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DYNAMIC ALGORITHM FOR LINEAR QUADRATIC
GAUSSIAN PREDICTIVE CONTROL

ANDRZEJ W. ORDYS*, MADs E. HANGSTRUP** 1
MicHAEL J. GRIMBLE*

In this paper, the optimal control law is derived for a multi-variable state-space
Linear Quadratic Gaussian Predictive Controller (LQGPC). A dynamic perfor-
mance index is utilized resulting in an optimal steady-state controller. Know-
ledge of future reference values is incorporated into the controller design and the
solution is derived using the method of Lagrange multipliers. It is shown how
the well-known GPC controller can be obtained as a special case of the LQGPC
controller design. The important advantage of using the LQGPC framework for
designing predictive controllers is that, based on stabilizing properties of LQG
control, it enables a systematic approach to selection of the design parameters
to yield a stable closed-loop system. The system model considered in this paper
can be further extended to also include direct feed-through and knowledge about
future external inputs.

Keywords: state-space design, multi-variable control, linear quadratic Gaus-
sian predictive control, generalized predictive control

1. Introduction

An increasing popularity of Model Based Predictive Control algorithms may be noted
over the recent years. Among predictive control schemes the Generalized Predictive
Controller (GPC) is perhaps the best known and one of the most successful repre-
sentatives. Several papers analyze the properties of GPC, see e.g. (Clarke et al.,
1987; Clarke and Mohtadi, 1989; Ordys and Clarke, 1993). The GPC is a static va-
riance minimization algorithm, i.e. it separates the dynamic problem into individual
steps and a solution is obtained for each such step. This does not necessarily give the
optimal steady-state solution. Furthermore GPC control formulae do not lend them-
selves easily to an analysis of the closed-loop stability and performance properties
(Bitmead et al., 1990). This is a problem one faces when tuning the GPC controller
parameters.
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As an alternative to static optimization in predictive controllers, dynamic opti-
mization can be used. A range of methods are available to deal with dynamic variance
minimization (Grimble, 1984; 1986; 1988; 1990). These methods are derived using a
frequency domain approach. A state-space dynamic optimization algorithm is propo-
sed in (Ordys and Grimble, 1996). The problem is formulated in state space and a
so-called Dynamic Predictive Controller (DPC) is derived using a state feedback LQ
formulation. The stochastic case, involving use of a Kalman filter is also considered.

In this paper, the multivariable LQGPC controller is derived using Lagrange
multipliers. The integral action is introduced to the state-space equations. The
stability of the controller is discussed. It is shown explicitly how to incorporate the
output and control horizons into the system equations. The relations between the
proposed (LQGPC) controller and the state-space version of the GPC are discussed.

In LQGPC the optimal predictive control law is derived using an LQG approach.
Working with a predictive control scheme like e.g. GPC in the LQGPC framework
offers a systematic way of selecting the adjustable parameters to yield a stable closed
loop system.

2. Problem Formulation

2.1. Preliminaries

Consider the linear system model in the ordinary discrete-time state-space form
zith = A% + BOu, +¢,, (1)

yt(O) = C(D)xéo) + Cw,t-

Here z§°’ is the system state vector with dimensions N, X 1. The vector of control

signals u; has dimensions n, x 1. The vector of output signals yt(o) has dimensions
Ny X 1. The process noise &,; and the measurement noise &w,+ have dimensions
Ng@ X 1 and nyo x 1, respectively. The system matrices A©, B and C© are
constant and can be obtained using any appropriate system identification method.
Introducing an integral action, we define

Aut = Ut — Ut—-7. (2)
Equations (1) and (2) can be combined defining an extended state vector z:

=9 A© BO) ][ g BO I
= + A + €1J,t s (3>
Uyt 0 I Ut—1 I 0
L —— B e — R —

L
Tty1 A ¢ B Vg

©)
ytz[g(m o][wt }+§w,t. (4)
—————
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Hence, the state-space equations for the system can be written in the form
T4l = A.’l]t =+ BAut + V¢,
y: = Cxy + wy. (5)

The system of interest is subject to stochastic process noise (v) and measurement
noise (w). However, from this point on it will be useful to consider the deterministic
optimal-control problem, assuming that states are available for feedback. Notice
that to obtain a solution to the stochastic optimal control problem, by invoking the
Separation Principle, the deterministic control problem and state estimation problem
can be solved independently. From the state equation (5), by dropping the noise
terms, the future values of the system outputs can be calculated as

k .
Ttk = A$t+k—1 + BAUH_k_l = Akl't + Z Ak_jBA’LLH.j_l,
j=1

k
Yerk = Cxppp, = CAFzy + Z CA*IBAu ;4. (6)

