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APPROXIMATE CONTROLLABILITY PROPERTIES
OF THE SEMILINEAR HEAT EQUATION
WITH LUMPED CONTROLS

ALEXANDER YU. KHAPALOV*

In this article, we study the global controllability properties of a one-dimensional
semilinear heat equation with sublinear reaction term, governed in a bounded
domain by internal lumped controls. We prove that it is possible to ezactly
control any finite dimensional portion of its solution (when expanded along the
sequence of the eigenfunctions of the associated Laplacian), provided that the
truncated linear equation is approximately controllable in L?(0,1). We also
describe a certain topology (weaker than L?(0,1)) in which this system is, in
fact, globally approximately controllable at any positive time. Some extensions
to the case of several dimensions are also given.
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1. Introduction

1.1. Problem formulation and motivation

We consider the following homogeneous Dirichlet problem for the semilinear one di-
mensional heat equation:

Ut = Ugg T+ f(u) + U(t)X(ll,lg)(w) in Qr = (07 1) X (OvT)a S LZ(OaT): (13')
u(0,8) =u(l,t) =0, ul—o =uo € L*(0,1),

where x(,1,)(z) is the characteristic function of a given subinterval (I1,12) C (0,1).
We assume that f(u) is globally Lipschitz and is such that for some C > 0 and
a € (0,1}

FP)| < CA+p|'™), VpeR | (1b)

It is well-known (see, e.g., Ladyzhenskaya et al, 1968) that (1) admits a unique
generalized solution from the space C([0,T]; L%(0,1)) ﬂHS’O(QT), where H&’O(QT) =
{d) ‘ ¢a ¢z € LZ(QT)r ¢|z:0,1 = 0}-

Tt is said that (1) is approzimately controllable in a given phase-space H at time
T if the range of its solution mapping L?(0,7) 3 v — u(-,T) is dense in H. In this
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article, we are concerned with the following question: For what nonlinear terms f
and spaces H does this property hold, provided that it holds for the truncated linear
system (4)?

The approximate controllability problem was thoroughly studied (in several space
dimensions) in (Fabre et al., 1992; 1995; Fernandez and Zuazua, 1999) in the case
of locally-distributed controls (i.e., when v = v(z,%), not v = v(¢) as in (1a)) and
globally Lipschitz reaction-convection nonlinear terms. The methods of these works
involve unique continuation and fixed point techniques, combined with a variational
approach (see, e.g., Lions, 1990). More recently, in (Zuazua, 1997) it was shown that,
in fact, any finite-dimensional portion of the solution to this equation, otherwise
approximately controllable, can also be controlled exactly (by locally- distributed
controls, i.e., not lumped like in this paper). This property is further regarded as the
finite exact controllability.

By the method of Carleman’s estimates, in (Fursikov and Imanuvilov, 1996)
the approximate and exact null-controllability property were established for a class
of semilinear reaction-diffusion equations with varying coefficients and, also, with
globally Lipschitz nonlinear terms.

Several results, both positive and negative, on the controllability and reachabil-
ity properties of the parabolic semilinear equations are also available for the super-
linear terms, e.g., in (Fursikov and Imanuvilov, 1996; Khapalov, 1995; 1999b: 1999c¢;
Fernandez-Cara, 1997; Zuazua, 1997). In particular, in (Khapalov, 1999c¢) a class of
globally approximately controllable heat equations with superlinear time-dependent
terms, governed by locally distributed controls, was described.

The lumped controls which we consider in this paper are strongly motivated by
various applications. They can be regarded as a degenerated class of locally dis-
tributed ones, and, hence, their study usually requires quite different methods. Gen-
erally, one cannot expect equally strong results for these two types of control. For
example, the study of controllability with locally distributed controls is essentially
based on the unique continuation property of solutions to the linear parabolic equa-
tion from an open set. This result, obviously, cannot be associated with the case of
lumped controls, which are the functions of time only. This explains, in particular,
the reason why we focus primarily on the 1-D case (see also Section 4 for further
discussion in this respect).

While for the standard linear heat equation this problem is well-understood by
now (Fattorini and Russell, 1974; Mizel and Seidman, 1969; Sakawa, 1974), see also
the references therein), little is known regarding the semilinear case. Among early
works in this area we can mention only (Zhou, 1982), dealing with uniformly bounded
Lipschitz nonlinearity.

