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Optimization methods of logic circuits for Moore finite-state machines are proposed. These methods are based on the
existence of pseudoequivalent states of a Moore finite-state machine, a wide fan-in of PAL macrocells and free resources of
embedded memory blocks. The methods are oriented to hypothetical VLSI microcircuits based on the CPLD technology
and containing PAL macrocells and embedded memory blocks. The conditions of effective application of each proposed
method are shown. An algorithm to choose the best model of a finite-state machine for given conditions is proposed.
Examples of proposed methods application are given. The effectiveness of the proposed methods is also investigated.
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1. Introduction

A control unit is a very important block of any digital sys-
tem (De Micheli, 1994). A model of a Moore finite-state
machine (FSM) is used very often to represent the control
unit (Baranov, 1994). One of the most important steps in
the design of FSM logic circuits is the encoding of its in-
ternal states. This step is known as the state assignment
problem (De Micheli, 1994). In this step binary codes are
assigned to FSM internal states. The quality of the resul-
ting combinational part of the FSM (cost/area, power con-
sumption, maximum frequency) depends heavily on the of
outcome this step. Because of their importance, state assi-
gnment methods are continually being developed. There
are effective state assignment methods based on symbo-
lic minimization (Devadas et al., 1988; Kam et al., 1998;
Villa et al., 1990; 1998). Genetics algorithms (Chattopa-
dhyay, 2005; Micheli et al., 1985; Xia and Almaini, 2002)
and other heuristics (Barkalov, 1998; 2005; Kania, 2004)
are used for this problem solution, too. Let us point out
that there is no universal effective state assignment algori-
thm fitting to any kind of control algorithm to be interpre-
ted and logic elements to be used for the implementation
of FSM logic circuits. This means that the peculiarities
of components such as an FSM model, a control algori-
thm and logic elements should be taken into account to
optimize the main characteristics of FSM circuits. Ra-
pid evolution in semiconductor technology has resulted

in the appearance of sophisticated VLSI circuits such as
complex programmable logic devices (CPLDs) and field-
programmable gate arrays (FPGAs) (Maxfield, 2004; Al-
tera, 2007; Xilinx, 2007; Latticesemi, 2007). Such devi-
ces have enough resources to implement a complex digital
system using only a single chip (Maxfield, 2004). One of
the issues of the day in this area is a decrease in the har-
dware amount in FSM logic circuits (Adamski and Barka-
lov, 2006; Barkalov and Węgrzyn, 2006). The solution to
this problem would permit to decrease the chip area occu-
pied by an FSM circuit and give the potential possibility
to increase the amount of digital system functions within
the bounds of a single chip. In this article we are going to
discuss the methods of Moore FSM design using a CPLD,
which are popular to implement complex controllers (Bar-
kalov and Węgrzyn, 2006; Kania, 2004). Unfortunately,
in contrast to the FPGA, modern CPLDs have no embed-
ded memory blocks, which can be used to implement the
system of data-path microoperations. Therefore, in this
article we deal with hypothetic CPLD chips, where pro-
grammable array logic (PAL) macrocells are used to im-
plement the systems of Boolean functions and embedded
memory blocks are used to implement the table functions
of the digital system (Barkalov and Węgrzyn, 2006). The
peculiarities of PAL macrocells are a wide fan-in and a
very limited number of conjunctions (terms) per cell (Ka-
nia, 2004). A peculiarity of the known embedded me-
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mory blocks is their configurability (Maxfield, 2004). For
example, an embedded memory block of FLEX 10K can
be configured as a memory block with the following cha-
racteristics: 256×8, 512×4, 1024×2, 2048×1 (Xilinx,
2007). This means that the number of embedded memory
block outputs belongs to the set {1, 2, 4, 8}. The peculia-
rities of the Moore FSM are the existence of pseudoequ-
ivalent states (Barkalov, 1998) and the regular character of
the system of output functions (microoperations) that ma-
kes its effective implementation possible using embedded
memory blocks (Barkalov and Wegrzyn, 2006). In this ar-
ticle, we propose methods to optimize the amount of PAL
macrocells in the logic circuit of the Moore FSM based on
the above mentioned peculiarities.

2. Background of Moore FSM Design

Let the control algorithm of a digital system be speci-
fied by a graph scheme of algorithm (Baranov, 1994)
Γ = (B,E), where B = {b0, bE} ∪ E1 ∪ E2 is a set
of the vertices and E is a set of edges. Here b0 is an in-
itial vertex, bE is a final vertex, E1 is a set of operatio-
nal vertices, and E2 is a set of conditional vertices. The
vertex bq ∈ E1 contains a collection of microoperations
Y (bq) ⊆ Y , where Y = {y1, . . . , yN} is a set of mi-
crooperations of the digital system data-path (De Micheli,
1994). The vertex bq ∈ E2 contains some logic condi-
tion xe ∈ X , where X = {x1, . . . , xL} is a set of logic
conditions (flags) (Adamski, 2006). The initial and final
vertices of the graph scheme of algorithm correspond to
an initial state a1 ∈ A, where A = {a1, . . . , aM}is a set
of internal states of a Moore FSM. Each operational ver-
tex bq ∈ E1 corresponds to a unique state am ∈ A. The
logic circuit of the Moore FSM U1 is represented by the
following systems of Boolean functions:

Φ = Φ(T,X), (1)

Y = Y (T ), (2)

where T = {T1, . . . , TR} is a set of internal varia-
bles encoding the states am ∈ A, R =] log2 M [; Φ =
{D1, . . . , DR} is the set of the FSM input memory func-
tions. The systems (1) and (2) are formed on the basis of
a structure table with columns (Baranov, 1994): am is the
current FSM state, K(as) is the code of the state am, as

is the next state, K(as) is the code of the state as, Xh is
the conjunction of some elements of the set X (or their
complements) determining the transition < am, as >,
Φh is the collection of input memory functions that are
equal to 1 to switch the memory from K(am) into K(as),
and h = 1, . . . , H1(Γ) is the line number. The co-
lumn am contains the collection of the microoperations
Y (am) ⊆ Y that are generated in the state am ∈ A. It is
clear that Y (bq) = Y (am), where the vertex bq ∈ E1 is
marked by the internal state am ∈ A. The structure dia-
gram of a Moore FSM U1 is shown in Fig. 1.
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Fig. 1. Structure diagram of the Moore FSM U1.

Here the combinational circuit (CC) forms the func-
tions (1) and the circuit of formation of microoperations
(CFMO) forms the functions (2). The register (RG) ke-
eps the code K(am). The pulse “Start” is used to load the
code of the initial state a1 ∈ A into the register. The pulse
“Clock” is used to change the content of the register. In
this article we discuss the case when the CPLD techno-
logy is used in some SoPC. In this case the combinational
circuit is implemented using PAL macrocells and the cir-
cuit of formation of microoperations is implemented using
embedded memory blocks.

As a rule, the number of transitions H1(Γ) exceeds
the number of transitions H0(Γ) of the equivalent Mealy
FSM (Barkalov and Węgrzyn, 2006). It leads to an incre-
ase in the number of PAL macrocells in the circuit of the
Moore FSM compared with the equivalent Mealy FSM.
The value H1(Γ) can be decreased taking into account
the pseudoequivalent states of the Moore FSM (Barkalov,
1998). The states am, as ∈ A are pseudoequivalent sta-
tes if identical inputs result in identical next states for both
am, as ∈ A. This is possible if the outputs of the operatio-
nal vertices marked by these states are connected with the
input of the same vertex of the graph scheme of algorithm
Γ. Let ΠA = {B1, · · · , BI} be a partition of the set A
by the classes of pseudoequivalent states (I ≤ M). There
are two main methods of Moore FSM optimization based
on pseudoequivalent states (Barkalov, 1998; Barkalov and
Węgrzyn, 2006):

• optimal encoding of the states;

• transformation of the codes of states into the codes
of classes of pseudoequivalent states.

In the first case, the states am ∈ A are encoded so
that the codes of the states am ∈ Bi (i = 1, . . . , I) be-
long to a single generalized interval of the R-dimensional
Boolean space. This leads to a Moore FSM U2 that has
the same structure as the Moore FSM U1. The algorithm
from (De Micheli, 1994) can be used for such an enco-
ding. In (Barkalov, 1998) it is shown that the number of
transitions H2(Γ) of U2 is decreased to H0(Γ). But such
an encoding is not always possible (Adamski and Barka-
lov, 2006). In the second case, the classes Bi ∈ ΠA are
encoded by the binary codes K(Bi) with R1 =] log2 I[
bits. The variables τr ∈ τ are used for such an encoding,
where |τ | = R1. Let us point out that I = M0, where
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M0 is the number of the states of the equivalent Mealy
FSM. This approach leads to a Moore FSM U3, with a
code transformer (TC) (Fig. 2). In the Moore FSM U3 the
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Fig. 2. Structure diagram of the Moore FSM U3.

combinational circuit implements the functions

Φ = Φ(τ,X) (3)

and the code transformer implements the functions

τ = τ(T ). (4)

The number of transitions of the Moore FSM U3 is equal
to H0(Γ). The drawback of U3 is the existence of a block
of the code transformer that consumes additional resour-
ces of embedded memory blocks (in comparison with U1).

In our article we propose to combine the application
of an optimal encoding of the states and the transformation
of the states codes. In this case the block of the code trans-
former can be even eliminated if some condition holds.
The proposed method is based on the following features
of the hypothetical CPLD in use:

• the fan-in of PAL macrocells exceeds significantly
the maximal possible number of literals in terms of
the system (1),

• the number of the outputs of the embedded memory
block can be chosen from some restricted area.

The first feature permits us to use more than one so-
urce to represent the code of the current state am ∈ A.
The second feature permits us to use some bits of the em-
bedded memory block to represent the codes of the classes
of pseudoequivalent states.

3. Main Ideas of the Proposed Method

Let the embedded memory block have q words if the num-
ber of its outputs tF = 1. If q ≥ M, then the embedded
memory block should be configured in such a manner that
it has

tmax =]q/M [ (5)

outputs. The final value of the number of the outputs tF
is chosen from the set Sp that contains the possible fixed
numbers of outputs. For example, if tmax = 6 and Sp =
{1, 2, 4, 8}, then tF = 4.

The total amount of the outputs ts of all embedded
memory blocks of the circuit of formation of microopera-
tions is determined as

ts =]
N

tF
[tF . (6)

In this case,

Δt = ts − N (7)

outputs are free and they can be used to represent the co-
des of the classes of pseudoequivalent states.