Jj=1

The equations for the predicted future outputs, (6}, can be rewritten in a more com-
pact block matrix form

_ veur - C o
Yeto CA
= Al’t
| Yt+N+1 _C'AN_
S N e’
Yi.n dn
CB 0 e e 0 1T Aue ]
CAB CB 0 -~ 0 Augyy
+
N N—
PCA B CAN-1B ... CB J_Aut+N_
~ — .
Sw Ui v
= dNAzr; + SNUt’N. (7)

If the prediction horizon is limited to N + 1, it is reasonable to assume that
N +1 future reference signals are known, and the references further into the future
are unknown. However, if optimisation over a horizon longer than N + 1 is to be
performed (e.g. infinite horizon optimization), then some assumptions must be made
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about the values of the reference signal for the whole duration of the optimisation
horizon (Tomizuka and Whitney, 1975). In this paper it is assumed that the future
values of the reference may be evaluated from the equation

Riy1,n =OpnNRi N, (8)

where

T
_| .7 T T
Ryn = [ Tivr Tita 7 TigpN41 ] . 9)

Here ©Op n represents the transition matrix for the reference signal. In order to
incorporate the knowledge of future reference values, the extended state vector is
defined and the output equation is rewritten:

T A 0 [ﬁ
" } = Xt+1 = Xt + Ui~
Rit1,nv 0 Ornw L 0
[ —

A N

(10)
= AXt + ﬂgUt,N,

YVin=[ ®vA 0 ]x:+ SnUsn, (11)
B=[B 0 -~ 0] (12)

Now the error vector e; y can be defined for the predicted tracking error signals as

e,N = YN — RN

It
= [ CPNA »I] ‘i +SNUt,N- (13)
| S — t,N
Ly S—————rt

First, consider the so-called static performance index of the type which is usually
associated with predictive control problems:

N
T
Je = Z [(yt+j+1 = Torjr1) AQ Wrrjr1 — Teagar) + Aul AL Ay
J=0
N
= [eﬂjﬂf\gmm + Au?ﬂAgAutH] . (14)
Jj=0

Using (13) this can be written down as

Jir = eg:NAeet,N + Ut:f’NAuUt,Nu (15)
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where
Ao =diag | A .- A |, Ay,=diag| A ... A9
e Ve ed
N+1 N+1
Here it is assumed that the same horizon j = 0,1,..., N is used for the control signal

(GPC: k =1,...,N,) and for the output error signal (GPC: I = N;, Ny +1,..., No).
The GPC design parameters Ni, N, and N, can be incorporated in the LQGPC
framework by a proper adjustment of various matrices. This will be discussed later.

When using (15) as the performance index, the vector U y of optimal control
actions within the horizon N, is calculated. However, only the first element Awug
is applied and the procedure is repeated in the next step. Therefore, the algorithm
solves a static optimization problem in each step.

2.2. Dynamic Optimization

The dynamic performance index will be defined as an infinite average over time of
the indices of the form as in (15):

1 to+Th
= lim tzz;o Tty
= fim iEHZT"(ETAe + ULy AU ) (16)
Tr—oo Th + 1 & 1. N e€t, N i NAULN)

where Ty + 1 is the summation horizon. There are some special cases where the
performance indices (15) and (16) yield the same optimal control solution, e.g. if the
problem can be transformed to the Astrém minimum variance controller (Astrom,
1970). However, apart from these special cases, the solutions obtained when minimi-
zing (15) and (16) are different.

It is easy to observe that (14) corresponds to the situation when limg, o is
dropped in (16), and then 7}, is assumed to be zero. From the point of view of the
system equations (10), (4) and the performance index (16) it means a one-step ahead,
static optimization.

Therefore, starting from the same initial conditions the two performance indices
may lead to two different control strategies which may settle on different steady
state values. This is demonstrated by an example in Section 6. In steady state, the
algorithm resulting from (16) will provide the minimum value of both the performance
indices (16) and (15). Moreover, the value obtained from the algorithm resulting from
(15) may be higher, e.g. the steady-state value of the performance index will not be
minimized (Ordys and Grimble, 1996).
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Using (7), (13) and (16), for any value of T}, the LQGPC performance index can
be written in the form

to+Th

1 T T
= A Uy AL, ]
J Th+1 tzzt:o [etvN e€t, N + Uy NAy UL N
1 to+Th
= Z I:X;T L%AgLN Xt ‘+‘ng L%AESN Us, N +UEN S]J\;AELNXt
Th +1 t=tg N —r’ N et [ —

Q M MT

+ ULy (SEA.Sy + Ay) Ut,N]

R

to+T)
1 o+Th

=57 o [ Qe+ X MUy + UlyM X + Uy RUn | (17)
t=tg

Without loss of generality it may be assumed that A, and A, are symmetric and
therefore so are ) and R.

