Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 3, 569-583
DOI: 10.1515/amcs-2016-0040 ‘ amcs

STATE ESTIMATION FOR MISO NON-LINEAR SYSTEMS IN CONTROLLER
CANONICAL FORM

BENOIT SCHWALLER % * DENIS ENSMINGER ¢, BIRGITTA DRESP-LANGLEY ®, JosE RAGOT ©

“Laboratory of Inventive Design (LGECO), EA 3938 INSA Strasbourg
University of Strasbourg, 24 Boulevard de la Victoire, 67000 Strasbourg, France
e-mail: schwaller@convergence.u-strasbg. fr

*Laboratory of Engineering, Informatics and Imaging (ICUBE)
University of Strasbourg, UMR 7357 CNRS, 2 Rue Boussingault, 67000 Strasbourg, France
e-mail: birgitta.dresp@unistra.fr

“Nancy Research Center in Automatic (CRAN), UMR 7039
University of Lorraine, CNRS, 2 Avenue de Haye, 54516 Vandceuvre 1es Nancy, France
e-mail: Jose.Ragot@ensem. inpl-nancy. fr

We propose a new observer where the model, decomposed in generalized canonical form of regulation described by Fliess,
is dissociated from the part assuring error correction. The obtained stable exact estimates give direct access to state variables
in the form of successive derivatives. The dynamic response of the observer converges exponentially, as long as the non-
linearities are locally of Lipschitz type. In this case, we demonstrate that a quadratic Lyapunov function provides a number
of inequalities which guarantee at least local stability. A synthesis of gains is proposed, independent of the observation time
scale. Simulations of a Diiffing system and a Lorenz strange attractor illustrate theoretical developments.
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1. Introduction existence conditions than the well-established non-linear
observer canonical form (OCF). Non-linear sliding mode
observers use a quasi-Newtonian approach, applied
after pseudo-derivations of the output signal (Veluvolu
et al., 2007; Efimov and Fridman, 2011). State observers
using extended Kalman filters (EKFs) provide another
method of transforming non-linear systems (Boker and
Khalil, 2013; Rauh et al., 2013). Finding an appropriate
method for parameter synthesis remains one of the
major difficulties with state observers for non-linear
systems. Tornambe (1992), Farza et al. (2011) and
Mobki et al. (2015) proposed high-gain state observers
to deal with this problem. High-gain state observers
reduce observation errors for a range of predetermined
amplitudes or fluctuations by making the observations
independent of parameters. The weak point of this
method is its sensitivity to noise and uncertainty.

In network identification and encryption, observers
*Corresponding author with delays are used to synchronize chaotic oscillators,

State observers have been intensely exploited since
Luenberger (1966) to model, control or identify linear
and non-linear systems, including the studies of Krener
and Isidori (1983), Zeitz (1987) or Zheng et al.
(2009), related to non-linear systems transformable
into canonical form. The key idea in such approaches
is to produce approximate measures of non-linearity
of order 1, as in extended Luenberger observers
(ELOs) (Ciccarella et al., 1993). Approximations
of non-linearities in canonical form (which results
in an ELO) have already been suggested by Bestle
and Zeitz (1983), and this approach can be extended
to higher order approximations (Robenack and
Lynch, 2004). An observer using partial non-linear
observer canonical form (POCF) (Robenack and
Lynch, 2006) has weaker observability and integrability
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as shown in several studies (Ghosh et al., 2010;
Martinez-Guerra et al., 2011). Noise and uncertainty
are not critical factors in such a context. This can
be very different in the case of industrial processes, as
shown in a recent study by Bodizs et al. (2011), where
the performances of observers using an ELO, EKF or
integrated Kalman filters (IKFs) are compared. The
influence of noise and uncertainty on these observer types
was emphasized, with more reliable results produced
by ELOs, which permit exact state reconstruction of
highly perturbed systems. For PI and ELO observer
classes, Soffker et al. (1995) as well as Morales and
Ramirez (2002) demonstrated a compensation effect on
measurement errors. Chen et al. (2011) and Bouraoui
et al. (2015) addressed the problem of uncertainty
of non-linear models. One way of overcoming the
problem of parametric uncertainty is to use adaptive
observers (Tyukina et al., 2013; Alma and Darouach,
2014; Farza et al., 2014), in the particular case where the
measurements are only available at discrete instants and
have disturbances. Another approach (Mazenc and Dinh,
2014; Thabet et al., 2014) consists in defining interval
observers. Modeling observer systems by Takagi—Sugeno
decomposition (Bezzaoucha et al., 2013; Guerra et al.,
2015) is another possibility, as is the use of models with
symmetries and semi-invariants (Menini and Tornambe,
2011).

