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MODELING AND CONTROL OF INDUCTION MOTORS†

Emmanuel DELALEAU∗,∗∗, Jean-Paul LOUIS∗

Romeo ORTEGA∗∗∗

This paper is devoted to the modeling and control of the induction motor. The
well-established field oriented control is recalled and two recent control strategies
are exposed, namely the passivity-based control and the flatness-based control.
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1. Introduction

Induction motors constitute a theoretically interesting and practically important class
of nonlinear systems. They are described by a fifth-order nonlinear differential equa-
tion with two inputs and only three state variables available for measurement. The
control task is further complicated by the fact that induction motors are subject to
unknown (load) disturbances and the parameters are of great uncertainty. We are
faced then with the challenging problem of controlling a highly nonlinear system,
with unknown time-varying parameters, where the regulated output, besides being
unmeasurable, is perturbed by an unknown additive signal.

Existing solutions to this problem, in particular the de facto industry standard
field-oriented control (FOC), were not theoretically well understood. Consequently, no
guidelines were available for the designer who had to rely on trial-and-error analysis
and intuition for commissioning and high performance applications. These compelling
factors, together with the recent development of powerful theoretical tools for analysis
and synthesis of nonlinear systems, motivated some control researchers to tackle this
problem.

The main purpose of this paper is to review some of the main developments in the
field, with particular emphasis on applications of passivity and flatness ideas. We start
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by presenting the physical model of the motor adopting an innovative perspective
that underscores the control aspects—in lieu of the classical electrical engineering
viewpoint. We then review, again from a control theory perspective, the well-known
FOC. Connections between this classical technique and passivity ideas have been
revealed in the literature; in particular, it has been shown that passivity-based control
schemes exactly reduce to FOC under some simplifying modeling assumptions. After
reviewing these results, we present the recent developments which rely on the property
of flatness of the motor.

The control of induction drives gave rise to a large number of publications which
are not possible to be reported in total here. An overview of various aspects can be
found in the papers (Bodson et al., 1994; 1995; Chiasson, 1993; 1995; De Luca, 1989;
Marino et al., 1993; 1996; 1998; Ortega et al., 1993b; Taylor, 1994).

The paper is organized as follows: Section 2 is devoted to the physical modeling of
the induction motor on standard assumptions but in the perspective of the control of
the machine. Section 3 gives a novel presentation of the well-established field-oriented
control. Section 4 exposes the passivity-based control. Finally, Section 5 introduces
the flatness-based approach to the control of the induction motor.

2. Modeling

2.1. Physical Modeling1

The induction machine considered here has a three-phase stator and a squirrel-
cage rotor which can be represented by a short-circuited three-phase rotor winding
(see Fig. 1(a)). We adopt the classical assumptions: linearity of the materials (no
saturation), sinusoidal distribution of the field in the air-gap, balanced structure.

The vectors relative to stator variables are denoted2 by xabcs = (xas, xbs, xcs)
t ∆=

xabc = (xa, xb, xc)
t
and vectors relative to rotor variables are denoted the xabcr =

(xar, xbr, xcr)
t ∆
= xABC = (xA, xB , xC)

t
. Fluxes, currents and voltage are denoted

respectively by ψabc, ψABC , iabc, iABC , vabc and vABC . The fundamental physical
equations of the machine are the relations between fluxes and currents:

ψabc = ls iabc +msr(θ) iABC , (1a)

ψABC = mrs(θ) iabc + lr iABC , (1b)

with

ls =




ls ms ms

ms ls ms

ms ms ls


 , lr =




lr mr mr

mr lr mr

mr mr lr


 ,

1 See (Chatelain, 1983; Semail et al., 1999) for details.
2 Recall that vt is the transpose of a vector v.
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Fig. 1. (a) Transverse section; (b) Park transformation.

