
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 1, 81–97
DOI: 10.1515/amcs-2016-0006

RGB–D TERRAIN PERCEPTION AND DENSE MAPPING FOR LEGGED
ROBOTS

DOMINIK BELTER a,∗, PRZEMYSŁAW ŁABECKI a, PÉTER FANKHAUSER b,
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This paper addresses the issues of unstructured terrain modeling for the purpose of navigation with legged robots. We
present an improved elevation grid concept adopted to the specific requirements of a small legged robot with limited per-
ceptual capabilities. We propose an extension of the elevation grid update mechanism by incorporating a formal treatment
of the spatial uncertainty. Moreover, this paper presents uncertainty models for a structured light RGB-D sensor and a
stereo vision camera used to produce a dense depth map. The model for the uncertainty of the stereo vision camera is based
on uncertainty propagation from calibration, through undistortion and rectification algorithms, allowing calculation of the
uncertainty of measured 3D point coordinates. The proposed uncertainty models were used for the construction of a terrain
elevation map using the Videre Design STOC stereo vision camera and Kinect-like range sensors. We provide experimental
verification of the proposed mapping method, and a comparison with another recently published terrain mapping method
for walking robots.
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1. Introduction

To operate autonomously on a previously unknown
terrain, a robot has to perceive the environment, build a
model, localize itself and plan its motion. Environment
perception plays an important role in robot navigation.
The robot needs accurate data from sensors to build a
model of the environment. This model (map) can be
used to adapt the gait to the terrain profile (Walas and
Belter, 2011), plan the motion (Zucker et al., 2010) and
localize the robot (Yoon et al., 2013), and should thus be
designed taking into account the real-time operation of the
entire navigation system.

Among many existing representations of the
environment (raw point cloud, occupancy map,
2.5D elevation map, triangle mesh, octree (Hornung
et al., 2013), multi-level surface (MLS) maps (Pfaff
et al., 2007)), we work with 2.5D elevation maps. Motion
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planning for walking robots is more complex than for
wheeled robots. Even if the robot walks statically stable,
it needs to select footholds, modify the inclination of
the body to actively adapt to the terrain profile, and
plan feet and body trajectories. The motion planning
procedures have to send many queries about the height
of the terrain at a given location. We decided to use
a 2.5D elevation map because it provides constant and
short access time and most of the planning methods for
walking robots are designed to use elevation maps (Belter
and Skrzypczyński, 2011a; Belter et al., n.d.; Stelzer
et al., 2012). The size of the cell should be similar to that
of the robot’s foot to allow for foothold selection. Thus,
the resolution of the map for a walking robot should
be higher than for a wheeled robot. With increasing
computational power, full 3D representations like octree
maps (Octomap) become more interesting, but are still
more challenging than a 2.5D representation.
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In our system, the map of the environment is updated
using data from two types of sensors providing dense
depth measurements: a passive stereo camera and an
active PrimeSense structured light sensor. The most
well-known sensor of this type is Microsoft Kinect, but
we use Asus Xtion and PrimeSense Carmine, which are
more suitable for legged robots due to their size. As the
walking robot should operate in various environments,
we are focused on two complementary sensors. The
PrimeSense-based sensor returns accurate depth data
indoors. Because Kinect and Asus Xtion use near-infrared
structured light projectors to obtain information about
the distance to the objects, these sensors do not operate
outdoors (Belter et al., 2015). Thus, we use a
stereo camera, which returns depth data even in direct
sunlight conditions. On the other hand, the stereo
camera encounters problems whenever the objects in the
environment do not contain sufficient visual features.
Plain walls and floors, which are very common indoors,
are problematic for passive stereo-based perception.

The mapping method presented in this paper is
general and can be used with any kind of depth sensor
as input to the mapping method. We demonstrate how to
use data from two common types of sensors to update the
height and uncertainty of each cell of the elevation map.

1.1. Approach and contribution. In this paper we
address the problem of perceiving and mapping the
environment for walking robots. We present a procedure
which updates the height of the cell of the elevation map.
To this end, we introduce a new structure of the map. Each
cell of our elevation map corresponds to a stack of voxels.
This structure allows removal of erroneous measurements
which are not filtered by the front-end filtering procedures
(that are based on the properties of the depth sensor used
for environment perception). We also present an elevation
estimation procedure based on a static Kalman filter (KF).
The paper also provides methods which better handle
occlusions (visibility checking procedure) and erroneous
data points introduced by the stereo vision system.

We additionally show how to remove spurious data
from stereo images. Most of the artifacts can be found on
the edges of objects. The goals of the proposed method
are to remove spurious data and to preserve sharp edges.
We are looking for a method that is relatively simple
and fast in comparison with those known from computer
graphics (Dey et al., 2012; Sharf et al., 2007). We show
that our technique improves the accuracy of the map in
comparison with the embedded filters provided by the
Small Vision System (SVS) (Konolige, 1997) software
library, and removes less useful 3D points.

We also provide uncertainty models of the sensors
used for mapping. We show how the measurement
error propagates through the mapping procedure to the
uncertainty of each cell of the map. We present

an analytical uncertainty propagation procedure for the
stereo camera and the PrimeSense-based sensor. This
procedure is general enough to be applied to other types
of RGB-D and vision sensors, such as time-of-flight
(ToF) cameras. Moreover, we provide sensor-specific
procedures for filtering the measurement data. We show
how to remove incorrect measurements from the point
cloud obtained when the stereo camera is used.

The last part of the paper contains an experimental
verification of the mapping method. We show the
properties of the mapping method, its accuracy and the
role of the data filtering procedure proposed in the paper.
We also provide experimental results obtained on real
walking robots.