The performance index J in (17) is ‘o be minimized under the constraints (10):
Xt+1 ZAXt-*-‘I’Ut,N, t=to,to+1,...,t0+T}. (18)

This is equivalent (Ogata, 1987) to minimizing the performance index

to+Th R
T Torl Z [X?th + VtTRVt] (19)
t=to
subject to
Xer1 = Gxe + OV, (20)

with the initial condition x:, = ¢ and for ¢t =tg,t9 + 1,...,%y + T}, where

Q=Q-MR'M”, (21)
Vi = R'MTyx + Upw, (22)
G=A-OR'MT. (23)

This is an equality constrained problem in two dimensions since the function to be
minimized and the constraints are functions of two variables, namely y and U. Such
a problem can be solved using various methods. One possibility, applied in this paper,
is the method of Lagrange multipliers.
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3. Solution

Minimizing J in (19) under the constraints in (20) corresponds (Ogata, 1987) to
minimizing the performance index

1 to+Th A r
Lo = 777 t:zto [(Xt Qx: + V;'RV})

+ M5 (Gxe + TV, — xeq1) + (Gx: + TV, — Xt+1)T)\t+1]

subject to
xt+1 = Gxe + UV,
(24)
Xto = G,
where c is a constant vector. The vectors Ayy1,Atg+2,---, Mo+T, are Lagrange

multipliers. The Lagrange multipliers are eliminated from the equations by assuming
that they can be written in the form

: pl P}
At = PBxe = T Xt- (25)
Py B}

In the partition of the matrix P, the square parts P! and P? correspond respec-
tively to the components z; and R: of the vector x;. Now, solving the minimization
problem with respect to P; results in the block matrix Riccati equation

P,=Q+G"Py1G - G P ¥ (R+ ¥TPy ¥) U R, G (26)
with
Piyr41 =0.

After some algebra this can be simplified to the following block matrix Riccati
equation:

P, =Q+ATP A
— (M +ATP ) (R+ TP 0) " (M7 + UTP,,A).  (27)

Substituting definitions from (21)-(23) and (3), (4), (12) this equation is further
decomposed into two matrices P! and P2 (cf. (25)), and the optimal-control law can
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then (Hangstrup, 1997; Ordys and Grimble, 1996) be written as

Uin = —(R+9TP %) (MT + 97Py5 A)

)

- X
- (R4 TPy ¥) 1(MT+¢TPt+1A>[ t ]
t,N

= —F:c,txt - FR,th,N

—(Au+ SEASN +BTPL,B) 7 (SEA BN A + BTPY, A)ze

— (Au+SFASN + 3TPY1B) T (BT Or N — SHAL) Run,
where

Pl = AT(@ﬁAe‘I‘N + Pt1+1)A - AT(‘I’?\;AeSN + Pt1+15)

X (S§AeSN + Au+ BTPLB8) T (STA®Nn + BTPL ) A, (28)

P} = AT(P%1OrN — O yA.) — AT(8LASN + PL,5)
X (SII\;AESN + A, + ,BTPt1+1 )—1 (5TP,:2.|.1®R,N - SI’I\;Ae)~ (29)

Only the first (vector) element of U; y is actually applied and can be written in
the form

Ay = [ I 0 - 0 ] Uin = = Bul's,t 2t — Bul'Rt Re,N. (30)
« = SN—— N——
5; L. LR,

Hence, the resulting controller is a 2 degree-of-freedom controller consisting of a feed-
back controller matrix L, and a tracking controller matrix L R,t- In most practical
situations, the state vector z is not measurable. However, it will be shown (see also
(Hangstrup, 1997)) that the Separation Theorem holds for the problem of computing
an optimal controller for the system defined by (5). Hence, in the optimal control law
the state z; can be substituted with %; resulting in

Aut = _Lz,tfi:t - LR,th,N- : (31)