If

Δt ≥ R1, (8)

then the graph scheme of algorithm Γ can be interpreted
by a Moore FSM U4 (Fig. 3). In the Moore FSM U4
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Fig. 3. Structure diagram of the Moore FSM U4.

the combinational circuit forms the functions (3), and the
circuit of formation of microoperations and the codes of
the classes (CMOC) implements both the systems (2) and
(4). In this case the block of code transformer is elimi-
nated and the FSM states can be encoded in an arbitrary
manner.

If (8) is violated, then we propose the following ap-
proach. Let us represent the set ΠA as ΠA = ΠB ∪ ΠC ,
where Bi ∈ ΠB

|Bi| > 1, (9)

otherwise Bi ∈ ΠC .
It is clear that the circuit of the code transformer sho-

uld generate only the codes K(Bi), where Bi ∈ ΠB . Let
us encode the states am ∈ A in an optimal way (Bar-
kalov, 1998), and let us represent the set ΠB as ΠB =
ΠD ∪ ΠE . Here Bi ∈ ΠD if the codes of the states be-
long to a single generalized interval of the Boolean space.
Now only the codes of the states am ∈ A (ΠE) sho-
uld be transformed, where A (Πj) is a set of the states,
where Bi ∈ Πj (j = A,B,C,D,E). It is to take eno-
ugh R2 = ]log2 (|ΠE | + 1)[ binary variables to encode
the classes Bi ∈ ΠE . Let these variables form a set Z,
where |Z| = R2. If

Δt ≥ R2, (10)
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Fig. 4. Structure diagram of the Moore FSM U5.

then the graph scheme of algorithm Γ can be interpreted
by a Moore FSM U5 (Fig. 4).

Here the combinational circuit forms the functions

Φ = Φ(T,Z,X) , (11)

the CMOC forms both functions (2) and the functions

Z = Z(T ). (12)

In the FSM U5 the block of the code transformer is
missing and the variables Tr ∈ T represent both the sta-
tes am ∈ A(ΠC) and the classes Bi ∈ ΠD. The classes
Bi ∈ ΠE are represented by the CMOC. In this case the
number of inputs in the PAL macrocells is increased from
L+R1 (the FSM U3) to L+R+R2 (the FSM U5,) but it
does not increase the hardware amount in the CC in com-
parison with the FSM U3. The cycle times of U1 and U5

are the same in the worst case. In the best case, the combi-
national circuit of U5 has fewer levels than the combina-
tional circuit of U1. This means that the cycle time of U5

can be less than that of U1. Therefore, the proposed appro-
ach permits us to decrease the hardware amount without
the decrease in the performance of the digital system. Let
us point out that the cycle times of U2, U3, U4, U5 are the
same.

If (8) and (10) are violated, then we propose to repre-
sent the set ΠE as ΠE = ΠF ∪ ΠG. The set ΠF includes
nF classes, where

nF = 2Δt − 1. (13)

The codes of the classes Bi ∈ ΠF are kept in the
CMOC and the variables zr ∈ Z are used for their repre-
sentation, where |Z| = Δt. The set ΠG includes

nG = I − nC − nD − nF (14)

classes, where nC = |ΠC |, nD = |ΠD|. These classes
can be encoded using the variables τr ∈ τ , where |τ | =
R3 and

R3 =] log2(nG + 1)[. (15)

In this case we propose to interpret the graph scheme
of algorithm Γ by a Moore FSM U6 (Fig. 5).
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Fig. 5. Structure diagram of the Moore FSM U6.

Here the combinational circuit forms the functions

Φ = Φ(T,Z, τ,X), (16)

the CMOC forms both the functions (2) and (12), and the
circuit of the code transformer forms the functions (4). In
the FSM U6 the number of the inputs of the PAL macro-
cells is equal to L + R + Δt + R3, but the combinational
circuit has the same hardware amount as in the case of the
FSM U3. The block of the code transformer of U6 has less
hardware than that of U3.

The Moore FSM U6 has the most complex structure
and its design method includes the biggest amount of steps
in comparison with the FSM U1 − U5. In our article we
propose the design method of the FSM U6 including the
following steps:

1. Construction of a marked graph scheme of the algori-
thm Γ and the construction of the set of internal states
A = {a1, . . . , aM} of Moore FSM.

2. Construction of the partition ΠA = ΠB ∪ ΠC .

3. Optimal encoding of the states and the construction
of the sets ΠD and ΠE .

4. Calculation of Δt t and the construction of the sets
ΠF and ΠG.

5. Encoding the classes Bi ∈ ΠF ∪ ΠG.

6. Construction of the table of the CMOC.

7. Construction of the modified structure table of the
FSM.

8. Construction of the table of the code transformer.

9. Implementation of the FSM logic circuit.

The choice of a particular model depends on some
conditions. In this article we propose the algorithm given
in (Fig. 6).

If the condition (8) holds, then the model U4 should
be chosen. Otherwise the optimal encoding of the sta-
tes should be executed. If all classes Bi ∈ ΠA are re-
presented by unique generalized intervals of the Boolean
space (ΠE = ∅), then the model U5 should be chosen.
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Fig. 6. Choice of the Moore FSM model.