msr(θ) =mrs(θ)
t =Mo




cos(npθ) cos(npθ + γ) cos(npθ − γ)
cos(npθ − γ) cos(npθ) cos(npθ + γ)

cos(npθ + γ) cos(npθ − γ) cos(npθ)


 ,

where np is the number of pairs of poles, θ signifies the mechanical position of the
rotor and γ = 2π/3; the other parameters (inductances) are constant. The second
system of equations is composed of the voltage equations:

vabc = Rs iabc +
dψabc
dt

, (2a)

0 = Rr iABC +
dψABC
dt

. (2b)

The final equation is given by the expression of the electromagnetic torque

τem = i
t
abc

∂msr(θ)

∂θ
iABC . (3)

2.2. Algebraic Properties of the Coupling Matrix msr(θ)

The most important term in eqns. (1) and (3) is the coupling matrix msr(θ) which
describes the electromechanical conversion. We must detail some of its algebraic prop-
erties. Its eigenvalues are 0, (3/2)Moe

npθ and (3/2)Moe
−npθ. This matrix is diag-

onalizable, but we prefer first to eliminate the terms relative to the “zero-sequence”
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component (associated with the eigenvalue equal to zero) because they are almost
always zero and do not participate in the energy conversion. Then we will use a re-
al transformation. For this, define the planar rotation matrix P and the Concordia
sub-matrix T32 as follows:

P (ξ) =

(
cos(ξ) − sin(ξ)
sin(ξ) cos(ξ)

)
, T32 =

√
2

3



1 −1

2
−1
2

0 +

√
3

2
−
√
3

2




t

. (4)

We have3 T t32 T32 = I2 and the “factorization” msr =M T32 P (np θ)T
t
32, where M =

(3/2)Mo. Furthermore, T32 diagonalizes the matrices like ls and lr: ls T32 = Ls T32
and lr T32 = Lr T32, with: Ls = ls −ms and Lr = lr −mr. Thus the fundamental
equations (1) and (3) can be rewritten as

ψabc = Ls iabc +M T32 P (np θ) T
t
32 iABC , (5a)

ψABC =M T32 P (−np θ) T t32 iabc + Lr iABC , (5b)

τem = npM itabc T32 P
(
np θ +

π

2

)
T t32 iABC . (6)

2.3. Concordia Transformation

Examining eqns. (5) and (6), we conclude that we do not have six unknown variables,
but only four are given by T t32 iabc and T t32 iABC . Therefore, it is useful to define
the Concordia transformation applied to all electric variables (voltages v, fluxes ψ,

currents i) by xαβs
∆
= (xαs, xβs)

t = T t32 xabc and xαβr
∆
= (xαr , xβr)

t = T t32 xABC .
Then the equations of fluxes and torque (5) and (6) can be rewritten as

ψαβs = Ls iαβs +M P (+npθ) iαβr, (7a)

ψαβr =M P (−npθ) iαβs + Lr iαβr, (7b)

τem = npM itαβs P
(
npθ +

π

2

)
iαβr. (8)

Furthermore, we have for the voltages:

vαβs = Rs iαβs +
dψαβs
dt

, (9a)

0 = Rr iαβr +
dψαβr
dt

. (9b)

3 Recall that In denotes the n-dimensional identity matrix.
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2.4. Choice of “Useful Variables”

Equations (7) and (8) show that we now have four unknown variables to determine
the components of the stator and rotor currents, and we will have to consider only two
equations relative to the torque τem and to the magnitude of the rotor flux ψr. For
convenience, we decide to use not exactly the rotor flux, but the so-called magnetizing
current iµr. This new variable, its magnitude iµ, and its polar angle ξr are defined
by the transformation:

ψαβr
∆
=M iµαβr =M

(
iµr cos(ξr)

iµr sin(ξr)

)
=M iµr P (ξr) (1, 0)

t. (10)

Then it appears that it will be natural to choose the following “useful variables”
(physical signification of the future state variables which will be defined in a lat-
er section): the stator currents, which are measurable, and the magnetizing current
(magnitude and polar angle). We can rewrite the other variables (torque, stator fluxes,
rotor currents) with the help of these two vector variables:

τem = np Lm iµr i
t
αβs P

(
npθ + ξr +

π

2

)
(1, 0)t, (11a)

ψαβs = N1 iαβs + Lm iµr P (npθ + ξr) (1, 0)
t, (11b)

iαβr =
M

Lr
iµαβr − P (−npθ) iαβs, (11c)

with the definition of the following new parameters: the dispersion coefficient: σ = 1−
M2/LsLr, the leakage inductance N1 = σ Ls =

(
Ls −M2/Lr

)
, and the magnetizing

inductance Lm = (1− σ)Ls =M2/Lr.

2.5. Park Transformation

Examination of (11a) indicates that it will be much simpler to write it if we make the
following transformation for the stator variables (voltages, currents, fluxes):

P (−ξs) (xαs, xβs)t = (xd, xq)t , (12a)

P (−ξr) (xαr , xβr)t = (xD, xQ)t , (12b)

ξs = ξr + np θ. (12c)

This leads to the following torque equation which has the simplest form

τem = np Lm iµr iq . (13)

This transformation is, in fact, a rotation of the axes and the d-axe is given by the
direction of the rotor flux. It is known as the Park transformation (see Fig. 1(b)).



110 E. Delaleau et al.

2.6. State Variables and State Equations

The most practical state variables are the stator currents in the Cartesian represen-
tation id and iq (cf. (12a)), and the magnetizing current in the polar form (10). The
state equations which determine these state variables are respectively given for the
equations deduced from the stator voltages:

did
dt
=
1

N1
(vd − ed), (14a)

diq
dt
=
1

N1
(vq − eq), (14b)

with the following definitions for the back electromotive forces ed and eq :

ed = Rs id +
Lm
Tr
(id − iµr)−

(
np ω +

1

Tr

iq
iµr

)
N1 iq, (15a)

eq = Rs iq +

(
np ω +

1

Tr

iq
iµr

)
(N1 id + Lm iµr) , (15b)

where Tr = Lr/Rr, and for the equations deduced from the rotor voltages:

diµr
dt
=
1

Tr
(id − iµr) , (16a)

dξr
dt
=
1

Tr

iq
iµr

. (16b)

3. Field-Oriented Control4

The designers have chosen the following two criteria to have a good control of the IM:

1. Controlling the electromagnetic torque τem.

2. Controlling the magnitude of the rotor flux ψABC : ψr.

The problem has now two aspects:

(a) What are the currents needed to impose the torque and the magnitude of the
rotor flux? That is, how to “inverse” eqns. (1) and (3) which are algebraic
equations? Examining (1) and (3), we see that we have 6 unknown variables
(the currents iabc and iABC) and only 2 equations given by τem and ψr.

(b) What are the voltages which can create the appropriate currents? That is, how
to inverse (2) which are differential equations?

Furthermore, we must protect the motor against excessive magnitudes of stator cur-
rents.

4 The classical field orientation is presented in (Blaschke, 1972; Caron and Hautier, 1995;
De Fornel, 1990; Grellet and Clerc, 1997; Leonhard, 1997; Vas, 1990). Extensions are giv-
en in (Délémontey, 1995; Graf von Westerholt, 1994; Jacquot, 1995; Jelassi, 1991; Mendes,
1993; Robyns, 1993). Our approach (“inversion of models”) is mainly deduced from the point
of view of (Grenier et al., 1998; Louis and Bergmann, 1999).
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3.1. Estimator

If we want to impose a dynamic with the help of a state feedback, it is necessary
to determine the variables which are not measurable, i.e., ξs, ξr and iµr, with the
help of the measurable variables, i.e., stator currents, iαβs = T

t
32 iabc, and mechanical

variables, ω and θ. The equations of the estimator are deduced from eqns. (16a)
and (16b):

ı̂dq = P (−ξ̂s)T t32 iabc, (17a)

d̂ıµr
dt
=
1

Tr
(̂ıd − ı̂µr), (17b)

dξ̂r
dt
=
1

Tr

ı̂q
ı̂µr

, (17c)

ξ̂s = np θ + ξ̂r, (17d)

τ̂em = np Lm ı̂µr ı̂q. (17e)

The symbol ̂ denotes the corresponding estimated variables.