4. Stability Using the Steady-State Solution Including
an Observer

In this section, the steady-state stability of the overall closed-loop system including
an observer is evaluated. The approach taken here follows (Ordys and Pike, 1998).
Since the reference model is not part of a closed loop and is itself stable by

construction, Ry v can and will be set equal to zero in this section yielding the control
law A'U,t = _L:z:,t-i't-
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Remembering that

~(0) ~(0)
g=| ]=[zt } (32)
Ut—1 Ut—1

the observer is given by

i_go) — A(O).’ig(]) + B(O)ut + Kz(ﬁ),t (yt(O) - C(O)"ig())) ? (33)

where K, results from evaluation of a standard Kalman filter Riccati equations
(Astrom, 1970). The observer error is given by

571(33-)1 = zi(r(-)l-)l - ‘%Ei)l

- (A<°> - sz,tC(O)) 5 + v, — Ky g (34)

Collecting the equation for the state z and the equation for the observer error
#(© into a block matrix form yields

I:A(O) BO -
Ti+1 0 Ty
{40) ] Lo I [ 0
Tt 0 (A®) — K, C©) £
B©® I [ 0
+ I (=Laude)+ | | 0O v + 0 we.  (35)
0 A I g0 ¢
Now, since
~(0) (0) _ z(0)
z T, — %
:i:t - [ t ] - [ t t :l ’ (36)
Ut—1 Ug—1

the matrix L;; can be divided into two parts, i.e.

Lyy = Lyoy Lut ], (37
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and (35) can then be rewritten as

A4© O
Tit1 0 Ty
o | = 0 I o)
Ty 0 (A - K (0 ,C@) ¢

r [ B©

0) _ (0
x — X
+ I (- I:Lz(o)’t Lu,t] |: t t :I)
Ut—1
0
B 0
+ 0 v + 0 Wy

I —K:E(O),t

BO I 0
Q L x
= |7 | [43)] + Lo [ve+ ] o] |w (38)
Z
0 Okt ¢ I =Ky
Q.
where
A0 _ BOT, BO (1-1L,
QL,t = ().t ( ’t) s (39)
=Ly, I— Ly
Okt = (A(O) - me),tc(o)) . (40)

As is well-known, the stability of the closed-loop steady-state solution including
an observer can be evaluated by checking the location of the eigenvalues of the transi-
tion matrix ;. If in (26) the upper horizon T}, is infinite, then the controller Riccati
equations (27) and consequently (28) and (29) become algebraic (steady-state) Riccati
equations. Denote by L) o and Ly the matrices obtained by using the steady-
state solutions to the controller Riccati equations, and by Ky, the steady-state
solution to the observer Riccati equation. The value of Q; obtained by inserting these
steady-state matrices will be denoted by Qo. The eigenvalues of Q., are given as
the solutions with respect to z of the characteristic equation:

det (2] — Qo) =0 <= det (2] — Qp o) det (2] — Qxo0) =0,  (41)
where .

I: A(O) - B(O)LE(U) 0o B(O) (I - Lu,oo) :|
QL,OO = ’ b

L) o0 I=Lyoo

QK,oo = (A(O) — Km(mm(](o)) . (43)
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From the above equations, it is seen that the controller eigenvalues and the observer
eigenvalues can be chosen independently as they do not influence one another. The
controller eigenvalues depend upon L) o, and Ly o; whereas the observer eigenva-
lues depend upon K0 .,- Therefore, the Separation Principle holds for the above
system.

5. Output and Control Horizons in the LQGPC Framework

In the GPC minimization problem, assuming a model in the form (5), the output and
control horizons (N1, N2 and N,) are commonly introduced:

min E[h], (44)
AuL,A'LLt+1 ,,,,, A‘u.¢+1vu_1
where

N2

Ji= [(yt-H = rep0)” Ae (Yeqs — T”t+l)]
=N

N,

+ Z [Augyr AvDugyp 1], (45)
k=1

Tyl = A.’Et + BAUt + v,
Yt = C-’Et + wy. (46)

If v4 and w; are independent Gaussian white noise sequences, this minimization
P s
problem is equivalent to the deterministic minimization
min Jt,
Aug, Ay, ,Aut+N,—1
where

N2

o= [(yt+z —re41)” Ae (Yo — Tt+l)] (47)
I=N1

N,

+ Z [Aut+k—1AuAut+k—1] )
k=1

T4l = AiEt + BA’LLt, (48)
Y = Oz, (49)

In GPC and LQGPC control the output and control intervals may be treated
as tuning parameters. In order to incorporate the output interval [Ny; N;] and the
control interval [1; N, ] in the design, it is easy to cut out the corresponding parts from
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the matrices in the output prediction equation (7), adjust various matrices accordingly
and make certain substitutions. This will be shown in the following. First recall the
output prediction equation (6):

k
Yerr = CA¥z, + Z CA* " BAuyy;_1.

