dark-channel re-
sults using FODCP with (a)–(c), respectively.

quality of the estimated kernel and image. The definition
of the FODCP is as follows:

D (fv) (x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
f c
v (y)

)
, (14)

where fv=Dv
G-L ⊗ f .

To explain why the FODCP can effectively process
the blurry image with or without significant noise, we
introduce an example by using the DCP and an FODCP
(the value v is set as −0.6) for the noise-free and the
noise blurry image, respectively. We choose one picture
from the data set (Lai et al., 2016). On the one hand,
if the blurry image has less significant noise, we find
that the result produced by the FODCP is similar to the
one by the DCP, as shown in Fig. 2(b). On the other
hand, if the blurry image is influenced by considerable
Gaussian noise, the dark channel of the noise-blurry
image produced by the DCP has fewer bright pixels and
it is similar to a clear image. Thus, this dark channel
is unable to help the estimation of the kernel and the
intermediate image. In comparison, the dark channel of
the noisy-blurry image produced by the FODCP is similar
to the bottom one of Fig. 2(b). Therefore, the FODCP
is robust in obtaining the dark-channel result irrespective
of whether the noise-blurry image or the noise-free blurry
image is processed.
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4. Proposed method

In this section, we propose an image deblurring method
using the FODCP. Then, we set forth optimization for
estimating the blur kernel.

4.1. Proposed deblurring model. According to the
MAP framework and the image blur model of (1), we
construct the deblurring problem as follows:

{f, k} = argmax
f,k

p(f, k|b)
= argmax

f,k
p (b|f, k) p (f) p (k) . (15)

We take the negative log-likelihood of (15) and get
the following deblurring model:

{f, k} = argmin
f,k

l(f ⊗ k, b) + γφ(k) + λϕ(f). (16)

The first term of (16) is named the data fidelity term,
which means that the recovered image is consistent with
the input image. According to Shan et al. (2008), we use
the L2 norm to penalize the difference between f ⊗ k and
b in this paper,

l (f ⊗ k, b) = ‖f ⊗ k − b‖22 . (17)

The second term of (16) denotes the kernel prior,
which is used to enforce the blur kernel. Similarly to Cho
and Lee (2009), the L2 norm is used to estimate the blur
kernel as follows:

φ (k) = ‖k‖22 , ki ≥ 0,
∑

i

ki = 1. (18)

As shown by Cho and Lee (2009), who studied the
kernel prior and the data fidelity term, the kernel can be
constructed easily by the fast Fourier transform (FFT).

The last term of (16) is the image prior. Due to
the effect of the noise-blurry image, the dark-channel
result is close to that of a clear image, which is unable
to help the estimation of the kernel and the intermediate
image. The proposed FODCP can solve this problem.
After processing the image with the FODCP, the effect
of the dark channel is robust. In addition, we consider the
sparsity of the image gradient (Pan et al., 2014b) and use
it for image deblurring. Therefore, the image prior term
can be represented as follows:

ϕ (f) = σ‖∇f‖0 + λ‖D(fv)‖0, (19)

where ∇= [∇h,∇v]
T denote the gradient operators and

the form of D (fv) is the same as that of (14). It is useful
to estimate the blur kernel and intermediate image by
using the L0 norm for denoting the sparsity of the image
gradient and the fractional order dark channel.

4.2. Optimization. Based on the previous discussion,
we can derive the following minimization formula (20) for
image deblurring:

{f, k} = argmin
f,k

‖f ⊗ k − b‖22
+ λ‖∇f‖0 + μ‖D(fv)‖0+γ ‖k‖22 ,

(20)

Alternating optimization of f and k in an iterative
process is a successful approach for image deblurring.
From (20), we can respectively solve the estimation of the
latent image and the blur kernel as follows:

−
f = argmin

f
‖f ⊗ k − b‖22 + λ‖∇f‖0

+ μ‖D(fv)‖0, (21)
−
k = argmin

k
‖f ⊗ k − b‖22 + γ ‖k‖22 . (22)

4.2.1. Estimation of the latent image. In this
subproblem, the blur kernel is fixed. In order to optimize
the latent image, we use the half-quadratic splitting
method (Xu et al., 2013) by adding two auxiliary variables
g and l into (21). The function (21) can be rewritten as
follows:

{
−
f,

−
g,

−
l } = argmin

f,g,l
‖f ⊗ k − b‖22 + α ‖∇f − g‖22

+ β ‖D(fv)− l‖22 + λ‖g‖0 + μ‖l‖0,
(23)

where α, β, λ, and μ are positive parameters. As α, β →
∞, the estimate f of function (23) is close to the estimate
f of the function (21).