3.2. Closed-Loop Control and Introduction of Physical Constraints

For the design of controllers, we have to solve two problems:

1. We want to impose the dynamics and the steady-state behaviors of the two
variables of interest: the torque, τem, and the amplitude of the magnetizing
current, iµr. For this we will apply input-output linearization by state-feedback
using the differential equations

dτem
dt
= np Lm

(
diµr
dt

iq +
diq
dt

iµr

)
, (18a)

N1
diµr
dt
+N1 Tr

d2iµr
dt2
= vd − ed, (18b)

iµr + Tr
diµr
dt
= id. (18c)

We choose arbitrarily the following dynamic models which have the lowest order
physically realizable (the first for the torque, and the second for the magnetizing
current):

dτem
dt
=
1

τc

(
(τem)ref − τem

) 4
=
1

τc
np Lm iµr (Iqref − iq) , (19a)

iµr +
2 ξ

ωn

diµr
dt
+
1

ω2n

d2iµr
dt2
= iµrref. (19b)
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Fig. 2. Control scheme.

2. We have to limit the variations of the stator currents for security during excessive
movements. Thus, we want to have a control structure which contains internal
loops on the stator currents, as indicated in Fig. 2. Algebraic computations give
the following results for the control law:

(a) On the q-axis, we control the torque and the magnitude of the component
iq of the stator current:

vq = kq (Iqref − ı̂q) + eq −
N̂1
Tr

ı̂q
ı̂µr
(̂ıd − ıµr), with kq =

N̂1
τc
. (20)

(b) On the d-axis we control the rotor flux ψr = M iµr and the magnitude
of the component id of the stator current: first, the two-loop structure is
given by

Idref = kµ (Iµrref − iµr) + iµr, with kµ =
(ωnTr)

2

2ξωnTr − 1
, (21)

vd = kd (Idref − id) + ed, with kd =
N1
Tr
(2ξωnTr − 1) . (22)

We observe that this structure makes use of proportional controllers like kq , kµ, kd,
and additive compensators like vd2 , vq2 and Idref2 = iµr.

3.3. Examples of Transients

Figures 3(a) and (b) show transients which prove that this approach gives a com-
plete inversion of the dynamical model. Figure 3(a) shows three responses: First, the
magnetization, i.e., the response of the stator flux to a step reference (dynamics of
the second order, given by (19b)). Figure 3(b) shows that the id component of the
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Fig. 3. (a) Flux, torque and speed responses; (b) Responses of id and iq .
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stator current reaches a maximum value (denoted by idsat), but without overshoot:
this is a protection effect due to the internal loop. After the magnetization we see the
response of the torque to the steps reference: the dynamics is of the first order, given
by (19a). The speed ω has quasi-linear responses (the torque is well controlled). We
observe that the decoupling between the two axes is perfect: the magnitude of the flux
remains constant when the torque has large variations. The inversion of the model is
completed.

4. Passivity-Based Control

4.1. Control Properties of the Induction Motor Model

In this section we establish some properties of the model (input-output and geomet-
rical) that will be instrumental for further developments.

4.1.1. Model

In Section 2.3 we have derived the standard two phase αβ-model of an np pole pair
squirrel cage induction motor with uniform air-gap. For convenience in the sequel, set
ψ = [ψtαβs, ψ

t
αβr]

t and i = [itαβs, i
t
αβr]

t.