The method which we use in this article is quite different from the classical fixed
point or implicit function arguments. It is based on the idea to solve the controllability
problem in an asymptotically short time in order to ‘suppress’ in this way the effect
of nonlinearity. This method was introduced in (Khapalov, 1995) (also see Khapalov,
1999a). Using it, various results on approximate controllability of the semilinear
reaction-diffusion-convection equations, governed by lumped controls, were obtained
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in (Khapalov, 1995; 1999a), assuming the logarithmic-type growth condition on the
nonlinear term. In (Khapalov, 1999a) we also gave an example of a globally approx-
imately controllable heat equation with superlinear time-dependent term. (We also
showed in Khapalov, 1999a) that the result of (Zhou, 1982) follows by this asymptotic
method in an obvious way.)

In this article, we are primarily concerned with the finite exact controllability of
(1a), that is, when H is finite dimensional. In other words, we focus on the question:
For what f can, at least, ‘finite portions’ of solutions to (1a) be exactly controllable?
In that respect, it is somewhat surprising to see that the finite exact controllability
holds for any sublinear term as in (1b).

By its ‘spirit’, this article is very close to (Khapalov, 1999b), where we stud-
ied the superlinear terms and locally-distributed controls. Here we are interested in
much weaker (‘singular’) lumped controls. To cope with this principal complication,
we combine the above-mentioned asymptotic method of (Khapalov, 1995) with the
traditional Riesz basis approach relevant to the linear boundary problems with point-
wise controls (see Fattorini and Russell, 1974; Mizel and Seidman, 1969; Sakawa,
1974). (We remind the reader that {e~(™¥)*¢ | k = 1,...} form a Riesz basis in
L?(0,T) for any T'>0.)

1.2. Main results

Denote by {\r = (7k)?,wi(z) = V2sinwkz, k = 1,...} the eigenvalues and or-
thonormalized in L?(0,1) eigenfunctions of the spectral problem: —w,, = Aw,w €
H&(O, 1) = {d) i ¢’¢m‘ € L2<O’ 1)’ ¢I:E:0,l = 0}

Our goal in this article is to prove the following Theorems 1 and 2. A possible
extension of Theorem 1 to the case of several dimensions is given by Theorem 3 in
Section 4. Set L3.(0,1) = {¢ | ¢(z) = Efil a;wi(z),a; € R} and denote by [ the
operator of the orthogonal projection in L?(0,1) onto L3%(0,1).

Theorem 1. (Finite exact controllability in H = L%(0,1)) Let Iy £1; be irrational
numbers. Given T > 0, for every K = 1,..., up € L*(0,1), and ur € L%(0,1)
there is a control v € L?(0,T) such that for the corresponding solution to (1)

Oru(-,T) = urp. (2)
Let ¢1,...,¢k,... be a non-increasing sequence of positive numbers. Denote by

W the Banach space of functions {¢ | ¢(z) = Y roy arwi(z), Y 10 Qi < 00},
endowed with the norm

lollw = (i a’iCk)l/?-
k=1

Note that L*(0,1) is continuously embedded into W, so u € C([0,T]; W).

Theorem 2. (Approximate controllability in H = W) Let Iy £1; be irrational num-
bers and T > O be given. There is a monotone decreasing sequence of positive numbers
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{ck )32y, defining W (see (35) below), such that for every ug € L?(0,1), ur € W,
and € > 0 there is a control v € L*>(0,T) for which

lu(, T) - urllw <e. (3)

2. Proof of Theorem 1

Fix any natural number K and ug € L?(0,1), ur € L%(0,1). We intend to find a
control v which ensures (2).

Step 1. Consider the following truncated linear boundary problem:
c’?uL

W = ULge + X(ll,lz)v(t) in QT’ (4)

ur(0,t) =up(1,¢) =0, ugli=o =uo, v € L*(0,T).

(Here we use the subscript ‘;’ to emphasize the connection between (1a) and (41).)
It is well-known (Sakawa, 1974) that if I, &I, are irrational numbers, then (4) is
approximately controllablein L?(0,1) at any positive time T Since (4) is a particular
case of (1), this explains our assumptions on I; and l; in Theorem 1 and 2.