Firstly, we fix g and l to determine the latent image
f . We get

−
f = argmin

f
‖f ⊗ k − b‖22

+ α ‖∇f − g‖22 + β ‖D(fv)− l‖22 ,
(24)

where fv = Dv
G-L ⊗ f .

For the optimization of (24), we modify D(fv).
According to Pan et al. (2018), the dark channel prior
function D(f) is nonlinear and should be replaced with
an equivalent linear operator M . The operator M is a
mapping matrix used to map the pixel to its dark channel.
M is defined as follows:

M(x, y) =

{
1, y = arg min

y∈Ω(x)
f(y),

0, otherwise.
(25)

In this paper, a dark channel prior is added the
fractional operator to improve the blurring image’s dark
channel. Therefore, we should compute the mapping
matrix Mv

D of D(fv) after the fractional operator
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processes the intermediate image. The function (24) can
be rewritten as follows:

−
f = argmin

f
‖f ⊗ k − b‖22

+ α ‖∇f − g‖22 + β ‖MDvf − l‖22 ,
(26)

where MDvf=M(Dv
G-L ⊗ f). According to Shan et al.

(2008), the latent image f of the function (26) can be
computed by the FFT,

f = F−1

(
F (k)
 F (b) + αFg + βFMl

F (k)
 F (k) + αF∇ + βFM

)
, (27)

where Fg=F (∇h) 
 F (gh) + F (∇v) 
 F (gv),
FMl = F (MDv)
 F (l), FM = F (MDv)
 F (MDv),
F∇=F (∇)
 F (∇), ∇= [∇h,∇v]

T denote the gradient
operators. F (·) and F−1(·) are the FFT and the inverse
FFT, respectively. Here 
 denotes the element-wise
multiplication operator and (·) the conjugate operator.

Secondly, the auxiliary variables g and l can
be computed separately given f . The functions for
estimating g and l are as follows:

−
g = argmin

g
α ‖∇f − g‖22 + λ‖g‖0, (28)

−
l = argmin

l
β ‖D(fv)− l‖22 + μ‖l‖0. (29)

Because (28) and (29) are pixel-wise minimization
problems, the estimates of g and l can be obtained using
the technique proposed by Pan et al. (2014b)

−
g =

{
∇f, |∇f |2 ≥ λ

α ,

0, otherwise,
(30)

and

−
l =

{
D(fv), |D(fv)|2 ≥ μ

β ,

0, otherwise.
(31)

4.2.2. Estimation of the blur kernel. In this
subproblem, the blur kernel is computed given f .
According to Cho and Lee (2009), the blur kernel can be
better estimated based on the gradient image. Therefore,
we use the gradient operator and the L2 norm to estimate
the blur kernel as follows:

−
k = argmin

k
‖∇f ⊗ k −∇b‖22 + γ ‖k‖22 . (32)

According to existing methods, the function (32) can be
computed by the FFT,

−
k = F−1

(
F (∇f)
 F (∇b)

F (∇f)
 F (∇f) + γ

)
. (33)

Algorithm 1. Deblurring by the proposed algorithm.
Require: The blurry image b; Size of kernel k, M ×

M ; the initial blur kernel k0 is set as function δ;
the maximum fractional order vmax; the minimum
fractional order vmin

Ensure: The estimate of kernel k; the estimate of latent
image f .

1: create the image pyramid {b0, b1, . . . , bn};
2: compute the step of changing fractional orders T =

(vmax − vmin)/n (n is decided by M according to
Fergus et al. (2006));

3: for i = 1, 2, . . . , n (coarse level to fine level) do
4: v = vmin;
5: for j = 1, 2, . . . , 5 do
6: while β < βmax do
7: estimate l by optimizing (31);
8: β ⇐ 2μ;
9: while α < αmax do

10: α ⇐ 2λ;
11: estimate g by optimizing (30);
12: estimate f by optimizing (27);
13: α ⇐ 2α;
14: end while
15: β ⇐ 2β;
16: end while
17: estimate k by optimizing (33);
18: μ ⇐ max{μ/1.1, μ0};
19: λ ⇐ max{λ/1.1, λ0};
20: end for
21: v ⇐ vmin + T i;
22: end for