This article is a significantly extended version of the
conference paper by Łabecki and Belter (2014), which
builds also on the previous works of the PUT team (Belter
et al., 2012; Łabecki and Skrzypczyński, 2013), and the
ETH/ASL team (Fankhauser et al., 2014) concerning
perception and mapping for legged robots. In this paper
we assume that the environment is quasi-static (it does not
change in close vicinity of the robot), and that the robot is
well-localized relative to its environment. Therefore, we
can focus on efficient estimation of geometric properties
of the terrain and the influence of uncertainty in dense
depth perception. The initial version of this work was
presented at the special session on Robotic perception em-
ploying RGB-D images during the 13th National Confe-
rence on Robotics in Kudowa Zdrój, Poland, 2014.

2. Related work

Several papers have already addressed the application of
stereo vision for terrain mapping. Poppinga et al. (2010)
reports the usage of a stereo-on-chip (STOC) camera
as a sensor for mobile robots in search and rescue
tasks. However, artifacts produced by the camera were
not taken into account. Stereo vision has been used
for terrain modeling with walking robots so far only
in few projects, mostly because typical stereo systems
impose high costs of 3D points computation. In the
works of Kolter et al. (2009) and Rusu et al. (2009)
walking robots with stereo-based perception are shown to
autonomously traverse a rugged terrain, but in both cases
the computations are performed off-board, and explicit
propagation of the spatial uncertainty from the stereo
data to the elevation map is not taken into account. The
knowledge about the elevation uncertainty of each cell in
the map allows planning the path of the walking robot
more efficiently, while avoiding uncertain areas (Belter
and Skrzypczyński, 2011b). Finally, the uncertainty
measure can be used for data fusion in a multi-sensor
perception system. In this case each sensor should have
its own uncertainty model, but these models have to be
expressed in a common framework.
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The approach of Kleiner and Dornhege (2007) as
well as Fankhauser et al. (2014) is based on the estimation
of the motion of the robot. The simplified solution of
Kleiner and Dornhege (2007) assumes that the uncertainty
of the robot’s position and orientation is reflected in
the map by linearly growing the variance of the height
estimate based on the accumulated distance and angle.
This approach conservatively merges an approximation
of the pose uncertainty into the height variance without
taking the effect of the in-plane uncertainty into account.
The work of Fankhauser et al. (2014) extends this
formulation to propagate the full pose uncertainty of the
robot to the map. The mapping method presented in
this paper does not account directly for the robot pose
uncertainty, assuming that a precise pose estimate is
available to the robot. This makes computing the elevation
values simpler and faster than in the work of Fankhauser
et al. (2014). This assumption, when applied to the local
area around the legged robot which is in the field of
view of the on-board RGB-D or passive camera, is quite
realistic, as demonstrated by Belter and Skrzypczyński
(2013). For indoor applications, precise pose estimates
of a walking robot can be also obtained using RGB-D
sensing (Nowicki and Skrzypczyński, 2013). On the other
hand, the pose uncertainty may be easily added to the
updating mechanism, as the underlying data structures are
very similar.

Some of the grid-based algorithms for rough terrain
mapping use ad hoc formulations for mapping; e.g., Ye
and Borenstein (2004) apply heuristics when they fuse
consecutive laser range measurements into an elevation
grid: their certainty measure is a simple hit/miss counter.
On the other hand, there are 2.5D mapping methods
which are based on probabilistic foundations. The locus
method of Kweon and Kanade (1992) applies a simple
geometric approximation in order to obtain the elevation
uncertainty from the model of a range sensor’s beam
and its interaction with the terrain. However, this
method does not propagate explicitly the probabilistic
model of range measurements to the uncertainty of
elevation. Hebert et al. (1989) build a grid map for a
planetary rover in which each cell represents the height
of the terrain in order to approximate the surface of
the environment. They use matching algorithms to
find the corresponding transformation between multiple
scans to build a composite elevation map. The authors
do not address the issues of error propagation. More
recently, a method for efficient volumetric mapping
has been presented, which employed the notion of
positive and negative occupancy mass to represent the
environment (Dryanovski et al., 2010). Although this
model is efficient with regard to the map size, it is rather
suited for robots that require a full 3D world model, not
for walking robots, which can use much simpler 2.5D
maps.
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Fig. 1. Illustration of the space division concept which results
in multiple hypotheses per cell.

An entirely different concept is presented
by Plagemann et al. (2008), who propose a
non-parametric continuous surface estimation method.
This method is based on Gaussian process regression and
applies non-stationary covariance functions for adaptation
of the regression kernels to the structure of the terrain.
It enables filling-in large gaps in elevation data, and
provides estimates of uncertainty for the filled-in regions.
However, these advantages come at the cost of a high
computational burden, which can be prohibitive for a
small walking robot.

So far we have not extended our mapping system
towards description of multi-level or overhanging objects,
such as bridges and tunnels. This can be implemented
with multilevel surface maps (Pfaff et al., 2007), but it
is not necessary for the legged robot considered, which
carries downwards-pointing RGB-D sensors or cameras,
mounted in a geometric configuration optimized for
terrain surface perception. We use the data from depth
sensors directly to create a 2.5D model of the terrain.
A similar approach is used on the DLR-Crawler walking
robot (Stelzer et al., 2012), which uses data from a stereo
camera to model the environment and plan the motion of
the robot. They applied the locus method (Kweon and
Kanade, 1992), and showed that this method gives denser
maps with fewer artifacts than the traditional method for
creating a digital terrain model (Stelzer et al., 2012). To
minimize the influence of the localization error, existing
values on the height map are overwritten by new values.