In a precedent study (Schwaller er al., 2013), we
dealt with a specific class of non-linear SISO (single
input single output) systems, described by Fliess (1990),
called the generalized controller canonical form (Zeitz,
1985). In principle, every uniformly observable (Hermann
and Krener, 1977; Gauthier and Bornard, 1981) smooth
enough SISO system with vector input u(¢) and output
y(t) can be transformed into this normal form, and
extended to the following MISO (multiple input single
output) systems (Glumineau and Lopez-Morales, 1999):

z(t) =Az(t) + [(1), (la)
y(t) =c" z(t) +@[U®) ], (1b)
A=6;, j=1i+1, i=1,...,n-1, (lo)
gTz[cl cn]7 (1d)
ffo=[0 ... 0 ¥[zt), U], (le)

with the following definitions:

n: order of differential equation,

m: number of independent inputs,

uji(t): (i — 1)-th temporal derivative of the input j
(’U,jl(t) < Ugs (Tf)),

u; (1) vector [u1i(t), ... umi(t)] of m derivatives of
degree ¢ — 1 of inputs,

U(t): n x m input matrix,

2;(t): (i — 1)-th temporal derivative of 1 (¢),

T(t): state vector [z1(t), ...z, ()],

: vector of model parameters,

[ 2(t),U(t)]: scalar non-linear C'* function,
[
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< n: index of last coefficient ¢; # 0,
A: n x n matrix whose last line is zero.

We previously limited the field of application of the
proposed observer because of the decomposition of the
function ¥(¢) into two distinct parts which had the effect
of limiting the functions W(¢) to the third order, and
necessitated the integration of all or part of the latter. It
can also be noted that the proposed limiting conditions
of stability could prove restrictive, above all for second
order systems, because of the big increase of the Lipschitz
constant in such cases. We propose here to overcome
these difficulties by modifying the observer structure,
and by scaling differently the differential equation of the
physical system. This will have the effect of relaxing
the limiting stability conditions of the observer and to
increase the field of application, to cover the same domain
as that proposed by Gauthier et al. (1992), extended to
MISO systems described by (I)). The proposed approach
is completely deterministic and the only requirement is
that the non-linear functions be at least C'*, and their time
derivatives d W [ z(t), U(t)] /dt be globally Lipschitz in
z(t) (Raghavan and Hedrick, 1994). This assumption
can be relaxed so that the derivatives are only locally
Lipschitz, or can be transformed adequately, for many
practical applications (Diiffing, van der Pol, Bernoulli
equations, inverted penduli, non-linear friction models
for DC motors or valve actuators, bioreactors, strange
attractors, etc.).

The second aim is to dissociate the state estimations
used to reconstruct the functions ¥ (¢) of error corrections,
in order to increase their insensitivity to noise and to
counteract this well-known fault of high gain observers.
Conserving the structure PI of the precedent observer, one
models the external perturbations of the model and keeps
a unity static gain to the dynamics of the convergence of
the ensemble.

Let us fix at present the cut-off frequency 1/7, of
the observer, and also the pulse w, = 27/T,, in order to
transform the representation of the state of the physical
system. This has the considerable advantage of giving
a normalized space that is independent of the temporal
dynamics of the system, allowing in Section[2.3]to control
the conditions of stability of the observer and presenting
in Section 24| a systematic algebraic approach for the
synthesis of the gains of the observer.

Definition 1.
representation:

This gives the following scaled state

i(r) = Ax(r) + f(7), (2a)
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C
d=1u ... ], (2¢)

[ =lo 0 ¥z, um]], @

with
T = Wot, Tp(t) = Tp(7) wo", (3a)
w@=uwﬂ%“%:Mﬂ=Mﬂ%“yom
G=ciw, =1,...,n. 3e)

Such a normalized representation is possible in time (Gille
et al., 1988) as well as in the frequency domain (GiBller
and Schmid, 1990) for linear systems.

f(7) is a vector of dimension n. Equations () define
time dilation or retraction of the state representation and
its new parameters, without changing the pattern of the
signal z; (7). For the function ¥, this is translated by the
relation of changing the following scale representation:

~

Ula(t),Ut) ] =w" ¥[z(r),U(r)]. &
The function W[ z(7),U(7) ] is obtained by replacing
every state or command variable by the corresponding
one in (@) and dividing everything by w,” (an example
given in Section[3] cf. (38) and (&Q)). In the rest of the
study, in Section 2.1l we define the observer structure and
the role of its different components. In Section we
study its dynamics and search for the differential equation
defining the physical-observer system state distances. In
Section we demonstrate the stability of the state
estimates and the exponentially convergent character of
the estimates. In Section 2.4] we obtain the synthesis of
the gains of the observer and exploit the transformation
defined in @). Finally, in Section Bl two different
simulations illustrate the developments of Section 2l

2. Structure and synthesis of the observer

2.1. System and observer definitions. To begin with,
let us isolate the component z;(7) of (2B), which will
subsequently serve to determine the observation error. To
obtain y; (7), the estimation of variable z (7), three cases
are distinguished.