If Δt < R1 and ΠE = ∅, then the condition (10) de-
termines the optimal model of the Moore FSM for the in-
terpretation of the graph scheme of algorithm Γ using the
hardware of an SoPC with the CPLD technology.

4. Application Examples of the Proposed
Methods

Let us discuss some examples in the case when the con-
trol algorithm is represented by the marked graph scheme
of algorithm Γ1 (Fig. 7). The design method will be fo-
und from Fig. 6 using the parameter q of the embedded
memory block in use.
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Fig. 7. Marked graph scheme of algorithm Γ1.

We can get the following characteristics of the con-
trol unit from Fig. 7: A = {a1, . . . , a16}, M = 16,

Table 1. Fragment of the structure table of the Moore FSM
U1(Γ1).

am K(am) as K(as) Xh φh h

a2(y1y2) 0001 a5 0100 x2x3 D2 4

a6 0101 x2x̄3 D2D4 5

a7 0110 x̄2x4 D2D3 6

a4 0011 x̄2x̄4 D3D4 7

R = 4, T = {T1, . . . , T4}, Φ = {D1, . . . , D4},
Y = {y1, . . . , y13}, N = 13. Let us encode the sta-
tes am ∈ A in a trivial way: K(a1) = 0000, K(a2) =
0001, . . . ,K(a16) = 1111. Let the symbol Ui(Γi) mean
that the Moore FSM Ui interprets the graph scheme of al-
gorithm Γj . Let us find a system of transition formulas
(Baranov, 1994) for the states am ∈ A. If the outputs of
the vertices marked by ai, aj ∈ A are connected with the
input of the same vertex of the graph scheme of algorithm
Γ, then we will combine the transition formulas for these
states into a single formula of transition. In the case of the
graph scheme of algorithm Γ1, we can form the following
system:

a1 → x1x2a2 ∨ x1x̄2a3 ∨ x̄1a4,

a2, a3, a4 → x2x3a5 ∨ x2x̄3a6 ∨ x̄2x4a7 ∨ x̄2x̄4a4,

a5, a6, a7 → x1x5a8 ∨ x1x̄5a9 ∨ x1a10,

a8, a9, a10 → x3x4a11 ∨ x3x̄4a12 ∨ x̄3x6a13 ∨ x̄3x̄6a16,

a11, a12, a13 → x4a14 ∨ x̄4a15,

a14, a15 → a16, a16 → a1. (17)

It is clear that the states from the left-hand side of
each transition formula are pseudoequivalent states. Thus,
in the case of the FSM U1(Γ1) we can form the parti-
tion ΠA = {B1, . . . , B7} , where B1 = {a1} , B2 =
{a2, a3, a4}, B3 = {a5, a6, a7} , B4 = {a8, a9, a10} ,
B5 = {a11, a12, a13} , B6 = {a14, a15} , B7 = {a16}
and I = 7. Let |Bi| = ni and Hi be the number of the
terms in the transition formula for the class Bi ∈ ΠA.
The number H1(Γ) of the lines in the structure table of
the Moore FSM U1 (Γ) can be found as

H1(Γ) =
I∑

i=1

niHi. (18)

In the case of the FSM U1(Γ1) we can get H1 (Γ1) =
45. This means that the structure table of the Moore FSM
U1 (Γ1) has 45 lines. Some part of this table is shown in
Table 1.

This table is a basis to form the system (1). For
example, from Table 1 we can get part of the Boolean equ-
ation for the function D4 ∈ Φ :

D4 = T̄1T̄2T̄3T4x2x̄3 ∨ T̄1T̄2T̄3T4x̄2x̄4.
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Let us discuss the case when the system (2) is im-
plemented using embedded memory blocks with q = 64
if tF = 1, and Sp = {1, 2, 4, 8}. From (5) we can get
tmax = 4 and tmax = tF , because tmax ∈ Sp. This means
that the circuit of formation of microoperations of the Mo-
ore FSM can be implemented using ]N/tF [= 4 embedded
memory blocks. From (6) we have ts = 16 and from (7)
we have Δt = 3. In the case of the FSM U1(Γ1) we have
I = 7. This means that R1 = 3 and τ = {τ1, τ2, τ3}. The
condition (8) holds, and according to the choice algorithm
(Fig. 6) we should use the model U4 for the interpretation
of the graph scheme of algorithm Γ1.

Let us encode the classes Bi ∈ ΠA in a trivial way:
K (B1) = 000, K (B2) = 001, . . . , K (B7) = 110. The
CMOC table has the following columns: am, K (am) ,
Y (am) , K (Bi) , m. The m-th line of this table conta-
ins both the microoperations yn ∈ Y (am) and the code
K (Bi), where am ∈ Bi (m = 1, . . . ,M). This table is
formed in a trivial way. To save space, let us show the
content of the CMOC as Table 2.

Table 2. Content of the CMOC of the Moore FSM U4(Γ1).

T1T2

- y1y2z3 y2y3z3 y4z3

y3y5y7z2 y1y2z2 y4z2 y6y7y8z2z3

y3y9y11z2z3 y2y3z2z3 y3y5y7z1 y3y9y11z1

y1y9y10z1 y9y12z1z3 y3y13z1z3 y4z1z2

00

01

11

10

00 01 11 10
T3T4

For example, the cell 0111 corresponds to the state
a8 with Y (a8) = (y6, y7, y8). Because a8 ∈ B4 with
K (B4) = 011, then the cell 0111 contains y6, y7, y8, z2

and z3. The other cells from Table 2 are filled in the same
manner.