3. Elevation mapping method

3.1. Mapping method. The aim of the mapping
method is to create an accurate model of the environment,
which is suitable to be used for motion planning of a
walking robot. We chose the elevation map representation
of the environment because it allows us to efficiently
query the map in the motion planning of the robot on a
rough terrain (Belter and Skrzypczyński, 2011a; Belter
et al., n.d.; Saarinen et al., 2013). The main problem
with this mapping method for a walking robot is related
to the perception system and geometrical properties of
the obstacles. A mobile robot equipped with on-board
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range sensors cannot measure elevation of the terrain
directly (Fig. 1). When the robot is close to a high wall
or its trunk is tilted down (Fig. 1(b)), it is not possible to
estimate the height of the wall by measuring the top part
of this obstacle. Assuming that the wall is represented in
a 2.5D map, the best estimate of the elevation of the cells
related to this wall is the highest measured value in the
whole history of measurements for these cells h[i,j,nmax].
We refer to the (horizontal) cell index in the map with i
and j, and the (vertical) voxel index with n. Note that
in the example of Fig. 1 the elevation hypothesis with
the lowest variance value hσmin is not a good estimate of
the wall height. On the other hand, the maximal height
in the history of measurements h[i,j,nmax] is sensitive to
spurious or very sparse measurements. Assuming that
the maximal height is estimated solely in a probabilistic
framework, like the Kalman filter, a single erroneous
measurement might lead to a biased, incorrect estimate
of the height of the obstacle (Fig. 1(b)). Our method
removes sparse and erroneous measurements before they
are fed to the probabilistic estimator, and then uses this
estimator to combine the previous estimate of the cell
elevation with the most recent measurements, providing
an accurate estimate of the cell elevation, h[i,j].

The simple max height criterion originally proposed
by Ye and Borenstain (2004) might cause improper height
estimation even if only one measurement exists above
the real height of the cell. Thus, we extended this
approach, dividing the space above the 2.5D elevation
cell into 3D voxels (Fig. 3(a)). This allows us to apply
a state estimator, e.g., the Kalman filter, to obtain an
optimal estimate of the given voxel’s elevation from
noisy measurements. Moreover, we apply a simple
column hit counter to reduce the role of sparse and
wrong measurements. Then we use another Kalman
filter to estimate the elevation of the cell considering
the previous estimates of this elevation. This approach
separates the process of cell elevation update using
measurements taken at various vantage points from the
selection of the most appropriate elevation measurement
at the given position of the robot. This way our
procedure accounts for the qualitative-type uncertainty in
the range measurements (Skrzypczyński, 2007) related to
the change of the field of view when the robot observes an
obstacle from different vantage points.

The diagram of the mapping procedure is presented
in Fig. 2. The procedure uses point clouds as input
and returns the height of each cell, h

[i,j]
(k+1), and the

corresponding uncertainty value, σ2[i,j]
(k+1). Each 3D point is

used to update the map. The depth sensor measurements
([x, y, z]T and related uncertainty Σp) are transformed to
the map coordinate system using the estimated position of
the robot. The method which allows computingΣp from a
raw measurement is presented in Sections 4.2 and 4.3. In
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Fig. 2. General idea of the mapping procedure which shows
how position [x, y, z]T and uncertainty in 3D coordi-
nates Σp of each point in the cloud are transformed to
height h[i,j] and uncertainty σ2[i,j] of each cell of the el-
evation and uncertainty maps. The number of points nm

used to update the voxel stack is employed to update the
Vitality counter.

Section 4.1 we also show how to filter the raw point cloud
obtained from the stereo camera to improve the accuracy
of the elevation map.

The updated cell is selected according to the x, y
coordinates of the measured point. The distance of
the point above the ground, hm(k+1), as well as the
measurement uncertainty, σ2

z , is used to update the
elevation estimate of the corresponding voxel in the
column above the cell. We use n separate voxel Kalman
filters to estimate the elevation of each voxel. Then, we
apply another Kalman filter to estimate the final elevation
of each cell (cell Kalman filter). Only the highest
estimated value, h[i,j,nmax], from the voxels updated in the
previous step is provided on the input of the cell Kalman
filter which is used to estimate the elevation of the cell
in the elevation map. Note that the Kalman estimator
cannot be applied directly to each cell of the elevation
map because the mobile robot cannot directly measure
the height of the cell (Fig. 1(b)). A direct measurement
is possible if the range sensor measuring the elevation
is located high above the ground plane, e.g., on a flying
robot. In this case the sensor is much higher than the
measured cells, and this configuration allows us to assume
that each measurement contains information about the
highest object located in each cell.

In the mapping procedure, one-dimensional static
Kalman filters are used to estimate the height of the
voxels. Another Kalman filter is used to estimate the
height of each cell. To transform the uncertainty from the
camera frame to the map coordinate system, we use the
procedure described in Section 4.2. The variances of the
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height measurements σ2
z(k+1)

are used as weights in the
voxel’s Kalman filters. All measurements inside the voxel
considered are used to update the hypothesis about the
height of that voxel. The state vector and measurement are
the height of the voxel and measured height, respectively.
The state transition and projection models are identity
mappings. We initialize the state of the filter with the
height in the center of the voxel. We update the state
estimates as follows:

K = σ
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h(k)
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σ
2[i,j,n]
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+ σ2
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)−1
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k −K
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,

(1)

where K is the Kalman gain, σ
2[i,j,n]
h(k)

is the height

variance in the [i, j, n] voxel at time k, hm(k+1)
is the

height measurement for the [i, j, n] voxel at time k + 1
and σ2

z(k+1)
is the variance of this measurement. The new

height measurement for the voxel is h
[i,j,n]
(k+1) and the new

value of the variance is σ2[i,j,n]
h(k+1)

.
For all updated voxels in the column considered we

choose the cell with the highest elevation value, h[i,j,nmax]
(k+1) .