Thus, the relation between the flux and the currents has the form

ψ = L(θ)i, L(θ) =

[
LsI2 MeJnpθ

Me−Jnpθ LrI2

]
, (23)

L(θ) = Lt(θ) > 0 being the 4× 4 inductance matrix of the windings, where we have
defined the (skew-symmetric) rotation matrices J = −J t = P (π/2) and eJnpθ =
P (npθ) (see (4)). The electrical dynamics are defined by the voltage balance equation

ψ̇ +Ri = Nu, R =

[
RsI2 0

0 RrI2

]
, N =

[
I2

0

]
, (24)

with Rs, Rr > 0 being the stator and rotor resistances, respectively. Particularly
useful for further developments is the following relationship between rotor fluxes and
rotor currents:

ψ̇r +Rrir = 0 (25)

The model is completed by computing the electromagnetic torque as

τem =
1

2
it
∂L(θ)

∂θ
i = −1

2
ψt
∂L−1(θ)

∂θ
ψ (26)

and replacing it in the mechanical dynamics

Jθ̈ = τem − τL, (27)

where J > 0 is the inertia of the rotor and τL signifies a term of load torque which
we will assume to be constant but unknown. For simplicity, we neglect the effect of
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friction but, as shown in Ortega et al. (1998), it can be easily accommodated into our
analysis.

Remark. We established in (Espinosa and Ortega, 1995) that PBC is coordinate
independent, i.e., it can be derived in any reference frame chosen for model represen-
tation. For instance, in (Espinosa and Ortega, 1994) the ab-model was used, while the
developments of Ortega and Espinosa (1993) and Ortega et al. (Ortega et al., 1993a)
relied on the dq-model. Finally, the work of Nicklasson et al. (1997) was carried-out
in the original αβ frame.

4.1.2. Input-Output Properties

The cornerstone of the passivity-based design philosophy is to reveal the passivity
property of the system and identify, as a by-product, its workless forces. This is easily
established from the system total energy, which for the induction motor is given as

H(ψ, θ̇, θ) = 1
2
ψtL−1(θ)ψ
︸ ︷︷ ︸

He

+
1

2
J θ̇2
︸ ︷︷ ︸
Hm

,

where He(i, θ) and Hm(θ̇) denote the electrical energy and the mechanical kinetic
co-energy, respectively. We have neglected the capacitive effects in the windings of the
motor and considered a rigid shaft, hence the potential energy of the motor is zero.

The rate of change in the energy (the system work) is given by

Ḣ = itsu− θ̇τL − itsRis.

From the integration of the equation above we obtain the energy balance

H(t)−H(0)︸ ︷︷ ︸
stored energy

= −
∫ t

0

it(s) R i(s) ds

︸ ︷︷ ︸
dissipated

+

∫ t

0

[
its(s)u(s)− θ̇(s)τL

]
ds

︸ ︷︷ ︸
supplied−extacted

(28)

which proves that the mapping [ut,−τL]t 7→ [its, θ̇]t is passive, with storage func-
tion H.
Furthermore, as shown by Espinosa and Ortega (1994), the motor model can be

decomposed as a feedback interconnection of two passive operators with storage func-
tions He and Hm, respectively. These passivity properties, and their corresponding
storage functions, are the basis for two different PBCs studied in (Ortega et al., 1998).

4.1.3. Geometric Properties

We now exhibit an invertibility property of the induction motor model which is es-
sential for obtaining an explicit expression of the PBC. From (26) and (23), we see
that the torque can be written as

τem = npMitsJ eJnpθir, (29)
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where the fact that J and eJnpθ commute (J eJnpθ = eJnpθJ ), and that the skew-
symmetry of J (J t = −J → xtJ x = 0, ∀ x ∈ � 2 ) have been used. Now, solving
(25) for ir and substituting it into (29) gives

τem = np
M

Lr
itsJ eJnpθψr. (30)

Finally, (23) can be solved for is as

is =
1

M
eJnpθ(ψr − Lrir)

and then substituted into (30) to give

τem =
np
Rr

ψ̇trJψr, (31)

where (25) has been used again. This is a key expression that allows us to invert the
systems dynamics, that is, explicitly solve this equation as