To form a modified structure table of the Moore FSM
U4 (Γ1) , replace the states am ∈ Bi and the left-hand
side of each transition formula by the corresponding class
Bi ∈ ΠA. This leads to the system

B1 → x1x2a2 ∨ x1x̄2a3 ∨ x̄1a4,

B2 → x2x3a5 ∨ x2x̄3a6 ∨ x2x4a7 ∨ x̄2x̄4a4,

B3 → x1x5a8 ∨ x1x̄5a9 ∨ x̄1a10,

B4 → x3x4a11 ∨ x3x̄4a12 ∨ x̄3x6a13 ∨ x̄3x̄6a16,

B5 → x4a14 ∨ x̄4a15,

B6 → a16, B7 → a1. (19)

The modified structure table corresponds to a system
similar to (19) and it has the columns Bi, K (Bi) , as,
K (as) , Xh, Φh and h. Moreover, it has

H4 (Γ) =
I∑

i=1

Hi (20)

Table 3. Fragment of the modified structure table of the Moore
FSM U4(Γ1).

Bi K(Bi) as K(as) Xh φh h

B1 000 a2 0001 x1x2 D4 1

a3 0010 x1x̄2 D3 2

a4 0011 x̄1 D3D4 3

B2 001 a5 0100 x2x3 D2 4

a6 0101 x2x̄3 D2D4 5

a7 0110 x̄2x4 D2D3 6

a4 0011 x̄2x̄3 D3D4 7

lines. It is clear that H4 (Γ) = H0 (Γ), where H0 (Γ) is
the number of lines in the structure table of the equivalent
Mealy FSM. In case of the FSM H4 (Γ1) , its modified
structure table has H4 (Γ1) = 18 lines. The part of this
table for classes B1, B2 ∈ ΠA is shown in Table 3.

This table is a basis to form the system (3). For exam-
ple, from Table 3 we can form part of the Boolean equ-
ation of the function D4:

D4 = τ̄1τ̄2τ̄3x1 ∨ τ̄1τ̄2τ3x2x̄3 ∨ τ̄1τ̄2τ3x̄2x̄4.

The implementation of the logic circuit of the FSM
U4 is reduced to the implementation of the system (3)
using PAL macrocells and the implementation of the sys-
tems (2) and (4) using embedded memory blocks. There
are effective methods for such implementation (Barkalov
and Węgrzyn, 2006;). We therefore exclude this step from
our deliberations.

Let Hi (Dr) be the number of the terms in the func-
tion Dr (r = 1, . . . , R) for the FSM Ui (i = 1, . . . , 6) .
An analysis of the complete structure table of the
FSM U1 (Γ1) shows that H1 (D1) = 26, H1 (D2) =
H1 (D3) = H1 (D4) = 25. An analysis of the complete
modified structure table of the FSM U4 (Γ1) shows that
H4 (D1) = H4 (D2) = 9, H4 (D3) = H4 (D4) = 10.
Let Qi (Dr, S) be the number of PAL macrocells with S
terms to implement the function Dr ∈ Φ for the FSM Ui

(i = 1, . . . , 6) . Using the results from (Barkalov and Wę-
grzyn, 2006), the value of Qi (Dr, S) can be calculated
as

Qi (Dr, S) =
]
Hi (Dr) − 1

S − 1

[
. (21)

If, e.g., S = 6, then Q1(Dr, 6) = 5 and
Q4(Dr, 6) = 2 (r = 1, . . . , 4) . This means that the com-
binational circuit of U1 (Γ1) includes Q1(Γ1) = 20 PAL
macrocells and the combinational circuit of U4 (Γ1) inclu-
des Q4(Γ1) = 8 PAL macrocells. Therefore, in this case
the hardware amount in the combinational circuit is decre-
ased to 60%. The numbers of embedded memory blocks
in both the CMOC of U4 (Γ1) and the circuit of formation
of microoperations of U1 (Γ1) are the same. The cycle
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times of both U1 (Γ1) and U4 (Γ1) are the same. Let us
point out that in the case of the graph scheme of algorithm
Γ1 we have

Q1 (Γ1)
Q4 (Γ1)

=
H1 (Γ1)
H4 (Γ1)

. (22)

Now let us discuss the case when q = 32, if tF = 1,
and Sp = {1, 2, 4, 8} . From (5) we can get tmax = tF =
2. This means that the circuit of formation of microope-
rations of the Moore FSM U1 (Γ1) is implemented using
]N/tF [ = 7 embedded memory blocks.

From (6) we have tS = 14 and from (7) we have
Δt = 1. This means that the condition (8) is violated
and an optimal encoding of the states should be applied.
Using an algorithm from (De Micheli, 1994) we can get
the following result regarding the optimal encoding of sta-
tes of the FSM U1 (Γ1) (Table 4). From the Karnaugh

Table 4. Optimal encoding of the states of the Moore FSM
U1(Γ1).