This cell has the vertical index nmax, and a corresponding
variance σ2[i,j,nmax]

h(k+1)
. The parameters of the selected voxel,

h
[i,j]
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= h
[i,j,nmax]
(k+1) and σ

2[i,j]
p(k+1)

= σ
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, are used
to compute the elevation and the uncertainty of the whole
column (the cell of the elevation map). The state vector
and measurements of the Kalman filter in each cell are
the height of the cell, h[i,j], and measured height, h[i,j]

p ,
respectively. As in the voxel filter, the state transition
model and projection model are identity mappings. The
initial height of the cell (the state of the filter) is zero.
The elevation, h[i,j]

(k+1), and the uncertainty, σ2[i,j]
h(k+1)

, are
computed as follows:
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In (2), Kk is the Kalman gain computed for the
column [i, j], σ2[i,j]

h(k)
is the value of the variance for the

column [i, j] at time k, and h
[i,j]
(k) is the elevation value

for the column [i, j] at time k. The new elevation of the
column at time k + 1 and the new variance at time k + 1
are h[i,j]

(k+1) and σ
2[i,j]
h(k+1)

, respectively.
The procedure of voxel and grid cell update is

presented in Fig. 3. Each voxel is updated using
new measurements (Fig. 3(b)). The measurements are
aggregated for each voxel using (1), as shown in Fig. 3(c).

a

b c

d e

Fig. 3. Concept of the map update procedure: the map is divided
into voxels (a), new measurements on the global map
(b), the new measurements are aggregated for each voxel
using Kalman filter (c), the highest value in the column
is used to update the elevation map (d), (e).

Then, the highest value from the updated voxels for the
whole column is selected (Fig. 3(d)), and used to compute
the new height value in the global elevation map and
the uncertainty value (Fig. 3(e)). Note that the map
updating procedure might lead to height reduction of the
cell (Fig. 3(e)).

We reduce the importance of isolated and old
measurements using a measurements vitality counter
(cf. Fig. 2). To consider the column a correct one, a
minimal number of measurements in the specified time
has to be collected. Whenever the sensor provides
measurements of the values inside the column, the counter
V for the column considered is increased by the value
Vi. If the whole column is not updated during the map
updating procedure, the counter is decreased by the value
Vd. The starting and minimal value for each counter V is
0. If the counter value is bigger than a threshold Vt, then
the counter is locked, the mapping procedure considers
the column established, and the measurements are used to
update the map. During the experiment we use Vi = 3,
Vd = 2, Vt = 7. An example counter state during the map



86 D. Belter et al.

7

6

5

4

3

2

1

00 6 8 10 12

Vi
ta

lit
y 

co
un

te
r v

al
ue

Update counter

measurement

measurement

measurement

measurement

no
measurements

no
measurements

no
measurements

2 4

Fig. 4. Example updates of the vitality counter V with increase
value Vi = 3, decrease value Vd = 2, and threshold
value Vt = 7.

updating process is presented in Fig. 4.

3.2. Post-processing. To reduce the influence of
artifacts introduced by the sensor noise, we check the
visibility of each updated cell. The visibility checking
procedure is performed after all the individual cells have
been updated. The order of cell visitation is from the most
distant to the nearest one. We assume that the cell which
is updated has to be visible from the current pose of the
sensor. Thus, if an existing cell c[i,j]e occludes the updated
cell, we assume that the existing cell contains erroneous
measurements. To check the visibility constraint, we
increase the height of the cells by their uncertainty, i.e.,
h[i,j] + 3σ

[i,j]
h . Thus, the probability that the real height

of the cell is below this threshold is 0.99. Moreover, the
updated cell should be matured—the vitality counter value
should be stabilized. If the vitality value of the updated
cell is above the threshold, we remove the voxels from the
occluding cell c[i,j]e which are above the line of sight. This
concept is presented in Fig. 5.

The result of the procedure on a real elevation
map is presented in Fig. 6. Note that the update of a
single cell might remove many existing and occluding
cells. In practice, the criteria are very strict and most
of the occluding obstacles are removed. We found
this useful when the localization system was not precise
enough. In the case of strong slippage which is not
compensated by the localization system, the most recent
measurements are the most accurate and they overwrite
the old measurement.

Finally, median filtering is performed using a 2D
sliding window on the elevation map. It allows removing
small artifacts and fill-in small missing areas of the
elevation grid.

- measured

- removed

Fig. 5. Visibility checking concept: for each cell that was mod-
ified in the last data update step (black cell) the visibility
constraint is checked. Cells that occlude the updated cell
from the current viewpoint are removed (gray cells).
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Fig. 6. Visibility checking procedure: the artifact indicated by
the arrow (a) is removed in the next mapping itera-
tion (b). The camera position is p = [0, 0, 0.8]T .

4. Terrain perception

The mapping method requires a point cloud as an input. In
our research we use two type of sensors: a stereo camera
and a PrimeSense-based device (Kinect, Carmine, Asus
Xtion). These sensors have various properties, and thus
we defined two separate filtering methods and uncertainty
models.

4.1. Perception using a stereo camera. For outdoor
experiments we prefer to work with the stereo camera.
The passive camera provides data in various light
conditions. We use the Small Vision System (SVS)
software proposed by Konolige (1997). The library
provides an implementation of the correlation-based
stereo algorithm and returns a point cloud which
corresponds to the configuration of the detected object.
The SVS uses visual features to match pixels from the
left and right images. Whenever the camera observes
smooth surfaces without visual features, the SVS library
does not return information about the distance to the
obstacle. Even worse, if the camera observes objects
with repeated patterns (texture), the returned data are
erroneous. Fortunately, these types of objects are more
common indoors. In outdoor natural environments,
the obstacles are feature-rich and repeated patterns are
typically rare. However, the data obtained from the
passive stereo camera have do be filtered in order to
remove artifacts.
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a b c

d e f

Fig. 8. Artifacts removal procedure: depth image (a), filled-in depth image (b), depth image after smoothing using a median filter
(c), difference between a filtered image and the original (d), mask which defines pixels below the threshold (e), mask after
morphological opening (f).
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c d

Fig. 7. Typical measurement errors: camera image (a), dispar-
ity image (b), erroneous measurements are the group of
points on the reflective surfaces and out-of-horopter ar-
tifacts (marked with circles) (c), artifacts appearing on
the edges of objects (marked with circles, enlarged part
in the right-top corner) (d).