For 6 = 1, we have

y(r) =@ [U(7) |

yi1(7) = = : (5)
For 6 = 2, it becomes
& y(r) —@[U(7) ]

In the most general case, where 0 > 2, y(7) — ® [ U(7) ]
is filtered by

w(r) = Kw(r) +k [y(r) =@[U(T)]],  (Ta)

0 1 0
o 0 1 ..
K= .. 0 0 1 , (7b)
a G
% A
w(r)" = [p(7) yo—1(m) ], w(0)=0, (7o)
K" =10 0 1/%]. (7d)

To analyze the effect of the filter, we rewrite (2B)) in scalar
form, ignoring ¢g4+1 ... ¢,, which are all zero,

0-1 ~
y(T) — ?0[ U(r) ] = 29(7) + , g—; zi (7). (8)

Substituting (8) in the (# — 1)-th component of (Za)), we
get

0—1

)+ Za‘ vi(T

Co Yo—1(T

0

)= G wi(r), ()
i=1

whose Laplace transform gives

59 59—1 ]

= x1(s) [El—i-...

yl(S) [51-{-...
& st 0

The transfer function y(s)/z1(s) is equal to 1; then
21(7) = y1(7), and more generally z;(7) = y;(7) fori =

., 0. In practice, if y(t) is noisy, only y;(¢) will be
really usable and will serve to determine the observation
error.

Definition 2. To generate state estimates v(7) for the
system (2), a PI observer structure is defined with

H(1) = AX(r) + f(r) + h Ay (7), (11a)
B(r) =AR(r) + AE(r)+h Ayi(7),  (11b)
Ay (1) = 21 (1) — Z1(7), (11¢)
' = [0 .. 0 f . (11d)
Io(1) = ho Ayi(7), (11¢)
f(r) = Io(r) + ¥ [u(r), U(7) ], (119

aamcs
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Er)" = [ #a(7) Fu(r) ], (11g)
&) =[2(7) (1) ], (11h)
v =2 En)" | (11i)
z(0) =£(0) =0, 1o(0) =0, (113)
E =10 m], (1)
B =[hn ... ha], (111)
N (11m)
A=6;, j=i+1,i=1,...,n—-1, (1ln)

0 ....... 0
A=| R (110)

0 0

0 0 1

with Z(7) and Z(7) (OO) as two distinct state
vectors of dvimension n — 1, coupled using the matrices A
(ITn) and A (IId) of dimension (n — 1) x (n — 1). The
vectors E and E are also of dimension n — 1. The matrix
A is constructed using the Kronecker operator, which puts
the upper diagonal at 1. Figure [lillustrates the functional
diagram of such an observer of the third order.

The augmented vector v(7) ((I13), (IIR)) is used
as an estimate of x(7) and as a variable of the function
] [ v(7),U(r) ] (I1). The state Z(7) is an observer
exploiting the observation error Ay (7) (IId) via the
gains h; ([Im), serving to correct the state distances
between the system and its observer. In Fig. [Il for
example, we have

()" = [21(r) Za2(7)],
()" = [Fa2(r) Fa(1)],

!
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=

= 1=
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= [0 ha].

The choice of using two state variables Z(7) and
Z(7) is motivated by n — 1 successive integrations of
Zn(T), in which no re-injection error is involved. This
allows an increase in the robustness of the estimates to the
measurement noise, which in general affects the variable
y1(7). One thus overcomes a common weak point of high
gain observations, i.e., their sensitivity to measurement
noise. The second advantage comes from the non-linear
function ¥ [v(7), U(7)], which is no longer subjected to
the restrictive conditions used by Schwaller ef al. (2013),
and covers the ensemble of the systems described by
Fliess (1990). The vector f(T) (I1d), of dimension
n — 1, compensates the effects of f(7) and of possible
external exogenous disturbance of (I) using the integral

component [o(7) (IIe). Note that at the second order,
for a gain hg = 0 inhibiting the integrator Iy, the observer
becomes similar to that proposed by Gauthier et al. (1992)
for an SISO system.

2.2. Characterization of the observer error dy-
namics. Now we try to characterise the dynamics of
observations by seeking a differential equation linking
the two state variables to the observation error Ay, (7)
and to its successive derivatives. The error Ay (7)
and its successive time derivatives, inaccessible to the
measurement, are the state vector of system/observer
errors.  We want to ultimately determine the state
equations of these errors. We will introduce all the
necessary notation to put it in the matrix form of the
observation error. To this end, we deduce from
the recursive relation used to generate estimates for
successive state characteristics Z;(7) as functions of the
output errors:

.,23\7;4_1(7') = .,73\1 (7') - hn—i+1 Ayl (7-)’

12
i=1,...,n—2. (12)

To simplify the expressions for successive derivatives
of the observer state Z1(7), we introduce