T1T2

a1 a2 a3 a4

a5 a6 a7 a14

a8 a9 a10 a15

a11 a12 a13 a16

00

01

11

10

00 01 11 10
T3T4

map of Tab. 4 we get ΠC = {B1, B7} , ΠD = {B6} ,
ΠE = {B2, . . . , B5} , |ΠE | = 4. From (9) we have
R2 = 3 and Δt < R2. This means that the condition
(10) is violated and the Moore FSM U6 should be applied
to interpret the graph scheme of algorithm Γ1. From (13)
we get nF = 1, which implies nG = 3. Now we have
the following sets of classes Bi ∈ ΠA : ΠC = {B4, B7},
ΠD = {B6}, ΠF = {B2}, ΠG = {B3, B4, B5} . Accor-
ding to Fig. 5, the codes of the classes Bi ∈ ΠC ∪ΠD are
represented by a register, the codes of the classes Bi ∈ ΠF

are represented by the CMOC and the codes of the classes
Bi ∈ ΠG are represented by the code transformer.

From the Karnaugh map (Tab. 4) we get the follo-
wing codes: K (B1) = K (a1) = 0000, K (B6) = ∗110,
K (B7) = K (a16) = 1010. Since Δt = 1, we have
Z = {z1} . Let K (B2) = 1 and let z1 = 0 means that
the codes of the classes Bi ∈ ΠF are not used to form
the current transition of the FSM. The number of varia-
bles in the set τ can be determined using (15). In our
example we have R3 = 2 and τ = {τ1, τ2} . Let us
encode the classes Bi ∈ ΠG in the following manner:
K (B3) = 01, K (B4) = 10, K (B5) = 11. The input as-
signment τ1 = τ2 = 0 means that the codes of the classes
Bi ∈ ΠG are not used to form the current FSM transition.

The CMOC of the Moore FSM U6 (Γ1) is represen-
ted by Tab. 5.

Table 5. Content of the CMOC of the Moore FSM U6(Γ1).

T1T2

- y1y2z1 y2y3z1 y4z1

y3y5y7 y1y2 y4 y9y12

y6y7y8 y3y9y11 y2y3 y3y13

y3y5y7 y3y9y11 y1y9y10 y4

00

01

11

10

00 01 11 10
T3T4

The modified structure table of the Moore FSM U6

is constructed based on a modified system of the formulae
of transitions. In the case of the FSM U6 (Γ1) this system
is represented by (19). This table has the same columns
as the modified structure table of the Moore FSM U4. The
column K (Bi) contains the code

K (Bi) = [K (Bi)
C ∨ K (Bi)

D] ∗ K (Bi)
F ∗ K (Bi)

G

(23)
where K (Bi)

j is the code of the class Bi ∈ Πj

(j = C,D,F,G) , ‘∗′ signifies concatenation. The num-
ber of lines H6 (Γ) is determined as H4 (Γ) . In the case of
the FSM U6 (Γ1) we have H6 (Γ1) = 18. The transitions
for the classes B1, B2, B3 ∈ ΠA are shown in Table 3.

The code K (Bi) is represented by the variables T1,
T2, T3, T4, τ1, τ2, z1. If τ1∨τ2∨z1 = 1, then Bi ∈ ΠF or
Bi ∈ ΠG. In this case the code of am ∈ A is ignored and
it is represented by the signs ‘∗′ in the column K (Bi) .
This table is a basis to form the system (16). From Table
3 we can get, e.g.,

D4 = T̄1T̄2T̄3T̄4τ̄1τ̄2z̄1x1 ∨ τ̄1τ̄2z1x2x̄3 ∨ τ̄1τ̄2z1x̄2x4

∨τ̄1τ2z̄1x1x̄5 ∨ τ1τ2z̄1x̄1.

The table of the circuit of the code transformer contains
the columns am, K (am) , Bi, K (Bi) , τm, m, where
am ∈ A (ΠG). In the case of the FSM U6 (Γ1) this ta-
ble includes 6 lines (Table 6).

If some line of this table includes more than one state,
then the column K (am) contains the generalized interval
corresponding to the codes of these states. The table of the
code transformer is a basis to form the functions (4). The
codes of the states am /∈ A (ΠG) can be treated as “don’t
care” input assignments (McCluskey, 1986) and they can
be used to minimize the functions (4). The Karnaugh map
for the function τ1 ∈ τ is shown in Tab. 8.

From this map we can get τ1 = T1. Using the same
approach, we can get τ2 = T̄1 ∨ T̄2. Implementation of
the logic circuit of the finite-state machine U6 is reduced
to the implementation of systems (4) and (16) using PAL
macrocells and to the implementation of the systems (2)
and (12) using embedded memory blocks.

In the case of the Moore FSM U6 (Γ1) we have
H6 (D1) = 9, H6 (D2) = H6 (D4) = 10, H6 (D3) =
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Table 6. Fragment of the modified structure table of the Moore FSM U6(Γ1).

Bi K(Bi) as K(as) Xh φh h

a2 0001 x1x2 D4 1

B1 0000000 a3 0011 x1x̄2 D3D4 2

a4 0010 x̄1 D3 3

a5 0100 x2x3 D2 4

B2
∗∗∗∗001 a6 0101 x2x̄3 D2D4 5

a7 0111 x̄2x4 D2D3D4 6

a4 0010 x̄2x̄4 D3 7

a8 1100 x1x5 D1D2 8

B3
∗∗∗∗000 a9 1101 x1x̄5 D1D2D4 9

a10 1111 x̄1 D1D2D3D4 10

Table 7. Table of the code transformer of the Moore FSM
U6(Γ1).

am K(am) Bi K(Bi) τm m

a5, a6 010∗ B3 01 τ2 1

a7 0111 B3 01 τ2 2

a8, a9 110∗ B4 10 τ1 3

a10 1111 B4 10 τ1 4

a11, a12 100∗ B5 11 τ1τ2 5

a13 1011 B5 11 τ1τ2 6

Table 8. Karnaugh map for the function τ1.