Because the filters embedded in the SVS do not
remove all artifacts, we propose new methods which
process the data obtained from the stereo camera. The
artifacts which cannot be removed by the embedded filters
occur whenever that of the object differs significantly
from the disparity of the background (edges of the
objects). As a result, halos which span the space between
the edge and the background can be visible in the resulting
point cloud (Fig. 7(d)). The second group of erroneous
measurements consists of points on reflective surfaces and
out-of-horopter artifacts. Such artifacts create a group of

points close to the current camera pose (Fig. 7(c)). We
remove all of the mentioned erroneous measurements by
analysis of the depth image (Fig. 7(b)). The image can
be obtained by projecting the point cloud on the image
surface, or directly, using the available disparity image
values:

z =
bf

d
, (3)

where z is the depth value, b is the baseline of the stereo
camera (the distance between coordinate systems of the
left and right image), f is the focal length, d is the
disparity value.

The value of a pixel which does not have
corresponding measurements (e.g., when the SVS did not
find a correct correspondence between stereo images or
the measurements are removed by the embedded filters)
is 0, which is represented as a black background in the
images.

To remove erroneous measurements, the empty
regions in the images are filled in using the mean values of
each row and column on the image (Fig. 8(b)). For each
pixel [u, v]T the mean value is computed as follows:

a =

h∑
i=1

d(u, i) +
w∑

j=1

d(j, v)

Nu +Nv
, (4)

where w and h are the width and height of the image,
respectively,Nu andNv are the number of non-zero pixels
in row u and column v of the depth image, d(u, i) and
d(j, v) are the intensity values of the depth image.

After filling in the empty regions, the image is
smoothed using a median filter. The window size of the
filter is chosen to be 75 pixels. Image smoothing removes
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a b

Fig. 9. Point cloud before (artifacts are indicated by the arrows)
(a) and after the artifacts removal procedure (b).

pixels which differ significantly from the background,
which are typically erroneous pixels resulting from
measurement artifacts (Fig. 8(c)). Then, the smoothed
image is subtracted from the original image (Fig. 8(d)).
We create a mask using the output image. The pixels
which differ by less than 10% from the smoothed image
are used to form the mask (Fig. 8(e)). The mask is used to
remove artifacts. Occasionally, empty spaces in the image
are filled in by pixels similar to those of the artifact. In
this case the artifacts are similar to the background and are
not removed by the procedure. In practice, such situations
may arise for small groups of pixels, and they are removed
by morphological openings (erosion and dilation) on the
mask image (Fig. 8(f)) (Szeliski, 2011). When the mask
is applied, most of the artifacts are removed from the
original image. The point cloud before and after the
artifact removing procedure is shown in Fig. 9.

4.2. Uncertainty model of stereo measure-
ments. The mapping procedure requires not only 3D
measurements in the input but also their uncertainty Σp

(Fig. 2). Because the information about the uncertainty
of measurements is not returned by sensors used in this
research, we present methods which allow us to determine
Σp for two most popular depth sensors.

Analysis of the sensory data used for map building is
difficult without knowledge of the underlying uncertainty
of the measurements (Thrun et al., 2005).

In the mapping scenario with a stereo camera as
a sensor, the computation of uncertainty should be fast.
The application of the robot in real environment missions
requires real time operation of the mapping method.
The uncertainty model should determine the influence
of the camera resolution and calibration errors on the
uncertainty of the coordinates of each point in the point
cloud and finally the uncertainty of the cell of the
elevation map. Matthies and Shafer (1987) proposed
to use 3-dimensional Gaussian distributions to represent
the measurement error of raster-based sensors (e.g., a
visual camera). It was shown that the uncertainty model
represented by the covariance matrix of 3D coordinates
reduces the localization error in SLAM (Skrzypczyński,
2009). Sahabi and Basu (1996) presented a method to
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Fig. 10. Procedure of uncertainty computation for the stereo
camera. Input standard deviations are located above the
blocks. For each equation, the uncertainty on the right
side is constructed from the uncertainty in the previous
step and input standard deviations.

compute the optimal configuration of the stereo camera,
which decreases the error of the depth measurement. The
optimization is possible because the uncertainty model of
the camera is available.

In stereo triangulation methods, the main sources
of measurement errors are related to the finite resolution
of the image and wrong correspondences between the
images. Because both correspondence and depth are
determined on the basis of rectified images (while the
rectification procedure uses the calibration parameters),
the uncertainty of the calibration also influences that of
the measurement. It is very difficult to analyze wrong
correspondences due to their random nature, so this source
of measurement errors was ignored. The remaining
factors are analyzed using analytical methods (Łabecki
and Skrzypczyński, 2013).

The procedure of uncertainty computation is
presented in Fig. 10. First, we determine the relation
between the position of the pixel in the image without
distortion [xu, yu]

T and the position of the pixel in the
distorted image [xd, yd]

T :

[xu, yu]
T = f([xd, yd]

T ). (5)

The formula (5) is determined by the linearization of
the distortion equations and depends on the distortion
parameters k1, k2, k3, p1, p2 and intrinsic camera
parameters fx, fy, cx, cy found during the calibration
procedure. Propagating the uncertainty, we can compute
a covariance matrix on the image without distortion:

ΣΣΣuL = JuΣΣΣdLJ
T
u , (6)
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where Ju is the Jacobian of (5) with partial derivatives
with respect to (k1, k2, k3, p1, p2, fx, fy , cx, cy), ΣΣΣdL

is the covariance matrix of distortion and intrinsic camera
parameters.

Similarly, the uncertainty propagates through the
rectification algorithm:

ΣΣΣrL = JrLΣΣΣueLJ
T
rL, (7)

where JrL is the Jacobian of the rectification equation
with respect to pixel coordinates in the image without
distortion and extrinsic parameters of the camera (xu, yu,
Tx, Ty, Tz , θx, θy, θz), ΣΣΣueL is the covariance matrix of
the pixel’s coordinates on the image without distortion and
extrinsic parameters of the camera, ΣΣΣrL is the covariance
matrix of the pixel’s coordinate on the rectified image.