Similarly to state-of-the-art methods, a multi-scale
blind deconvolution framework is used for optimizing the
proposed method. The value of the computed kernel is
set as non-negative (the negative value is set as 0), and
normalization (the sum of all kernels k should equal 1)
in every scale. This means that the blur kernel and the
intermediate image are estimated from coarse-scale to
fine-scale. Thus, the value of fractional order v undergoes
an adaptive change based on the image (kernel) scale
in this framework. When the input image is the most
coarse-scale, the fractional order v is set as −0.6, which
can inhibit the noise of the input image at the beginning.
Further, the fractional order v would be increased linearly
when the scale of intermediate image is bigger. It is to be
noted that the value of v is set as 0.8 when the image is
at fine-scale. In this way, the noise of the input image can
be inhibited at the beginning, and the details of the image
can be enhanced, which is effective for estimating the blur
kernel. The main steps of the proposed method are shown
in Algorithm 1.
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4.2.3. Final image restoration. Once the kernel k
is estimated, there are numerous non-blind deblurring
methods to restore the final image. On the other hand, the
function (27) also can be used to estimate the latent image.
However, if the blurry input image contained considerable
noise, the restored latent image would consist of some
outliers based on the above methods. To obtain a latent
image with clear details, we introduce the non-blind
deblurring method (Zhong et al., 2013) for the restored
latent image after obtaining the final kernel.

5. Experimental results

In this section, we analyze some experiments on synthetic
and real images to show the efficiency of the proposed
algorithm. It should be noted that the metric results from
objective assessment methods would not change with the
subjective factors. Thus, we compare other deblurring
methods with the proposed approach by using several
objective assessment methods, including three kinds of
reference image quality assessment (RIQA) techniques
and one kind of blind image quality assessment (BIQA)
approaches. In this paper, RIQA methods include the
peak-signal-to-noise ratio (PSNR), structural similarity
(SSIM) and multi-scale structural similarity (MSSSIM)
(Wang et al., 2003). On the other hand, we also use the
BIQA method for the analysis of the image quality (Liu
et al., 2013). In all experiments, the following parameters
are fixed: μ0 = 4 × e−2, λ0 = 4 × e−3, βmax = 8,
αmax = 1× e3 and γ = 2. The dark channel is computed
in a neighborhood of 35× 35.

5.1. Synthetic images. In this section, we
quantitatively compare the performance of state-of-the-art
deblurring methods with the proposed one on a data set
with that of synthetically blurred images (Kohler
et al., 2012). We use the set of 48 images generated from
four images and 12 different kernels. The state-of-the-art
deblurring methods (Cho and Lee, 2009; Xu and
Jia, 2010; Kotera et al., 2017; Pan et al., 2018; Fergus
et al., 2006) are used in the comparison.

Figure 3 shows the average PSNR, SSIM, and
MSSSIM performance on this benchmark data set by
some classical methods. According to these, the
proposed method displays better performance than other
techniques. It improves the method of Pan et al. (2018),
and its performance is also robust. On the other hand,
the analysis score of some examples by the BIQA method
(Liu et al., 2013) is shown in Table 3. While the BIQA
score of the image is small, the deblurring quality is
low. From Table 3, the proposed algorithm yields a better
score than other methods as for as the average score of
all images is considered. Three images from this data
set and their deblurred results are shown in Fig. 4. It is
easy to see that the estimated kernel by most methods

Fig. 3. Quantitative analysis of the data set of Kohler et al.
(2012) based on the PSNR (top), SSIM (middle), and
MSSSIM (bottom).

is close to the ground truth while the results by existing
methods contain some noise (Cho and Lee, 2009; Fergus
et al., 2006). The deblurred image by Kotera et al. (2017)
has some ringing artifacts as shown in Fig. 4(f). Although
deblurring methods (Xu and Jia, 2010; Pan et al., 2018)
perform well for estimating the kernel, the performance of
deblurring images is not good, and there are some artifacts
in the images.