Given v, set z = u — ug. Then it follows from (1) and (4) that

0z .
5? = Zzz +f(u) n QT:

2(0,t) = 2(1,¢t) =0, z|t=0 =0 in (0,1). » (5)

Multiplication of this equation by z and further integration by parts over Qr yield
the classical energy estimate

T 1 T 1
1/2 1/2
zlle(o,73;22(0.1)) + z2(z, 7) da:d'r 52\/7 Fu(z,7))dzdr) . (6)
1= 2] ho

By Holder’s inequality and (1b), using the inequality (a + b)? < 2a? + 2b2, we obtain

1 1 "
/fQ(u(m,T)) dz < 02/(1+ fu(z, 7)) dz < 202+202/|u(z,7)|z<1—a> do

0 0

1
< 207 +20%( / u(z, 7)|? dx)l_af 20% + 20 [ullgoyseoy
0
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From here, by using the elementary inequality va +b < a+b,(a,b > 0), we derive
from (6) that

T 1 y L2
lzllcqo,m;20,1)) + //Z;SCT de'T)
00
< CT(1+”M%Iﬁ,ﬂ;ﬂ(o,l)))a ¢ =2v2C. (7)

Step 2. Denote by S(¢) the semigroup associated with (4). Then we may write

t
UL(', ’LI() + /5 IL—T X(l1 JAz) dr. (8)
0

Set
t
%mﬂnz{peL%mT)i/su—TW@qlludr_o} L*(0,T).
0
Represent control v in (1a) as a sum v = v* + v,, where v* is assumed to be fixed
(it will be selected later in (31) to ensure (2)), and v, ranges over V5-(0,T) (v, will

be employed to ‘neutralize’ the effect of nonlinearity). This presentation will be used
below to introduce eqn. (27) to implement the fixed-point argument.

Then we can write

Up = UL + Ui, up«(s,t) = SE)ug + / St — T (T)X(y,10) AT

m@@:/ﬂwahM%mM. (92)
0
Accordingly,
U= ULy + Us + 2 = ULx + Us + Q(us). (9b)

Here, given up., we introduced the nonlinear operator @ : u, — z as follows:
Q:Udu, >z

/St—T w))(-,7)dr € C([0,T); L*(0,1)), (10)
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where u is the solution to (1) with v = v* +v,. This operator is defined on the linear
manifold

i

U={p|/S(t—7‘)p( WX 1 47,1 € [0,7],p € ViH(0,7) } € C (10,715 (0, 1)),
0

which we further equip with the norm of the latter space.

Let us show that the operator @ is continuous on U. Indeed, let uy.,u, € U.
By employing the Lipschitz property of f(u) (ie., |f(p1) — f(p2)| < Cilp1 — p2| for
some C, > 0), from the energy estimate like (6), we conclude that

1Q (was) — Q(us)l e ([0,T}22(0,1)) < 2\/—— // u** f(u(u*))2(m,‘r) dr dT)l/z

< 2T Culfu(uas) — ulus)lloo,11,22(0,1))» (11)

where u(u.) and u(u,) are the solutions to (1), for the same ‘fixed’ wy, corre-
sponding to0 w4, and u.. By (9b),

llu(wen) = u(wollogo,m:22(0,))

S H’U,** - U*HC’([O,T];Lz(O,l)) + HQ(U**) - Q(U*)“C([O,T];LZ(O,I))‘ (12)

Combining (11) and (12) under the assumption that T is sufficiently small, namely

1
<
T< o (13)
yields
1Q (was) = Q(uw)llcr0,7522(0,1)) < lUsx — Usll (0, 79,£2(0,1)) (14)

implying the desirable continuity of Q.
We further assume that (13) holds up to Step 9, in which we show how our results

can be extended to larger T'’s.

Inequality (14) also allows us to conclude that if {u.;}°; is a Cauchy sequence in
L*(Qr), s0is {Q(u.)}2,. Therefore, the nonlinear operator Q(u,) can be extended
continuously to the closure (we further denote it by U) of U in C([0,T]; L(0,1)).
We denote this extension by

Q U3 Uy — Q(u*) € C([O,T];L2(O,1)).