ψ̇r =
τem
‖ψr‖

Rr
np
Jψr, (32)

where ‖ · ‖ is the Euclidean norm.
The two equations above will be instrumental in the next section for the deriva-

tion of the PBC. In (Nicklasson et al., 1997), where we study the model of the gener-
alized rotating machine, we assume that the machine is Blondel-Park transformable
to ensure this invertibility property. The underlying fundamental assumption for the
machine to be Blondel-Park transformable is that the windings are sinusoidally dis-
tributed, giving a sinusoidal air-gap magnetomotive force and sinusoidally varying
elements in the inductance matrix L(θ). For a practical machine, this means that
the magnetomotive force can be suitably approximated with the first harmonic in a
Fourier approximation. Examples of machines in which higher-order harmonics must
be taken into account are square-wave brushless DC motors and machines with sig-
nificant saliency in the air gap. For this class of machines the application of PBC is
still an open issue.

Equation (32) also shows that the zero dynamics of the motor with outputs τem
and ‖ψr‖ are periodic. This fact becomes clearer if we evaluate the angular speed of
the rotor flux vector with respect to the rotor fixed frame (the slip speed) as

ρ̇ =
d

dt
arctan(ψr2/ψr1) =

1

1 + (ψr2/ψr1)2
ψ̇r2ψr1 − ψr2ψ̇r1

ψ2r1

=
1

‖ψr‖2
ψ̇trJψr =

Rr
np‖ψr‖2

τem. (33)

From this equation we conclude that if τem and ‖ψr‖ are fixed to constant values,
the rotor flux rotates at a constant speed. This expression also shows that the torque
can be controlled by controlling the rotor flux norm and slip speed, as is well-known
in the drives community.
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4.2. Nested-Loop Passivity-Based Control

It is shown in Ortega et al., 1998 that for electromechanical systems the PBC approach
can be applied in at least two different ways, leading to different controllers. In the
first, more direct form, a PBC is designed for the whole electromechanical system
using as the storage function the total energy of the whole system. This is the way
PBCs are typically defined for mechanical and electrical systems, and it is usually
referred to as PBC with total energy shaping.

Another route stems from the application of a passive subsystems decomposition
to the electromechanical system. Namely, we show that (under some reasonable as-
sumptions) we can decompose the system into its electrical and mechanical dynamics,
where the latter can be treated as a “passive disturbance.” We then design a PBC
for the electrical subsystem using as the storage function only the electrical part of
the system’s total energy. An outer-loop controller (which can also be a PBC, but
here is a simple pole-placement) is then added to regulate the mechanical dynam-
ics. The so-designed controller will be called the nested-loop PBC. There are at least
three motivations for this approach: firstly, using this feedback-decomposition leads
to simpler controllers which in general do not require observers. Secondly, there is
typically a time-scale separation between the electrical and the mechanical dynamics.
Finally, since the nested-loop configuration is the prevailing structure in practical ap-
plications, we can in some important cases establish a clear connection between our
PBC and current practice.

Although for both controllers we can prove global asymptotic speed/position
tracking, for the sake of brevity we present here only the torque tracking version of
the nested-loop PBC.

4.2.1. Controller Structure

In this section we solve the speed-position tracking problem adopting a nested-loop
(i.e., cascaded) scheme, where Cil is an inner-loop torque tracking PBC, and Col is an
outer-loop speed controller which generates the desired torque5 τemd. We will show
in this section that Col may be taken as an LTI system that asymptotically stabilizes
the mechanical dynamics. The main technical obstacle for its design stems from the
fact that Cil requires the knowledge of ˙τemd, and this in turn implies measurement
of acceleration. To overcome this obstacle, we proceed as in (Ortega et al., 1998) for
a robotics problem, and replace the acceleration by its approximate differentiation,
while preserving the global stabilization property. (In simple applications, of course,
Col is just a PI around speed error. We go here through these additional complications
to provide a complete proof of stability.)