()" =[7(r) Fn(7) ], (13)
whose components are defined by
d@® z
Fi1(r) = VRO a1 (4w
dr®
.%1(7') =§Z‘\1(T). (14b)
Consequently
Ti(r) =T (), i=1,....n—1. (15

Using (I4) and (I3), it is possible to re-write the
observation error Ay(7) (IId) and its successive
derivatives:

Ayi (1) = z1(1) — 21(7), (16a)
d(l) Ayl (T)
dr@
We deduce from this that

AyiJrl(T) ZAyi(T), i=1,...,n—1, (173)
Ayi(T in(T)—fi(T), i=1,...,n, (17b)
AQ(T)T = [Ayl(r) Ay, (1) ] ) (17¢)

Now we exploit these new definitions to describe the
observer dynamics. We replace (I4) in (I2) for a given
index ¢ given and derive this new relation with respect
to time using (I3) and (T7a). The expression 7;(7) thus

Ayi+1(7—): ) i=1,...,n—1, (16b)
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Fig. 1. Third order observer.

obtained may be equated with the same term obtained
with (I2) for index 7 + 1. This operation, carried out
successively up to order n — 1, gives

n—1

D hiv1 Ayi(r).  (18)

Tn_1(T) = B () —

Comparing (I8) with (I1B) to row n — 1, we obtain
Zno1(7) = EFn(7) + ha Ay (7), (19)

which, replaced in (I8), gives
Fn(T) = Bn(7) = D] hi Ayia (7). (20)

The linear dependence of &, (7), Z,(7) and Ay(7)
allows the Laplace transform of (Z0) and its successive
integrations and, because of (I3), makes it possible to
determine the general form of Z;(s):

fz(s) = %1(8) - fi(s)a
fils) = Ay(s

Zhjs,

k=z+]—n—2.

i=2,....n, (21a)

(21b)

The inverse Laplace transform of (Z1d) is written as
— L7 {fils)} - (22)

The second term on the right-hand side of (@2) tends
towards 0 if the vector Ay(7) — 0 as 7 — 0.

The derivative of (20) can be compared with that of
row n — 1 from (I1a), which gives

Fn(1) = (1) + D) hi Ayi(7). (23)

i=1

We now try to specify the dynamics of the output distance
between the physical system and the observer. To do this,
we calculate the distance between the component n of the
state vector z(7) (2a) and ¥,,(7) @3). Thus

A (7) = 0 (7) = Fn(7) (24a)
=AU(r Z hi Ayi(t),  (24b)

with B B
A¥(r) = ¥ [2(7), U(7)] 05

— B[ 2(r), Ay(r), U(r) ].

The distance A\TJ(T) (23D, of type C'!, is obtained from the
non-linear functions W [ z(7), U(7)] and ¥ [v(7), U(7)]
(@, which are also of type C'*.

It is now useful to put (24b) in matrix form of

dimension n x n, using (I7a), (24B) and (T1d):

Ag(r) = A Ay(r) + Af(7), (26a)
Af(r) = f(7) = f(7), (26b)
0 10
~ 1o o1 ..
A=1 00 1 (26¢)
by ... —h,

In (26B), the term f(7) (1D includes Io(7) (IId).
This leads to a last derivation on (Z4B), to obtain the final
state representation of the output distances Ay, (7). For
that purpose, it is necessary to define the states and the
supplementary distances as follows:

Uy, 41 (T) =L, (7), (272)
Tnt1(T) = Zn (1), (27b)
Tni1(T) = Tn (1), (27¢)
Tpni1(T) = in(r), (274d)
Ayn41(7) = Agn(7) (27e)
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to subsequently place the matrix and the augmented
vectors:

U@ = U0 g | (282)
20" = 20" wan() ). (28b)

50" = 20" Fanl) . (280)

W@’ = 20" Fal) |, (284)

Ay, = [ g0 Apen() | @8
=,(1)" ~ L"), (286)

and separately calculate the time derivative of (23):

A (t) = w,™ 1 AB(r), (29a)
AU(r) =¥ [2,(7), La(7)]
~U[£,().8y,(0. 0,7 ] @)

The time derivative of (24B), using (I1e), (I7a), 27,
(28) and (29), is written in matrix form to obtain the final
state representation of the differential equation driving the
output error Ay (7):

Aj (1) = A, Ay (1) + AT(7), (30a)

~ T 3
AU = [oT A |, (30b)
A, =G, +H,, (30c)
G,=08j, j=i+1, i=1,...,n, (30d)
H," =10 0 —h,], (30e)
b, =1ho ... hy]. (30f)
In 30d), G, is of dimension (n + 1) x (n + 1). Its

(n + 1)-th row is zero. The structure of the matrices
(B0d)-(B0e) makes it possible to deduce the unit static
gain of the observer. The system (30) describing the
dynamics of convergence of the observation errors is close
to that which has previously been proposed (Schwaller
et al., 2013), and the conditioning of the system proposed
in (3) may be used with advantage.