Approximate controllability properties of the semilinear . .. 757

Step 3. It is well-known that the general solution to (4) admits the following repre-
sentation:
1

K

ur(z,t) = P o (1w (1) dr wg (s
r(z,t) > ({’UO() I.()d) k()
+ t Ak (t=7) lv wi (r)dr) dr w(z
31[6 [ h,lz] (rwi(r)d )d k(z), (15)

where the series converges in the L?(0,1)-norm uniformly over ¢ > 0.

Let {gx}32, be a biorthogonal sequence to {e**7}%° . in L2(0,T) (Fattorini
and Russell, 1974; Mizel and Seidman, 1969):

[eaar= [ 1 EE= (16
€ g qi\T T =
. : 0 if k#L

0
Without loss of generality we can assume that all g;’s lie in V5-(0,7). Set

lo 1

(7)) = qr(T — 7) (\/E/sin'/rkm dm) , 1€ (0,7, (17a)
so that

T 1 .

A (T—7) 1 if k =l,
[ [ e arar =1 (17b)
A 0 if k£#L

Denote by V,.(0,T) the set of all the finite linear combinations of (linear inde-
pendent) vi,k =1,..., and also set

Verc (0,T) = span {v, } X, .

Since wy’s form a basis in L?(0, 1), the formulas (15)—(17) allow us to conclude that
(4) is approximately controllable in L?(0,1) at any time T > 0, by using controls
from V,(0,7) only. .

Step 4. Set
Uk = {p| /S(t— )P(T) X1 0y A7, t€[0,T], p€e V*K(O,T)} cU.

From Step 3 it follows that for every u, € Uy there exists a v, € Vig (0,7) such
that

Tk Q) oo = / S(t = T)0u(T)X (112 A7 € L2 (0, 1), (182)
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Namely, if
K
g Qua)le=r = Y _ ctxws, (18b)
k=1
then
K
Uy = Z agvy € Vix (0,T). (18¢)
k=1

Introduce a nonlinear operator

Rk Uk D u, — RK(U*) = S(t - 7‘)1)* (T)X(l1,12) dr € Uk

o —

c C([o,T];L*(0,1)), (19)

where v, is from (18c).

Note that Rx (u.) is continuous. Indeed, by Step 2, HxQ(u.) is a continuous
operator on U into C([0,T];L?(0,1)). In particular, its finite dimensional trace at
t=T in L*(0,1), i.e., IxQ(us)|e=r, defined by a finite set of ay,... ,ax in (18),
depends continuously upon u,. In view of (18c), v, then also depends continuously
(via those a's, because vg,k =1,...,K were fixed in (17)) in the norm of L?(0,T)
upon u.. On the other hand, the well-known classical regularity result (similarly to
(6)) states that

[

t
IRk (wi)lleo,m1s2200,1)) = tg%gﬂf;]ll /S(f—T)U*(T)X(zl,zz) drl|z2(0,1)
‘o

IN

2VT[vsl 20,1, (20)

which gives the continuous dependence of Ry (u.) on w,. This, along with all the
above, implies the desired continuity of Ry (as a superposition of two continuous
mappings).

Step 5. From (7) and (9b), and by the elementary inequalities a!=®* < 1+ a and
(a+b)1~* <a'~*+5'7% (a,b > 0, € (0,1]), and by the triangle inequality, we have
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for any u. € U:

lzlloo.mzzoy = 1@ o mzoy < eT(1+ IulEd sy )

IA

cT (1 + [|ups + ue + Q(U*)ch_([%,T];H(o,l)))

IN

l—a
cT (1 + (luzslleqo,ryc20,1)) + luslleqo,mL20.1))) a)

+ cT1Qu G 17.02(0.1))

IA

l—a
el (1 + (luzsllogo,ryzzo) + lusdlego,rr2,) )

+cT (1 + HQ(U*)HC([O,T];L‘Z(U,l)))-
Again, if for this ¢ from (7)
1
T< — 2
- 2c’ (21)
then

l—«o
1Qw)lleqomzz01) <2+ ([urlloqomrzony) + ludlcqmrzeay) - (22)

We further assume that (21) holds up to Step 9, in which we show how our results
can be extended to larger T'’s.