Taking into account the uncertainty of the position
of a pixel in the rectified images, the uncertainty of the
disparity can be defined as follows:

σd = σurL + σurR , (8)

where σurL and σurR are standard deviations in the row u
of the left and right image, respectively.

The covariance matrix of the 3D point p =
[xc, yc, zc]

T is computed as follows:

ΣΣΣp = JpΣΣΣrpJ
T
p , (9)

where Jp is the Jacobian of p with respect to d, ur,
vr and extrinsic parameters of the stereo camera, ΣΣΣrp is
the covariance matrix of the disparity d, the position of
the pixel on the rectified image [ur, vr]

T , and extrinsic
parameters of the stereo camera.

4.3. Uncertainty model of PrimeSense measurements.
In our research, we also use PrimeSense-based sensors
(Kinect and Asus Xtion). We employ these without any
additional filtering procedures. The point cloud is used as
the input of the mapping algorithm.

As with the stereo camera (Section 4.2), we
apply a similar mathematical procedure to describe the
uncertainty model of the PrimeSense sensor. The
uncertainty model is based on the solution proposed by
Park et al. (2012). First, the relation between the position
of a pixel in the depth image and the 3D position of the
point is defined:

⎡
⎢⎣
x

y

z

⎤
⎥⎦ = d

⎡
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1
fx

0 −Cx

fx

0 1
fy

−Cy

fy

0 0 1

⎤
⎥⎦

⎡
⎢⎣
u

v

1

⎤
⎥⎦ , (10)

where u and v represent the position of the pixel in
the depth image and d is the depth measurement value.
Variables fx and fy are the focal length parameters andCx

and Cy are optical axis parameters of the depth camera.
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Fig. 11. Output from the uncertainty model of Kinect. Each ran-
dom measured point is drawn with the uncertainty el-
lipsoid. The sensor is located at (0,0).

To transform the uncertainty from the camera frame to the
map coordinate system, we use the procedure described
in Section 4.2. Then, we can compute uncertainty of each
point in the cloud:

ΣΣΣp = JpΣΣΣuvdJ
T
p , (11)

where Jp is the Jacobian of (10) with respect to u, v and d,
while ΣΣΣuvd is the covariance matrix of image coordinates
u, v and depth d. The values of the variances u and
v are constant but the variance σd of depth d depends
on the current depth measurement. We approximate
the relation found experimentally by Khoshelham and
Elberink (2012) using

σd = k1d
3 + k2d

2 + k3d+ k4, (12)

where k1, . . . , k4 are constants. The obtained uncertainty
model is presented in Fig. 11.

5. Results

5.1. Accuracy of the mapping procedure. The
presented mapping method was used to build a map
indoors in the laboratory as well as in an outdoor
environment. The obstacles perceived by the system are
typical for rough and unstructured environments.

A map of the rough terrain mockup created in the
laboratory is shown in Fig. 12.

The stereo camera is mounted 0.8 m above the
ground on a cart which can move forward. The sensor
is tilted down by 35◦. Measurements are performed with
a step of 0.1 m. We verified the method which removes
artifacts from the stereo measurements. It is difficult
to qualitatively assess the number of removed artifacts
or wrong measurements. Thus, we compare the overall
gain by computation of the difference between the map
obtained in the experiment considered and the ground
truth map. The influence of the method on the quality
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a b c

Fig. 12. Experiment with rough terrain mockup: RGB camera view (a), elevation map obtained using the stereo camera (b) and Asus
Xtion (c). White cells of the map are not updated by the mapping procedure.

a b c d

Fig. 13. Map of the rough terrain mockup: ground truth (a), map obtained from the stereo camera and the most conservative settings
of the embedded filter (b), map obtained for the post-processing methods proposed in the paper, (c) map obtained for the Asus
Xtion sensor (d).

of the map is measured using a modified version of the
performance index (PI) (Ye and Borenstein, 2004):

PI =

n∑
i=1

m∑
j=1

of (i, j) (hf (i, j)− ht(i, j))
2

n∑
i=1

m∑
j=1

om(i, j) (hm(i, j)− ht(i, j))
2

Nom

Nof
, (13)

where hf (i, j) is the height of the cell i, j of the map
which is built using filtered data from the stereo camera,
hm(i, j) is the height of the cell i, j of the map which
is built using raw data from the stereo camera, ht(i, j)
is the height of the cell i, j of the ground truth map.
The coefficients of (i, j) and om(i, j) are set to 1 if the
height of hf (i, j) and hm(i, j) is measured by the sensor
and to 0 if no data are available for that cell. Nom

and Nof are the numbers of measured cells in raw and
filtered maps, respectively. The PI value is the quotient
of the mean squared error (MSE) of the two mapping
methods. To obtain the ground truth map, the Hokuyo
laser scanner was attached to an industrial robot arm
and moved horizontally above the mockup (in x and y
directions).

The resulting maps of the terrain mockup obtained
by different variants of the elevation mapping method are
presented in Fig. 13. The PI value for the map which
is built from the stereo data obtained from the mapping
method which uses the proposed data filtering procedures

is 0.91. The MSE is reduced by 9%. The PI is 0.99 for the
map obtained from stereo data filtered by the embedded
SVS filters with default settings. This map contains empty
regions which are not visible in the map, built using the
most tolerant settings of the embedded filters. This means
that the embedded filters improve the mapping quality by
1% in comparison with the map built from a raw point
cloud, but they remove useful data.

We also compared the use of a stereo camera (STOC)
with an Asus Xtion sensor in the mapping procedure.
The PI value computed for the map using Asus Xtion
(Fig. 13(d)) and the stereo camera with the proposed
data filtering method (Fig. 13(c)) is 0.59. This means
that the MSE is reduced by 41% when Asus Xtion is
used, from which we conclude that it provides much more
accurate data than the stereo camera. Moreover, Asus
Xtion provides depth data of regions which are plain and
textureless. The floor is easily visible on the map created
from the Asus Xtion data (Fig. 12(c)). The only invisible
regions are caused by occlusions. On the map from the
stereo camera (Fig. 12(b)) only the mockup is visible.