T1T2

* * * *

0 0 0 *

1 1 1 *

1 1 1 *

00

01

11

10

00 01 11 10
T3T4

10. If PAL macrocells have S = 6, then from (20) we
get Q6 (Γ1) = 8. To implement the circuit of the code
transformer of the FSM U6 (Γ1), it is enough to take only
TC6 (Γ1) = 1 macrocell. Here TCi (Γj) means the amo-
unt of hardware to implement the circuit of code transfor-
mer of the FSM Ui that interprets the graph scheme of the
algorithm Γj . Thus, only Q6 (Γ1)+TC6(Γ1) = 9 macro-
cells should be used to implement an arbitrary logic of the
FSM U6 (Γ1) . Therefore, in this case the number of PAL
macrocells is decreased to 55% in comparison with the
FSM U1 (Γ1) . The other characteristics of both U1 (Γ1)
and U6 (Γ1) are the same (the cycle time and the number
of embedded memory blocks).

5. Analysis of the Proposed Method

Let us find an area where the FSM Ui(i = 4, 5, 6) has less
hardware amount than the FSM Uj(j = 1, 2, 3). Let us
use the probabilistic approach described in (Barkalov and
Barkalov, 2005). There are three key points in such an
approach:

1. The use of the class of graph schemes of algorithm
instead of a particular graph scheme of algorithm Γ.
Each class is characterized by the parameters

p1 = |E1| / |B| , p2 = |E2| / |B| . (24)

It is clear that

Lim
K(Γ)→∞

(p1 + p2) = 1, (25)

where K(Γ) = |B| . Therefore p1 (resp. p2) can be
treated as the probability of the event that a particu-
lar vertex of the graph scheme of algorithm Γ is an
operational (resp. conditional) one.

2. The use of the matrix realization of the FSM circuit
(Baranov, 1994) instead of the implementation using
some standard VLSI. In this case we can find a har-
dware amount as the area of the matrices for a given
structure of the logic circuit of the finite-state ma-
chine.

3. To study the relations S(Ui)/S(Uj), where S(Ui)
an S(Uj) are the areas of the matrices for the FSMs
Ui and Uj , respectively. In (Barkalov and Wegrzyn,
2006) it is proved that such relations for the cases
of the matrix realization are the same as for circuits
implemented with standard programmable logic de-
vices, such as PAL, PLA or PROM.

A matrix realization of the Moore FSM U1 is shown in
Fig. 8. Here M1 is a conjunctive matrix that implements
the system F of the terms of the system (1). M2 is a di-
sjunctive matrix that implements the functions of the sys-
tem (1). M3 is a conjunctive matrix that implements the
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Fig. 8. Matrix realization of the Moore FSM U1.

system A0, where each function corresponds to the con-
junction Am (m = 1, . . . ,M) to the code K(am) of the
state am ∈ A; M4 is a disjunctive matrix that implements
the functions (2). It is clear that the matrices M1 and M2

represent the combinational circuit, and the matrices M3

and M4 represent the circuit of formation of microopera-
tions. The complexity of these circuits can be expressed
as

S(CC)1 = 2(L + R) · H1(Γ) + H1(Γ) · R,

S(CFMO)1 = 2R2R + 2RN. (26)

A matrix realization of the finite-state machine U4 is
shown is Fig. 9.
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Fig. 9. Matrix realization of Moore FSM U4.

Here the set F includes H0(Γ) elements, the set τ
includes R0 elements, where R0 is the number of internal
variables of the equivalent Mealy finite-state machine. It
means that the complexity of the combinational circuit can
be calculated as

S(CC)4 = 2(L + R0) · H0(Γ) + H0(Γ) · R. (27)

It is clear from the method of design of the finite-state
machine U4 that

S(CFMO)1 = S(CMOC)4. (28)

To find the range of effective application of the Moore
finite-state machine U4 we should examine the functions:

f1 = S(CC)4/S(CC)1;
f2 = [S(CC)4 + S(CFMO)1]

/ [S(CC)1 + S(CFMO)1] . (29)

The function f1 shows the decrease in the total area oc-
cupied by in matrices M1 and M2 due to the application
of the model U4 instead of the model U1. The function f2

shows the total decrease in the hardware amount in this
case.