Note that for every fixed up., (22) gives the following estimate:
1@ leoryr201) < 2+ 2" )WusllGf 11.22(0.1)) (23a)
for u, such that
lusllego,miz2(0,0)) = max {1, llurslleqo,ryz2(0,1) }- (23b)
(23) will be used in Step 7.
Step 6. Taking into account that

1Q (wlle(o,11:220,1)) = QW) lt=7lI22(0,1)) = Mk Q (wi)le=Tllc((0,73:£2(0,1))
and that, by (18b),

Mk Q (u)le=Tllc(o,11:2(0,1))

Il
SO
TR
M=

Q

ol
SN—————
g
-
[V

we deduce that

K 1/2
1Qwllco,L2(0,1)) = (Z ﬁ) : (24)
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In turn, given T, satisfying (13) and (21), formula (18c) implies the existence of a
constant M (K,T), as given explicitly in (34) below, such that for the corresponding
v, in (18c) we have

2

K 1/2
llvellp2o,my < M(K,T) (Z ai) : (25)
k=1

Combining (25) and (24) along with (20) yields
2

PNV
IRx (ui)lleqorsL0) < 2VT|vallzz0,r) < 2VTM(K,T) (Zai)

k=1

IA

2VTM (K, D)|Q(u)loqo,miz201)), Vus € Ug,
where v, is defined by (18). Then, by (23a)
IR (wa)lleqo,mz20,1) < (2427 2VTM (K, Dllusllb 29.220.0)) (26)

under the condition (23b).

Step 7. Consider the following equation in the finite dimensional linear space Ux (re-
call that R is continuous from Uy into Uk), endowed with the C([0,77; L3(0,1))-
norm:

Uy + R (uy) = 0. 27)
By Altman’s fixed point theorem, see (Schwartz, 1969, p.97) eqn. (27) has a solution
if for some L(K,T) the following estimate holds:
Rk (us) + wallEpo,73,2200,1)) = 1R & (w)llE 0.1, £2(0.1)) — w12 0.7 £2(0,1)
Vus € Uk : |uslloo,1y,22(0,0)) = LK, T).  (28)

The C([0,T); L*(0,1))-norm of this solution does not exceed this L(X,T). It suf-
fices then to establish the existence of an L(K,T) for which the expression on the
right in (28) is non-positive. This immediately follows from (26), provided we take
llwslloo, 77;:22(0,1)) sufficiently large so that

(2+21 a)2\/—M(K T)”u*”c [0,T];L2(0,1)) = ||U*HC ([0,77;L2(0,1))5

that is, taking into account (23b), for
1/a .
L(K,T) = max {1, ((2 +217)2VTM (K, T)) 7HUL*”C([O,T];L2(O,1))} , (29)

where T satisfies (13) and (21).
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Step 8. Denote by @ € U the solution of (27). Note that, in fact, by (27) and (19),
@ € U, that is, it is generated by some control as a solution to (4). Substitute 4 as
u, into (9b). Then (27) yields

u=1up, + 4+ Q1) = ur. — Ri(4) + Q(4). (30)
Based on (15)—(17), select now v* so that

HK’U,L*(',T) = uT. . (31)
Then, since g (Q(us) — R (us))|i=r =0 (see (18) and (19)), (30) and (31) imply
HKU(',T) = HKUL*(',T) =ur, (32)

or (2) at time T satisfying (13) and (21).

Remark 1. With K increasing and/or T' decreasing the value of M (X, T, found
in Step 8, tends to infinity.

Step 9. To extend the above result to T larger than it is given in (13) and (21), we
need to derive (14) and (22) for these T'. To do this, by using the time-invariantness
of (1a) and (4), we can apply the same strategy as leading to (14) and (22), but on
the interval (T' — T.,T), where T — T, satisfies both (13) and (21), while putting
v=0 on (0,7 —T.) and with u(-,T —T,) in place of up. Accordingly, we can,

e.g., define U as a subset of C([T" — T.,T];L*(0,1)). This completes the proof of
Theorem 1. ]

3. Proof of Theorem 2

The argument of Step 7 implies the existence of a constant L(k,T),k=1,..., T >0
in (29) such that

4]l e go,1y:22(0,0)) < LK, T)

. 1/a
= max {1, ((2 + 2““)2\/TM(1€,T)) 7|IuL*|IC([0,T];L2(0,1))} . (33)

Consider (25) in more detail. Note that we can set

1

i,j=1,...,

l2
MK, T)=K max (\/f/sinm'm dm)
K
L

L T
X (\/i/sinwja: da:) - /Qi(T)Qj(T) dr}. (34a)

0
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Let

1

1,j=1,...