5.2. Influence of the localization error. A map
obtained from experiments with the stereo camera
mounted on a robotic manipulator is presented in Fig. 14.
The robotic arm provides accurate localization of the
sensor, thus we only investigate the properties of the
mapping method. The maps presented in Fig. 14(a)–(f)
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a b

c d

e f

g h

Fig. 14. Map obtained in the experiments with the stereo camera
mounted on the robotic arm. Subfigures (a)–(f) show
the maps obtained for individual snapshots, the camera
view (g), and the final map (h).

are obtained from the consecutive snapshots. The distance
between scans is 0.1 m. Each map in Fig. 14(a)–(f)
is created using individual snapshots. The final map
created by the mapping method proposed in this paper
is presented in Fig. 14(h). The empty regions which are
visible in Fig. 14(a)–(f) are filled in in the final map. The
main problems are connected to deeper concavities on the
mockup, which are occluded by higher obstacles. The
camera does not provide data about these regions, or data
are incorrect due to artifacts which are not removed by the
filters.

To check the influence of the localization error on
the mapping method, we computed the performance index
for two maps created using the proposed filtering and
mapping methods. The first map is created on the robotic
arm, which provides precise localization of the camera
(Fig. 14(h)), and the second is created using the rail
(Fig. 13(c)). The computed PI value is 0.86, which
means that with the more precise localization system, we
were able to reduce the mapping error by 14%. This
shows that the proposed mapping method requires precise

a

b

Fig. 15. Indoor experiment on the Messor 2 robot: environment
setup (a), elevation map obtained using the stereo cam-
era (b).

localization to work properly. For this purpose, parallel
tracking and mapping method (Belter and Skrzypczyński,
2013) or RGB-D SLAM (Belter et al., 2015) can be
used. Our experience shows that the localization error of
these methods is below 2 cm for small workspaces with a
sufficient number of visual features.

The results which show the quantitative improvement
of the obtained map are summarized in Table 1.

Table 1. Influence of various components in the mapping
method.

Method 1 Method 2 Error
reduction

Artifacts removal Raw SVS data 9%
Asus Xtion Stereo camera 41%

Improved localization Sensor on a rail 14%

5.3. Experiments on a real robot. In the first
experiment on a real robot, we conducted trials with the
six-legged Messor robot (Belter and Walas, 2014) with an
on-board stereo camera. The robot updates the map at the
end of each 10 cm step. During the experiment the robot
made 10 steps. The experimental setup and the obtained
map are presented in Fig. 15. The map contains only
partial information on the environment due to the limited
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Fig. 16. Experimental setup with the quadrupedal robot
StarlETH (a), laser scanner Leica Nova MS50
MultiStation (leica-geosystems.com) used for
ground truth recording (b), overview of the experimen-
tal terrain (c).

camera viewing angle. While the robot has information
about obstacles which are in front of it, obstacles which
are sideways are not visible on the map. In this experiment
we do not have a ground truth elevation map, and thus it is
not possible to compute the mapping accuracy. However,
the map contains a representation of the obstacles from the
real environment (marked by the arrows in Fig. 15(b)).

In the second experiment we created an unstructured
environment of ca. 4×3 m and traversed it with
the quadrupedal robot StarlETH (Hutter et al., 2012)
(Fig. 16(a)). The robot is commanded to walk from one
end to the other, turn around, and walk back to the starting
point (Fig. 16(c)).

The terrain is measured and mapped continuously as
the robot walks with a PrimeSense Carmine 1.09 (short
range) structured light sensor which is attached at the
front of the robot. Localization is limited to on-board
proprioceptive sensing, and consists of the fusion of
legged kinematics and inertial measurements (Bloesch
et al., 2013). This state estimation is prone to drift in
position and yaw orientation. Comparison with motion
capture data shows that the on-board state estimator
accumulated a position error of 0.3 m and a yaw angle
error of 20◦ for the base of the robot after the entire run.
For evaluation, we recorded ground truth measurements
with the Leica Nova MS50 MultiStation laser scanner
(Fig. 16(b)). The terrain was scanned from three different
perspectives and aligned with the built-in tools of the
device.

The mapping error in this experiment is mainly
caused by the localization method. The resulting maps
differ significantly because of the drift of the localization

method. This can be observed, for example, with the
board on the ground truth map indicated by the arrow
number 4 in Fig. 17(a) being shifted by about 1 m on the
obtained maps (Fig. 17(b) and (c)). For the maps obtained
from this experiment, we computed the performance
index to compare the one presented in this paper with
the method proposed by Fankhauser et al. (2014).1 The
obtained value is 1.0308, which means that the MSE is
bigger by 3% when our method is used. The obtained
maps are similar and the difference in the PI value is
insignificant.

5.4. Comparison. We compare our method with the
one proposed by Fankhauser et al. (2014) because it is the
most similar state of the art mapping method with respect
to application. There is no fair quantitative comparison
with very precise methods known from computer
graphics, which are computationally expensive (Berger
et al., 2014; Dey et al., 2012) or require user input for
surface reconstruction (Sharf et al., 2007). They cannot
be applied as a mapping method for a real robot, which
has limited computational resources.

Since the quantitative comparison between the
presented mapping method and the one proposed by
Fankhauser et al. (2014) does not provide clear
conclusions, we provide a qualitative comparison and
discussion. The first difference between these two
methods is indicated by the arrow 1 in Fig. 17(b) and (c).
The mapping method presented in the paper is supported
by the technique which fills in empty areas in the map. In
this case, we use a median filter, which is fast and efficient.
To fill in larger areas, more advanced methods based on
Gaussian regression can be used (Belter et al., 2012). The
map created by the mapping method presented in this
paper contains 13730 updated cells, while the compared
mapping technique contains 13403 cells. The method
which fills in empty areas can nicely reconstruct the parts
which are not visible to the robot due to occlusions.