In addition, two images which contain many textures
and the blur kernel with a large size are used as examples
to further evaluate the performance of the proposed
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Deblurring results on three images from the data set of Kohler et al. (2012). Note that the white frame in the top-right part of
each image is the estimated kernel: blurry images (a), clear images and corresponding kernels (b), Fergus et al. (2006) (c), Cho
and Lee (2009) (d), Xu and Jia (2010) (e), Kotera et al. (2017) (f), Pan et al. (2018) (g), proposed method (h).

(a) (b) (c) (d) (e)

Fig. 5. Deblurring results on two images from the data set of Lai et al. (2016). Note that the white frame in the top-right part of each
image is the estimated kernel: blurry images (a), clear images and corresponding kernels (b), Kotera et al. (2017) (c), Pan et al.
(2018) (d), proposed method (e).

Table 1. Blind image quality assessment of several deblurring
methods on the data set of Kohler et al. (2012).

Methods Average BIQA
Fergus et al. (2006) −13.86
Cho and Lee (2009) −11.53
Xu and Jia (2010) −11.46
Kotera et al. (2017) −13.66
Pan et al. (2018) −11.41
Our method −11.37

method. Figure 5 shows deblurring results obtained by
the proposed method and state-of-the-art ones (Pan et al.,
2018; Kotera et al., 2017). It is noteworthy that the kernels
estimated by the proposed method are clear and close to
the ground truth. As shown in Fig. 5, the estimated kernels
obtained by Pan et al. (2018) are incomplete, so that the
details of deblurred images are not right. Respectively,
the bottom image of Fig. 5(b) has some ringing artifacts
in the details of people. The deblurred result obtained by

Table 2. BIQA evaluation of image deblurring results for the
image of Fig. 6.

Methods BIQA
Blurry image −19.21
Xu and Jia (2010) −15.67
Kotera et al. (2017) −13.08
Pan et al. (2018) −11.24
Our method −10.67

Kotera et al. (2017) has serious ringing artifacts, as shown
in Fig. 5(c).

5.2. Real image. In this section, a challenging real
captured blurry image, whose name is ‘boat’, is used
to evaluate the performance of the proposed method.
We compare our approach with the state-of-the-art blind
single image deblurring methods (Xu and Jia, 2010;
Kotera et al., 2017; Pan et al., 2018). We quantitatively
analyze the deblurred results by using the metrics of BIAQ
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Fig. 6. Deblurring results of the boat image by the state-of-the-
art deblurring methods (note that the bottom-right part
of every result image is the high-resolution display of
the white box in the image). From top to bottom: blurry
image, Xu and Jia (2010), Kotera et al. (2017), Pan et
al. (2018), proposed method.

because the blur kernels and the ground truth images
of the blurry image are unknown. In addition, we also
qualitatively analyze the deblurring results.

Figure 6 shows the deblurring results of the ‘boat’
image. The deblurring image with the proposed method
applied is sharper and clearer than the results of other
methods. Those contain ringing artifacts, as shown in
the zoomed-in region of Fig. 6. The proposed method
generates clearer edges and decreases the ringing artifacts.
In addition, we present the BIAQ values of the images of
Fig. 6 in Table 2.

5.3. Robustness in a blurry image with noise. As
mentioned, the proposed method can be used to process
synthetic and real images robustly. Because fractional
order can inhibit the noise of the image and retain
the texture of the image, the FODCP exhibits better
performance in the blurry-noise image than the DCP. To
demonstrate the effect of the image with noise on the
proposed method, we quantitatively compare it with the
approach by Pan et al. (2018) on the example image in
Fig. 7. The variance of the Gaussian noise is varied from
0.01 to 0.06.

Figure 7 shows some deblurring results of the
blurry image with different noise levels for the proposed
method and that of Pan et al. (2018). Note that
the proposed approach performs favorably against the
state-of-the-art deblurring method since the dark channel
prior is improved. As shown in Fig. 7, the deblurring
results using the method of Pan et al. (2018) contain
more and more noise when the noise level is increased.
Although the PSNR of the deblurring results by the
proposed method is decreasing with the noise level
increasing, our approach exhibits favorable performance
on the noise-blurry images.