=1

If the output interval is [N1; N3] and the control interval is [1;N,] like in (45)
and (47), then the block matrix form in (7) is modified to

Yt+Ny cAM
Yi+N1+1 CcAM
= . Axt

Yt+ N3 CAN=
Yt,N‘lr,Ng éNIN'z

CAM-'p cAM—B ... gAMi-Nup Auy

CA™MB CAM™'B ... CAM~Nutlp A

+ _ . : - : - (60
CAN2=1B  (cAN2=2B ... (O 4N2-Nu Avgin, -1

~ -~
SNy,.N2 Ut,Ny

Hence the output equation in (10) takes the form
Yi vy, N, = @y No Az + Shy N, Ui, - (51)
The reference model is modified to
Rit1,8y,N; = OR, Ny N, Re vy N (52)

where

Ronivy = [ Teany Ternitr o Tern, | (53)
Now the error vector in (13) reduces to

€t,N1,N, = Yt,leNz - Rt>N1,N2

Tt
=[ &n,mA 1] [ ] +Sm, N U, - (54)
~ — d t,N1,N2
Ly, N
e Xt,Ny,No

Define the weighting matrices A, n,,n, and A, n, with appropriate dimensions cor-
responding to e;n, N, and Uy, , respectively. With these definitions the GPC



Dynamic algorithm for linear quadratic Gaussian predictive control 239

performance index in (47) can be written down as follows:
T T
Je = ey vy Ny Ne i N8N N F U v, Au, N U N,

T
= (LNlaNZXt’N11N2 - SNl,NzUt,Nu) Ae;Nth

X (LNl,N2Xt,N1,N2 - SN1,N2Uf,Nu) + UENuAU,Nu Ut,Nu' (55)

Summing up over t yields the LQGPC performance index

1 to+Tn
J = [ L — Sny na Ui v, )T A
Th+1 t:z;g (Lo Xt Ny = S Ui )™ e v
X (Lny,Na Xt N2 Nz — Sy e U ) + U A, Ut,Nu}- (56)

The structures of the performance indices (17) and (56) are equal and with the sub-
stitutions

LN = LNl,Nza Xt = Xt,N1,Na> SN = SNl,Nza (57)
Un =Uin,, Ae=~Aen,nN,, Au=Aun,,

exactly the same formulae as used in the common horizon case from (17} and forward
can be used for deriving the optimal control law.

6. Compérison of GPC and LQGPC

In both GPC and LQGPC; the vector U n, is to be found. For the GPC con-
troller (performance index (55)) this can be obtained through straightforward static
minimization. For the LQGPC controller, especially as Tp — 0o in performance in-
dex (56), a solution to the control Riccati equation is needed. Therefore, for this case,
the LQGPC controller retains the stability features characteristic for infinite horizon
LQG design (Kwakernaak and Sivan, 1972). In particular, if the control algebraic
Riccati equation has multiple solutions, it is possible to select a stable solution, le-
ading to a stable control system. In a standard GPC formulation (Clarke et al., 1987)
the infinite horizon is not available. A traditional approach to deal with instability of
the system would be to increase the output horizon or to decrease the control horizon.
The resulting controller may feature a slower, more sluggish response. In some cases,
it may be beneficial to be able to operate with relatively short output horizons and
relatively long control horizons and the LQGPC control synthesis may prove easier.

In the example presented below, we make a comparision between the GPC and
LQGPC controllers. The purpose is not to analyse the dynamic features and tuning
of the two algorithms (this would be beyend the scope of this paper) but to illustrate
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possible differences. The system which is subject to the test is given by the state-
space equation

[ 40 B } [ 2% } [B(O) G]
Tip1 = + Auyg + ot
| O I Up_1 I 0
| ——
A Tt B
1.8850 1 0 0 0 0 0O —0.0320 |
-0.1637 0 1 0 0 0 O 0.4240
~1.1060 0 0 1 0 0 O 0.9740
_ 00159 0 0 0 1 0 0 1.7129 2
03966 0 0 0 0 1 0 0.5162
00554 0 0 0 0 0 1 -0.9110
—0.0839 0 0 0 0 0 0 -0.2324
0 0000GOCGO 1 |
T —0.032 ] [ 2.6850 ]
0.42 0.4763
0.974 —0.5940
1.7129 0.4255
TLoost62 | AW oroas | S
—0.911 0.3175
—-0.2324 0.1258
L1 i | O i

and the output equation

$=[1 000 0 0 0 0]z+&;.