The proposed updating procedure, which is based on
the Kalman filter and the column of voxels, results in more
realistic shapes of the obstacles on the obtained map. The
obstacles indicated by the arrow 2 in Fig. 17(c) have sharp
edges which are close to the shape of the real objects (cf.
Fig. 16(c)). The obstacles in Fig. 17(b) have filled edges.

The last properties are related to the precision of
robot localization. The mapping method proposed by
Fankhauser et al. (2014) takes into account the uncertainty
of the robot’s pose. This results in generally smoother
maps, as indicated with the area 5 in Fig. 17(b) and (c).
Another property is that new data play a more important
role when the map is updated. Due to the localization

1For this comparison we only take into account the measurement and
model update steps and neglect the map fusion process of the algorithm
introduced by Fankhauser et al. (2014).

leica-geosystems.com
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Fig. 17. Maps obtained on the StarlETH robot: ground truth map (a), map obtained using the method proposed by Fankhauser et
al. (2014) (b), map obtained using the method presented in the paper (c).

error, the cells which were updated recently are treated
as more accurate than old cells on the global map. This
is advantageous as obstacles might shift in the map
from the robot’s perspective, and the previously gathered
information needs to be updated to reflect the newly
acquired data. In this experiment, parts of the terrain
are observed twice: first when the robot walks in one
direction, and the second time when the robot returns to its
original position. As an example, the obstacle indicated
by the arrow 3 on the map in Fig. 17(b) is observed at
this location only as the robot passes it a second time.
While the method by Fankhauser et al. (2014) reflects
these changes, our technique (Fig. 17(c)) does not capture
this obstacle. This limitation is caused by the assumption
that the environment is static and the localization error is
small. On the other hand, this behavior is advantageous
when the localization error is significant. In this case
the local map used for motion planning (Belter and
Skrzypczyński, 2011a) is more accurate, despite the fact
that some obstacles vanish from the global map.

Table 2. Results of quantitative comparison.
Method Our approach NDT-OM Octomap

MSE [m2] 0.063 0.127 0.524

We also compared the mapping method presented
in the paper to NDT-OM (Saarinen et al., 2013) and
Octomap (Hornung et al., 2013). We verified all three
methods on the ICL-NUIM ‘living room’ dataset (Handa
et al., 2014). The dataset contains a synthetic sequence of

depth and RGB images, with and without noise. It allows
the creation of a perfect ground truth map for comparison.
The noisy dataset is used for testing. Because our
method is designed to estimate the surface of the terrain
and cannot handle multi-level maps, we removed points
which represent the ceiling in the dataset. Because each
compared method has its own environment representation,
the environment models from Octomap and NDT-OM are
transformed to the elevation map and then compared with
the ground truth map. We compare the elevation map
obtained from a noisy dataset with the ground truth map
created for the same method using a noise-free dataset.

For each method we compute the mean squared error
between the ground truth map and the map obtained for
noisy data. With the default configuration of mapping
systems, the MSE for our method is 0.074 m2, while for
NDT-OM and Octomap the error is bigger than 1 m2.
NDT-OM and Octomap are designed to be general and
store all 3D noisy measurements in the map structure.
When the 3D representation is transformed to 2.5D, the
voxels which contain noisy data disturb the structure of
the 2.5D maps. Thus, we remove all uncertain voxels from
the maps. As a threshold we use σ

2[i,j]
h in our method

and the occupancy value for NDT-OM and Octomap. The
obtained results are presented in Table 2. Our method
still performs the best of all compared methods. The
MSE for our mapping method is 50% smaller than the
error for NDT-OM. Also, the obtained map presented in
Fig. 18(b) contains the least number of artifacts introduced
by noisy data. Note that in these experiments we do not



94 D. Belter et al.

a

b

c

d

e

f

Fig. 18. Maps obtained for the ICL-NUIM ‘living room’ dataset using the proposed approach (a), (b), NDT-OM (c), (d) and Octomap
(e), (f); first row ((a), (c), (e)) presents groundtruth maps obtained for a dataset without noise, second row ((b), (d), (f)) presents
maps obtained for a dataset with noise.

use the artifact removal procedure presented in this paper.
We compare mapping methods only and the same noisy
sequence of point clouds is provided to the input of each
of the mapping methods.

6. Conclusions

This article presents a mapping method for walking robots
based on 3D depth sensors. The main contributions of this
work are as follows:

• a real-time mapping method with a unique updating
procedure which uses the Kalman filter for cell
height estimation and a stack of voxels to accumulate
measurements;

• a set of procedures which remove erroneous
measurements and cells from the map (the vitality
counter and the visibility checking procedure);

• a data filtering procedure which improves the quality
of point clouds obtained from the stereo camera;

• an uncertainty model for the stereo camera and
PrimeSense-based measurements; we show how the
uncertainty of the measurement propagates to the
uncertainty of the cell height;

• extended experimental verification of mapping,
which demonstrates the importance of the particular
properties of the mapping method with respect to
the elevation map quality, as well as the role of the
selected sub-procedures.

In this article we also provide the results of the
experiments on two different walking robots. We compare
the presented method with that recently proposed by

Fankhauser et al. (2014) and discuss the differences
between these two methods. We point out the advantages
of the method on the maps obtained in the experiment with
the real robot and also show its limitations.

In the future we are going to take into account the
uncertainty of the robot’s pose in the updating procedure
to reduce the influence of localization drift on the map
quality. This will be helpful in assessing the quality of
data in situations where the robot has not observed a
region and has moved away from/over it. We are also
going to integrate our mapping method with the terrain
classification algorithm (Walas and Nowicki, 2014) to
create an object-aware navigation system for legged
robots.

Note. The data set with the robot StarlETH used in
Section 5.3 is publicly available under the section Terrain
Mapping at projects.asl.ethz.ch/datasets.
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Belter, D. and Skrzypczyński, P. (2011b). Rough terrain
mapping and classification for foothold selection in a
walking robot, Journal of Field Robotics 28(4): 497–528.
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