In @9B) and @O0B), we

U z,(7),U,(T)] is a non-linear system function
Lipschitz in z,(7) and uniformly bounded in U ,(7) in an
invariant set, with a Lipschitz constant L, i.e.,

assume that

| AT | <L 2,0 -E() | Gl
<L Ay, . G1b)

Applying the Lipschitz inequality to (29) yields reduction
of Aga (1), the number of useful variables to characterise

the perturbing difference A\TI(T). For many systems, if

functions \T’(’T) are not globally of the Lipschitz type, they
can be locally transformed into the Lipschitz type.

2.3. Convergence of state observations. The observer
convergence analysis consists in proving the globally
asymptotic evolution of the error estimate for state
reconstruction. In other words, regardless of the initial
conditions, the observer state is to converge toward the
state of the physical system. This leads to the following
two theorems.

Theorem 1. Let us consider an MISO system decompos-
able as described in ), for which the g)bserver structure

D) is used. If the system function W [2,(7),U,(7)]
is locally of the Lipschitz type in z,(T) and uniformly
bounded in U ,(7) in an invariant set, with a Lipschitz
constant L (31), then the observer (L) will be locally sta-
ble if the gains h; in A, (30d) can be adjusted so that they
satisfy the following conditions:

hi = +20L2 ( X | i > : (32a)
20¢i+1 Git1 4
1+ 20¢n
hy > - 270 it + . (32b
4U¢n+1 <¢ - Z 4¢n+ ) ( )
A>0, ¢; >0, z=0,...,n—1. (32¢)

If the system function ¥ [2,(7),U,(T) ]is globally of the

Lipschitz type and if the gains h; satisfy (32)), then the
observer (1) will be globally asymptotically stable.

Proof.  The proof of Theorem [1l can be achieved by
proving the stability of (30a) using an appropriate positive
Lyapunov function, like the following quadratic one:

Va(r) = Ay (1)" P Ay (1), (33a)
A0 ... 0
0o X ... 0
P = : . : . (33b)
b1 P2 ... ODnyl

Pisan (n+1) x (n+1) lower triangular matrix defined as
positive and satisfying the Sylvester criteria, with (33B).
The proof of convergence is linked to the study of the sign
of the derivative of the candidate for a Lyapunov function.
This is obtained after time differentiation of (33a), and
after substituting (30a) in the result obtained for the terms

Va(r) =Ay (1) Q Ay (1) + N(7), (34a)
Q=4,"P+PA, (34b)
N(r) = Ay, (1) 8 A7), (34¢)
S=pP+pPT. (34d)

N(7) describes the influence of the non-linear functions
on state distances. Calculating the diagonal coefficients
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of (33a), we get a lower triangular matrix @ of dimension
(n+1) x (n+1). The coefficients of the principal diagonal
are written as

i = —hi_1 ¢ia i1=1,...,n,
YO —26n41 b, i=n+1

If the diagonal coefficients ¢;; are negative, the
Sylvester criterion for semi-negativity is satisfied, and the
successive minors of () will be of opposite signs, ensuring
the semi-negativity of the first term on the right-hand side
of (34d). Verifying the sign of the second member on the
right-hand side of (34a) involves increasing N (7) using
the Schwartz and Lipschitz inequalities :

(35)

N(r) <]l Ay, (1)T S A¥(r) | (36)
<| Ay, ()" S| AT() | (36b)
<[ Ay, (" S| L| Ay, )| (36¢)

To determine the sign of Vi (1), we apply the inequality:
| a(r) 7o) | < @(T);@(T) bm;ab(ﬂ .
o>0 (37b)

to to obtain the desired increase in N (7):

N(r) <Ay, (1" R Ay, (7), (38a)
R-= ULQ sy L (38b)

- 20
Here (382) yields a positive lower triangular matrix R
(38B) of dimension (n + 1) x (n + 1), whose diagonal
elements are written as

¢1
20 L2 ~
7 ( )" 20’

(2@ + = Z¢j>+i, i=n+1.

1=1,...,n,

Tii =

(39)

The inequality (384) yields (34a):
Va(r) < Ay, ()" M Ay, (1), (40a)
M=Q+R (40D)

With a negative function V,,(7), adding together the
diagonal terms (33) and (@39), and imposing Q + R <
0, we obtain the conditions (32). The sum Q + R
yields a lower triangular matrix that satisfies Sylvester
criteria of semi-negativity if the n inequalities B2) are

satisfied. Then, if A\TI(T) @3) is Lipschitz (31), Vn(r)
is semi-negative and (30a) is globally and asymptotically
stable. In (@22), it is supposed that the functions
L71{fi(s)} — 0ast — oo. Because of this, one can
say that v(7) — z(7) as t — oo. The observer is locally
stable if (3I) is locally Lipschitz. [

The stability conditions (32) are less restrictive than
those previously proposed (Schwaller et al., 2013). In
fact, the pulse wq is no longer involved, and the freedom
of choice to fix the parameters A and ¢ as a function of
values that can take the constant of Lipschitz L helps to
find a combination where the stability is demonstrated
from the gains h; obtained by any method of parameter
synthesis. The value of the constant L is generally
strongly dependent on the pulse w,, of the type of
non-linearity encountered and of the order n of the
physical system.