Notice that the above state-space formulation corresponds to a stable but non-
minimum phase system. The roots of the polynomial accompanying the noise signal
are all located on the circle of radius 0.8. For such a system, the parameters of the
GPC controller (see Section 5) were selected as N; =1, Ny = 50, N, = 1, Ay =0.
The set-point signal is a step at the time instant ¢, = 25. Figure 1 shows the mean
values of the output signal for both the GPC and LQGPC algorithms. Notice that,
due to the output horizon N, greater than 25, both the algorithms start reacting
to the set point change right from the beginning of the simulation. The LQGPC
algorithm is slightly faster in this case but otherwise the responses are very similar
and they both settle at the value of one, due to the integral action. Figure 2 shows the
value of the variance of the output error for both the algorithms. Now it is visible that
the two algorithms have indeed different stochastic properties and, in particular, they
settle at different steady-state values. The steady-state value of the variance which
is achieved with the LQGPC algorithm is noticeably smaller than that achieved with
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the GPC algorithm. This smaller value of the output error is achieved through a more
active control signal, as can be seen in Fig. 3.

Mean of the output

Fig. 1. Mean value of the output signal.

x 10° Variance of the output
2.5 r T i T T T 3
--- GPC .
— LQGPC i
ol S S S S S S
. - )/’—’—‘—_Td—
15L----- e e :--»-/_.,.;’./....:.,___: ______
, . . S . .

Fig. 2. Variance of the output signal.
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Variance of the input
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Fig. 3. Variance of the input signal.

7. Conclusion

In this paper, the multivariable state space LQGPC predictive control problem uti-
lizing a dynamic performance index was formulated. The algorithm resulting from
using the dynamic performance index yields the optimal steady-state values of both
the static and dynamic performance indices. The values of these indices will be higher
when using the algorithm resulting from the controller design based on the static per-
formance index. In the stochastic case, if stochastic distributions of the disturbances
are known, the LQGPC algorithm enables minimisation of the influence of future di-
sturbances over an infinite horizon. The GPC algorithm is able to take into account
only the disturbances within its output horizon which is finite and usually short.

The solution to the optimal control problem was derived using the method of
Lagrange multipliers. The resulting controller was shown to have two degrees of
freedom. The optimal control signal is therefore a linear combination of the state
vector and the future reference values. The formulae necessary for checking the steady-
state stability of the closed loop system including an observer were given.

The GPC controller can be computed as a special case of the LQGPC. Making
adjustments of certain matrices, the GPC performance index can be rewritten into an
LQGPC form. When doing so it is possible to use the LQGPC derivations/formulae
to systematically obtain GPC design parameters yielding a stable closed-loop system.

The control problem described in this paper can also be extended to include
knowledge of future external input values, i.e. known signals from other parts of the
plant, and direct feed through in the system model (Hangstrup, 1997; Ordys and
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Grimble, 1996; Ordys and Pike, 1998). For state-space LQGPC these extensions can
be made by extending the state vector and then the state transition, input and output
vectors accordingly. In (Ordys and Pike, 1998) such direct feed through terms and
external inputs arose from generating a linearized model for a part of a larger system.

Simulation studies (Taube and Lampe, 1992) have shown that GPC is more
sensitive to the choice of tuning parameters such as the output and control horizons,
whereas the LQGPC with infinite T} in the performance index and the same tuning
parameters is almost invariant. Furthermore, the LQGPC controller gives smoother
responses with less overshoot than the GPC controller (Ordys and Grimble, 1996).

The LQGPC algorithm is computationally more involved than GPC. The GPC
requires one inverse of a matrix to calculate the control and, in the stochastic case,
a solution to the filtering Riccati equation. The LQGPC algorithm, in addition to
the filtering Riccati equation, requires a solution to two coupled Riccati equations for
control. However, it is worth noticing that if the system parameters are constant (no
adaptation), those calculations of control law and of filtering equation are performed
off-line and the coefficients calculated once can then be used through the process with
simple multiplication and addition operations. Those operations are of the same order
of complexity for both GPC and LQGPC. Moreover, the resuling controllers are of
the same order.
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