To reduce the number of variables in the expressions
(26)–(31) we can use the results of (Barkalov and We-
grzyn, 2006), where the parameters L, R0, R, H0(Γ),
H1(Γ) are expressed as functions of K(Γ) and some co-
efficients:

L = [(1 − p1) · K(Γ)] /p4;
R0 = ]log2 (3, 55 + 0, 44 · p1 · K(Γ)) /p3[ ;
R = ]log2 p1 · K(Γ)[ ;

H0(Γ) = [4, 44 + 1, 44 · p1 · K(Γ)] /p3;
H1(Γ) = 17, 4 + [2, 16 · K(Γ) · p1] /p3. (30)

Here p3 = |E1|/Q, where Q is the number of micro-
instructions of a graph-scheme of algorithm Γ, p3 =
{1, 3; 1, 4}; p4 = |E2|/L, p4 ≤ 1, 3 (Barkalov and Wę-
grzyn, 2006). Now the functions f1 and f2 can be expres-
sed as functions depending on K(Γ), p1, p3, p4 and N.
Some results of investigation are shown in Fig. 10 and
11. Let us point out that these results are correct only
if the condition (8) holds. Otherwise some other models
of the Moore finite-state machine should be used for the
interpretation of a graph-scheme of algorithm Γ. It is clear
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P1=0.5 P1=0.7 P1=0.9
 

Fig. 10. Function f1 for p2 = 1 − p1, p3 = 1.3; p4 = 1.2 and
p5 = 0.5.

from Fig. 10 that the application of the proposed method
always gives less amount of hardware than the known
methods. This gain is increased with a decrease in the
number of the vertices of a graph-scheme of the algori-
thm Γ and an increase the number of operational vertices
of graph-schemes of the algorithm Γ (increase in the pa-
rameter p1). The average gain for the graph-scheme of
algorithm with K (Γ) = 500 is equal to 39%. It fol-
lows from Fig. 11 that the Moore FSM with the proposed
structure always requires less hardware amount than the
known models of finite-state machines. This gain is incre-
ased with a decrease in the number of microoperations N.
The average gain for graph-schemes of the algorithm with
K (Γ) = 500 is near 32%.

From the analysis of these figures it is clear that Mo-
ore finite-state machines offer gains in the cost. This gain
is increased with reducing the number of vertices in the



574 A. Barkalov et al.

0,600

0,620

0,640

0,660

0,680

0,700

0,720

0,740

0,760

0,780

100 200 300 400 500 600 700 800 900 1000

 

N=10 N=50 N=100
 

Fig. 11. Function f2 for p1 = p2 = p5 = 0.5, p3 = 1.3 and
p4 = 1.2.

initial graph-scheme of algorithm (resp. decreasing the
parameter K(Γ)) and decreasing the length of the codes
of sets of microoperations in the initial graph-scheme of
algorithm (resp. increasing the parameter P3). The maxi-
mal gain is achieved for graph-schemes of algorithm with
the number of vertices 100 ≤ K(Γ) ≤ 200.

The correctness of these results was checked in the
following way for the case of an industrial CPLD with
PAL macrocells. Some software was written for the de-
sign of all FSM models discussed in this article. This
software uses the standard package WebPack of Xilinx
(www.xilinx.com) and VHDL models of Moore finite-
state machines. A separate program is used to set up
the main parameters of embedded memory blocks to esti-
mate their amount and to choose a particular FSM model.
Our software permits the estimation of the number of PAL
macrocells in the combinational part of the FSM. Experi-
ments conducted with the use of the software confirm the
correctness of the tendencies shown in Fig. 10 and 11. But
the total average gain was a bit less than it follows from
these theoretical curves, and it was equal to, on average,
near 28%.

Similar results were obtained for the comparison of
the base models U1−U3 and the proposed models U4−U6.

6. Conclusion

The proposed methods of the implementation of the Mo-
ore finite-state machine using PAL macrocells and em-
bedded memory blocks allow decreasing the cost of the
logic circuit of the control unit in comparison with the
known methods of Moore finite-state-machine design. In
this article the proposed methods are based on the follo-
wing peculiarities of both the Moore finite-state machine
and CPLD:

1. Existence of pseudoequivalent states (P1).

2. Wide fan–in of PAL macrocells (P2).

3. Existence of the set of fixed numbers for the out-
puts of the embedded memory block (P3). Let us

remind, that such blocks exist only for our hypothe-
tical CPLD.

There following structures of the logic circuit of Moore
finite–state machine are proposed in this article:

1. Moore finite-state machine U4 based on the proper-
ties P1 and P3.

2. Moore finite-state machine U5 based on the optimal
encoding of the pseudoequivalent states and proper-
ties P2 and P3.

3. Moore finite-state machine U6 based on the optimal
encoding of the pseudoequivalent states, the proper-
ties P2 and P3 and the use of the code transformer.

Each of the proposed methods can be applied only if some
conditions hold, which are different for different methods.
The choice of a particular method is supported by a special
algorithm proposed in this article. Let us point out that
these methods cannot be applied in the case of the Mealy
finite-state machine, because it has no pseudoequivalent
states.

Our analysis of the effectiveness of the proposed me-
thods showed that the method optimal in the given condi-
tions always permits a decrease in the hardware amount in
comparison with earlier known methods of Moore finite-
state machine design. This decrease in hardware does not
lead to a decrease in the performance of the control unit.
There are some special cases such as Δt = 0 or Πi = ∅
(i = B,C, . . . , G), where some other models of the Mo-
ore finite-state machine are more effective. These cases
are the subject of our further research. The proposed me-
thods can be modified for real CPLD, where embedded
memory blocks are absent. In this case the system of mi-
crooperations is implemented using PAL macrocells, too.
The same effectiveness of the proposed methods should be
tested for both cases of the FPGA with embedded memory
blocks and for the CPLD CoolRunner (www.xilinx.com)
based on the PLA technology. Of course, the proposed
methods should be modified to meet specific requirements
of these chips.
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