5.4. Effectiveness of different parameters. Taking
the data set of Kohler et al. (2012) and that of Levin
et al. (2009) as examples, we explore the performance
of the proposed method with different parameters after
using various image quality measurement methods (PSNR
and SSIM). Here, we mainly consider the parameters
of the proposed method, including the image-gradient
regularization term λ0 and the FODCP regularization term
μ0, and the size of the local patch Ω in the FODCP. It
is to be noted that βmax and αmax should be set as very
large according to Eqn. (23). Thus, βmax and αmax are
respectively set as 8 and 1 × e3, which should be bigger
than the value of μ0 and λ0.

5.4.1. Image-gradient regularization term λ0. The
parameter λ0 is employed mainly to constrain the sparsity
of the image gradient, which improves the quality of the
restored images. Thus, we use the PSNR and SSIM to
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PSNR=26.52

PSNR=29.93

PSNR=26.93

PSNR=29.44

PSNR=26.62

PSNR=28.51

PSNR=26.60

PSNR=27.80

(a) (b) (c) (d)

Fig. 7. Some deblurring results of blurry images which are corrupted with Gaussian noise with variance σ = 0.01 (a), variance
σ = 0.02 (b), variance σ = 0.04 (c), variance σ = 0.06 (d). Note that the PSNR information denotes the quality of image. The
first row denotes the blurry image with a different level noise. The second row denotes the deblurring results using the method
of Pan et al. (2018) of the corresponding images in the first row. Similarly, the third row denotes the deblurring results using
the proposed method.

evaluate the restored image. Here, λ0 is set from 4e−4 to
10. However, the optimization of the proposed algorithm
would be divergent when λ0 is set as more than 1. As
shown in Fig. 8(a), when λ0 = 4e−3, the proposed
method can produce the best performance.

5.4.2. FODCP regularization term μ0. The
parameter μ0 is employed mainly to constrain the sparsity
of dark-channel result. Here, μ0 is set from 4e−3 to 4.
As shown in Fig. 8(b), when μ0 = 4e−2, the proposed
method can yield the best performance.

5.4.3. Size of the local patch Ω in the FODCP. To
select the appropriate size of the local patch Ω in the
FODCP, we evaluate the quality of the data set of Levin
et al. (2009) based on the proposed method with different
sizes of Ω. Here, the sizes of Ω is set from 15×15
to 55×55. The quantitative evaluation of the proposed
method with different sizes of Ω is shown in Table3. It
is clear that the proposed method can yield the best results
(including the PSNR and SSIM) when the size of Ω is

set as 35×35. Meanwhile, time consumption will be high
when the size of Ω is set large. Therefore, we set the size
of Ω as 35×35 in this paper.

5.5. Limitations. Although the proposed method can
improve the deblurring performance of blurry images with
noise, it will be ineffective when the noise level is too
large. As shown in Fig. 9, our method outperforms
that by Pan et al. (2018). When the blurry image is
subjected to noise, the dark channel is destroyed, and
the method of Pan et al. (2018) does not perform well.
Although our approach exhibits favorable performance
on the noisy blurry image, the PSNR of deblurring
results by our method is decreasing when the noise level
increases. It is clear that the proposed method exhibits
poor performance for large image noise levels. Figure 10
shows a blurred image with very severe Gaussian noise.
The proposed method generates the deblurring result still
with significant noise. Therefore, our future work will
consider a better denoising and deblurring method for this
problem.
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(a) parameter λ0

(b) parameter μ0

Fig. 8. Effectiveness of the proposed method with different pa-
rameters on the data set of Kohler et al. (2012).

6. Conclusion

In this paper, we discussed the disadvantage of the
dark channel prior and proposed a simple and effective
improvement in the dark channel prior for image
deblurring. Our fractional order dark channel prior
can yield an effective dark channel of the blurry and
intermediate images simultaneously since it can restrain
the noise and enhance the texture. Furthermore, we also
optimized the minimization problem of the sparsity of the
fractional order dark channel prior by the half-quadratic
splitting method. The experimental results, which are
evaluated by some metrics, show that the proposed
method is effective and robust for single deblurring in
synthetic and real images.
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Fig. 9. Effectiveness of the proposed method on blurry images
with different noise levels.

Table 3. Image quality assessment for the proposed method
with different sizes of Ω on the data set of Levin et
al. (2009).
Size of Ω PSNR SSIM Time(s)
15×15 33.09 0.7552 107.80
25×25 33.28 0.7545 133.20
35×35 33.39 0.7656 171.44
45×45 33.23 0.7471 231.33
55×55 33.19 0.7519 274.08
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