One way of choosing the parameters ¢; of P (33b)
could be A

¢i = " 1)
Thus, the number of parameters to fix in the matrix P is
limited to A and ¢, 11.

Theorem 2. If Theorem[llcan be applied to the system (1)
that one wishes to observe, then (L) will be exponentially
convergent:

V() < Vi (0) exp (% T) : % <0.  (42)
Proof. Taking into account the definition (33d), we have

Va(r) v | Ay (1) P, v>dnsr. (43)
From the inequality (0a), we deduce

y Ay (1) P
V()\ull ya()ll’ (44a)
Va(7) Va(7)
max(?“ii+qii)<,u<0, i=1,...,n+1. (44b)
Bounding (@4d) with @3) gives
' Ay (1) |?
() _ el B, s
Va(r) v | Ay, (7))
which is reduced to
dVa(r) _p
< —drt. 46
AR (40)
We deduce [@2) through integration, which indicates the
exponential convergence. |
2.4. Synthesis of observer parameters. We wish to

perform a synthesis of the gains i, of (30f) guaranteeing
the convergence of the observer. To do this, we consider

the term AW (1) of (30a) as the perturbing input of a linear
system with constant parameters of the transfer function
1/D(s). The transfer function in the Laplace domain of

(30a) is written as
Ay (s) _ 1
s AU(s) D(s)’
D(s) =s"tt + hy 8™+ -1

(47a)

+ hy s+ hg. (47b)

aamcs
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We now seek a group of parameters b, (30f) which fit the
stability conditions (32)). Given (29), we note that \TI(T) is

directly affected by w,, and therefore by |(7)|.

Applying the Lipschitz assumption (ZI)), the constant
L is dependent on w,. L influences the squared conditions
in 32). By using w, to keep L small, it is possible to
ensure that the stability conditions remain independent of
the system’s time-scale, and to arbitrarily define the gains
h;. One simple way to do this is to choose a polynomial
with multiple poles:

D(s) = (s +v)"*! (48a)
n+1
= Y st k=n+1-i (48b)
i=0
(n+1)!
he = % (48¢)

The value of the pole 0 < v < 1 allows us to somewhat
weight the binomial coefficients (@8d) and to approach the
limiting stability conditions. Anyway, the pulse choice w,
is predominant for the observer function. If the gains thus
obtained satisfy the conditions in (32)), then the response
of the observer converges towards that of the system. The
group of parameters is uniquely determined by the order
n, and the speed of observer convergence is defined by the
choice pulse w, and the multiple pole v.

3. Simulations

To illustrate Section 2 we propose two different
examples: a non-linear Diiffing system (Gille et al., 1988)
(Section 3.1, a mass-spring system and a Lorenz strange
attractor (Section[3.2), used as a model in meterology to
predict the convection of air masses (Lorenz, 1963).

3.1. Diiffing system. It is written in controller
canonical form as follows:

da(t) = W [2(t),u(t) 1, (49a)
21(t) = 22(t), (49b)

n =2, (49c¢)

+ by ull(t) + by ulg(t), (494d)

0(t) =1 +as z1(t)%, (49¢)
x(t) = [x1(t) xa(t) ], (499)
u(t) = [uni(t) wia(t) |, (492)

with the parameters

ay = 157.917
b1 = 100,

az = 0.4, (50a)
by = 10. (50b)

as =2,

The measured output y(t¢) is the juxtaposition of the
system output z1(t) of the Diiffing and a white noise
with limited bandwidth 7(¢). The signal-to-noise ratio
is 10. The input w1 (t), subsequently exploitable by the
observer, is defined in terms of

uu(t) = {0

The input u;2(t) is white noise with a limited bandwidth
amplitude of +1, considered non-measurable, which will
produce a correlated noise on the vector z(t) of the
system. The normalized representation of (49) is written
as follows:

(51)

Fao(r) = W[ z(r),u(r) ], (52a)

i1(1) = 22(7), (52b)

Y =0i(r), fo=m =4Hz,  (520)

¥ [a(r)u(r) ] = ~ 5 () mi(r) = 7 wa(r)
b b
+ 12 U11(7)+w22 ’LL12(T),

(524d)

(1) =1+ a3 z1(7)?, (52¢)

z(r) = [21(1) x2(7) ], (52f)

u(r) = [uu(T) u12(7) ] . (52g)

The observer (I1) applied to (32) is written as follows:

1(7) = Fo(7) + ha Ay (7), (53a)
Ia(1) = Io(1) + by Ay (7)