123 lz
. —1 g —
M(K) = _maxvK (\/i/sinm'xd:c) (\/i/sinvrjzdz)
l1 ll

Then
M(K,T) < KMy(K) | max {llallzzonlloleon )
In (Fattorini and Russell, 1974, Th. 1.5) it was shown that there is a § > 0 and an
My(T,8) > 0 such that
ligill 0.y < Ma(T,8)e™, i=1,....
Therefore,
M(K,T) < KM, (K)MZ(T,8)e** <% K=1,.... (34b)

Select c¢i’s so that

lim /2 (kb (k)e29)
—r00

+1 =0. (35)

Now, to prove Theorem 2, we need to show that for any uy € L%(0,1) and
ur € W there is a sequence {uy}?2, of solutions uy to (1) converging to ur in the
W-norm. It is sufficient to do this for any ur € Jpe, LZ(0,1).

Take any € > 0 and

m e}
ur = Zaiwi € L,‘OH(O, 1), wy= Z bw; € L*(0,1).

=1 =1

Select
I
¥ = Z (—e_)‘ini + a,—) Vi,
=1

where we assume that a; =0 for 4 >m and I is large enough to guarantee that

: o 1/2
I>m and ( Z cibfe_”“‘T) <e. (36)
i=I+1

Then formulas (15)~(17) ensure that for the solution ur.; to (4) corresponding to
this v* we have, similarly to (31), that

o
Hruger(,T) = ur and up.r(,T) —ur = Y bie ™ Tw;. (37)
=I+1

The argument of Section 2 implies (again, see (32)) that there is a sequence of
solutions to (4): urk = UL.s + Usk,k = I, +1,... such that for the corresponding
solution uj to (1) we have

Hkuk(-,T) =HkuL*[(',T), k=1,1+1,... (38)
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and, by (9b), (22), (29) and (33),
luk(, T)|lL2(0,1) < 6L(K,T).
From (33)-(38) it follows that
lur(-, T) —urliw < [lu(,T) — Meur(, T)llw + [Mpue(, T) — urllw

2 lur( D220,y + lepar (1) = urllw

IN

IN

o0 1/2
GciflL(k:T) + ( Z cib%e—z)\iT> <e
i=I+1

as k — oo (note that by (35) and (29) 6c,tflL(k,T) — 0 as k — o0). This gives (3)
required in Theorem 2. [ ]

4. Concluding Remarks

Let B be any finite-dimensional submanifold of the trace of the manifold U, defined
in (10), in L?(0,1) at time 7. Instead of vy’s as in (17), let us consider now any
finite set of controls that generate solutions to (4) whose traces at ¢ = 7' form an
orthonormalized basis in B (similar to (16)). In this way, it is not hard to see that,
without any changes, the proof of Theorem 1 provides the exact controllability of
(1) in B (ie., in place of L%(0,1)). This strategy can be extended to several space
dimensions exactly in the same way, under the condition that the corresponding trun-
cated linear problem (like (4)) is approximately controllable (for the latter see, e.g.,
(Sakawa, 1974)). More generally, this argument provides the following generalization
of Theorem 1.

Consider the semilinear mixed problem
up=Au+ flu) +Pv in Qr =0 x(0,T), vey, (39)
u=0 i 7 =00 x (0,T), ul=o=uo € L*(N),

where  is a bounded domain of an n-dimensional Euclidean space R® with bound-
ary 09 and P is an operator with the range in L?(Q7), defined on a given set V' of
available controls v. Denote by R(T') the linear manifold generated by all the traces
of solutions to (39) at time T, when v runs over V.

Theorem 3. Let assumption (1b) hold. Given T > 0, let R.(T) be an arbitrary
finite dimensional linear submanifold of R(T). Then for every ug € L*(Q), and
ur € R.(T) there is a control v € V' such that for the corresponding solution to

(39), (1b)
H*u(-, T) = ur,

where 1, denotes the operator of the orthogonal projection in L?(0,1) onto R.(T).
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On the other hand, the result of Theorem 2 cannot be extended to the general
multidimensional case. Indeed, Theorem 2 makes use of the specific structure of
the solution of the controllability problem for (4), exploiting Riesz’s property of the
sequence {e*,k =1,...}. The latter does not hold for dimensions higher than 1.
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