+ U [u(r), w1 ()] (53b)

Io(1) = ho Ay (7), (53¢)

Ay (1) =y(7) = Z1(7), (53d)
¥ fo(r) un ()] = = =5 L) &1(7),

b

= % Bor) + g un(r), (53e)

0(1) = 14 a3 #1(r)?, (53f)

o(r) = [Za2(r) Za(7)]. (53g)

The initial conditions of the system are 21 (0) = x2(0) =
0. Those of the observer are I(0) = Z2(0) = 0, Z1(0) =

1. Using ¥[z(r),u(r) ] G2d) and ¥ [v(0),u11(0)]
(B3¢, it is possible to form A\TI(T) (29) and to calculate
its temporal derivative. Using (32) and (33), we determine

Ay (1) = 2,7 = £,(0)" @D, @B). Al this will

allow calculating the ratio |U(7)|/ |z, ()|, illustrated in
Fig.[2l(a), and to set the Lipschitz constant L = 0.3.



State estimation for MISO non-linear systems in controller canonical form

0.2

0.15 (\

01 /)

0.05
RN
0 0.5 1 1.5 2
seconds
(a)
1
0.8 \
0.6 A
0.4\ /
0.2 \/
—-0.2
0 0.2 0.4 0.6 0.8 1
seconds
Ti(r) z1(7)
©

1

0.8

o/
vl
e

—-0.2
0 0.2 0.4 0.6 0.8 1
R seconds
z1(r) © oY)
(b)

0 ¢ /
—-0.2

ol
|

—0.6 U

0 0.2 0.4 0.6 0.8 1

seconds

(d)

Fig. 2. Observation of a Diiffing system: [¥(7)|/|z, (7)|| (a), observer response Z1 (7) (part 1) (b), observer response 1 (7) (part 2)

(c), observer reconstruction of 2 (7) (d).

Setting parameters A = 1/8 o = 1 and ¢35 = 2 (32d)
and using (@), we obtain ¢ = 2, ¢1 = 4, and get the
matrix P (33). The limiting conditions (32)) for observer
stability are given by

ho = 0.427, hy > 0.403, ho > 1.03. (54)

Using @8) with n = 2, v = 1, the gains h; are set as
follows:
h,"=[1 3 3]. (55)

La

This set of parameters satisfies the conditions in (34).
Figures 2Ib) and (c) show the observer response
Z1(7) to the measured output y(¢) on the one hand,
and to the theoretical system response x1(7) on the
other, which is free of noise (u12(7) = n(r) = 0).
Figure P(d) illustrates the response of the variable %2 (7)
to the theoretical system response x2(7), which is free

of noise. These observations converge nicely and prove
robust to measurement noise.

3.2 Lorenz strange attractor. To complement
Section 2] consider a model of convection of air masses,
used in meteorology (Lorenz, 1963), described by the
state representation:

Z(t) = 0 zy(t) — 0 21(2), (56a)
Zy(t) = —2zy(t) + p 22(t) — 22(t) 2:(t),  (56b)
Z2(t) = — B z:(t) + 25(t) 2y (2), (56¢)
y(t) = z:(1), (56d)
2(t) = [22(1), 2y(1), 2:(1)] .- (56¢)

We choose parameters and the following initial
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conditions:

B=1, o=4, p=20, (57a)
22(0) = 2,(0) = 2.(0) = 10, (57b)

as has been proposed for the first strange attractor
which describes chaotic oscillations. Its representation
transformed in the canonical form of regulation is the
following:

5(t) =0 [z(1)], (58a)
Ulzt)] = —(1+0+p8) as(t) - B (1 +0) z2(t)
+B0 (p—1) 21(t) = 1 (1) e2(t)

ISH

— o a1 (t)°,
N xo(t) x3(t) ;—18)4- o) xo (t)27 s5b)
.2.32 (t) = afg(t), (580)
o1(t) = z2(1), (58d)
y(t) =z1(t), n=3, (58e)

with (38b) as the non-linear ¥ function of the system.
The latter may or may not be dependent on U. The only
constraint to fulfill is the existence of a Lipschitz type

distance AU (3. The transformation system (38) linking
to the initial state is given by

2 (t) = z1(2), (59a)
zy(t) = z1(t) + G) (1), (59b)
et () 2 () 2 o

Figure [Bla) illustrates its well known behaviour, in
the plane z, z,. Parameterized in this way, it possesses
its characteristic natural frequency around 1 Hz. It is
interesting to note that x1(t) passes near zero during a
few brief transitions, making observation possible with a
function ¥ such as (38b). The normalized notation of (38)
is the following:

3(1) = U [z(7)], (60a)
B la(r)] = — +Zo+ B s(r) — w 2a(7)
222D 4y - 2220
o x1(T)
Wy3

22(7) wa(r) + 2 y(r)?
+ o . (60b)
x1(7)
io(7) = w3(7), (60c)
iy (7) = 2(7), (60d)
y(r) =21(7),  fo= Ti = 2.5 Hz. (60e)

o

It is evident that the previous type of observer
(Schwaller et al., 2Q13) cannot be used in this case,
because the function ¥ is not decomposable into the form

U z(7)] = fi (21(7), 22(r), ul(7)) + fo (21(r). 22(7))

as has been proposed. The system of normalized
transformation linking (60) the initial state space is given
by

2p(7) = 21(7), (61a)
2 (7) = 21(7) + (%) a2 (1), (61b)
o) == 1= ( + 22) 20

g
2
- (“" ) 23(7), 6lc)

o ) x1(7)

Inverting (6I) and knowing z,(7), 2.(7), 2.(7)
(Z6), it is possible to reconstruct z, (7). Calculating the
numerical derivation of ¥(7) (&0D), it is subsequently
possible to determine the most pessimistic Lipschitz
constant L = 0.15 (Fig. Blb)) after 40 s of the test. The

observer structure, illustrated by Fig. [l (L), takes the
following form:

21(7) = 22(7) + hs Ay (1), (62a)
Zo(7) = F3(7) + ho Ay (1), (62b)
() = ¥3(T), (62¢)
ﬁf;g(T) = Io(7) + h1 Ayi(1)
+ U [£(7), 21(7)]., (62d)
Io(7) = ho Ay (7), (62e)
Ayi(1) = y(1) — Z1(7), (62f)
with the function
U [£(r), 71(7)]
= —¥ T3(T) — 2 (olj:; Z) T2(7)
B
o)’
Wy3
Fa(7) Falr) + — 2 Ba(r)?
N W,
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The transformation system linking the observer to the
initial estimated space is the following:

2o (7) = T1(7), (64a)
5(r) =1(r) + (22) Fa(7), (64b)
1p-1- (o) 22
2\ ™
- (“" ) Z3(r) (64¢)
o ) Z1(7)
If one fixes the parameter ¢4 = 2, using (&I) one can

obtain ¢3 = 2, ¢o = 4, ¢1 = 8. We choose A = 1/8
and thus define the matrix P (33h). Using the stability
conditions (32), we obtain the limiting conditions that

must be satisfied to synthesize the gains h;:

ho = 0.171, hy = 0.273,

hy > 0512, hg > 0.891. (65)

Using @8) for n = 3, v = 1, we fix the gains at
h, =11 4 6 4], (66)

for which the values satisfy the conditions (63). The initial
observer conditions are fixed as Z(0) = 0, 7;(0) =
1, Z2(0) = 0. Figures Blc) and Bld) illustrate the
stability of the observer convergence in the transitory
phase, compared with that of a Gauthier observer. The
responses are very similar. The next test was performed
in a noisy situation, by adding to z1 (7) white noise with a
passband with a limited amplitude of 0.2. For the observer
(), we visualise the following errors:

AZi(7) = zi(7) — Zi(7), i=2,...,n. (67)
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The same is for the Gauthier observer—we visualise

AZi(7) = zi(1) — Zi(1), i=2,...,n. (68)
For the same initial conditions as for the trial without
noise, Figs. [Ble), BIf), Ea), Eb), Bc), Ed) illustrate
the results obtained from noisy measurements y(7).
Systematically, the state distances are lower for the
observer (TI) than for the Gauthier observer except for
state variables of order n, which are comparable. The
observer (II) is thus more robust to noise and provides
the best estimates of variables z,(7), z.(T) across the
transformation (&1).

4. Conclusions and perspectives

The results obtained in this study considerably extend
the field of application compared with the previous one,
as much for the type of non-linearities that it can treat
as for the limiting stability conditions. The proposed
observer structure allows expression of the convergence
dynamics in the form of a non-linear differential equation
with constant coefficients. Its stability is demonstrated
when the non-linearities are at least locally of the
Lipschitz type. In this case, n inequalities are determined
by a quadratic Lyapunov function, which guarantees
the stability. One thus demonstrates the exponentially
convergent character of the estimates.

Gain synthesis in the scaled space provides gains
independently of the time scale of the physical system
and of the observer, not relying on the order n of the
differential equations. Decoupling error corrections and
the state space used to reconstruct the non-linear function
U(t) strongly reinforces the robustness of estimates
to measurement noise compared with results usually
obtained with high gain observers.

The strategy PI permits modelling external
perturbations and assures a unit gain in the observation
dynamics. This constitutes an advantage which can be
exploited by a regulation stage.

The reconstructed state vector has the major
advantage of being exact and directly exploitable for state
control without any additional transformations.

Further simulations under conditions of parametric
uncertainty, minimized by online parameter identification,
may help increase the robustness of such estimates, even
in the presence of instrumental noise and external system
perturbation. This can ultimately be extended to MIMO
systems.
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