A very interesting property of the resulting scheme, which is further elaborated
below, is that if the inverter can be modeled as a current source and the desired speed
and rotor flux norm are constant, the controller exactly reduces to the well-known

5 We will adopt throughout the following notation convention. If a signal is explicitly given as
an external reference, we denote it by (·)∗. If, instead, it is generated by the controller, we use
the notation (·)d.
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indirect field-oriented control, hence providing a solid theoretical foundation to this
popular control strategy.

4.2.2. Torque Tracking PBC

Implicit and explicit forms. In this subsection we derive a torque tracking PBC
from the perspective of a system’s inversion. For that purpose, using (23), we rewrite
(24) and (26) as

ψ̇ +RL−1(θ)ψ = Nu, (34)

τem =
np
Rr

ψ̇trJψr, (35)

where, for ease of reference, we have repeated (31).

Typically, the PBC is a “copy” of the electrical dynamics of the motor (34), (35)
with an additional damping injection term that improves the transient performance.
To simplify the presentation, we will omit the damping injection here, and refer the
reader to Ortega et al., 1998. Thus, we define the PBC in an implicit form as

Nu = ψ̇d +RL
−1(θ)ψd, (36)

τem∗ =
np
Rr

ψ̇trdJψrd, (37)

where τem∗ is the torque reference and ψd = [ψ
t
sd, ψ

t
rd]
>
defines the desired values

for the fluxes.

An explicit realization of the PBC above is obtained by “inversion” of (37) as

ψ̇rd =
1

β2∗(t)

(
Rr
np
τem∗J + β̇∗(t)β∗(t)I2

)
ψrd,

where ψrd(0) = [β∗(0), 0
>], and β∗(t) is a (time-varying) reference for ‖ψr‖. The

last equation can actually be solved as

ψrd = eJ ρd

[
β∗(t)

0

]
, (38)

ρ̇d =
Rr

npβ2∗(t)
τem∗, ρd(0) = 0, (39)

The description of the controller is completed by the replacement of ψrd and ψ̇rd in
the last two equations of (36) to get ψsd. After differentiation we get ψ̇sd which can
be replaced in the first two equations of (36) to get6

u = ψ̇sd +
[
I2 0

]
RsL

−1(θ)ψd.

6 An explicit state space description is given in Proposition 1.
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The expression above causes a difficulty in the implementation of the nested-loop
scheme, as the control law depends on ψ̇sd, which in turn depends on τ̇em∗ . On the
other hand, the signal τem∗ will now be generated by an outer-loop controller Col,
which will generally depend on θ̇. We will see in Proposition 1 how to overcome this
obstacle with the use of a linear filter.

Stability. Let us now analyze the stability of the closed loop. The error equation for
the fluxes is obtained from (34) and (36) as

˙̃ψ +RL−1(θ)ψ̃ = 0,

where ψ̃
4
= ψ − ψd are the flux errors. Global convergence can be easily established

by considering the storage function7

Hψ =
1

2
ψ̃tR−1ψ̃ ≥ 0

whose derivative satisfies

Ḣψ = −ψ̃tL−1(θ)ψ̃ ≤ −αHψ

for some α > 0. Hence, ψ̃ → 0 exponentially fast.
To illustrate the second difficulty in the stability analysis of the nested-loop

scheme, let us turn our attention to the torque tracking error τ̃em
4
= τem− τem∗. After

some simple operations, from (35) and (37) we get

τ̃em =
np
Rr

{
˙̃
ψtrJ ψ̃r +

˙̃
ψtrJψrd + ψ̇rdJ ψ̃r

}
.

We have shown above that ψ̃ → 0 (exp.), and consequently, ˙̃ψ → 0. Also, ψrd
is bounded by construction, see (38). Unfortunately, we cannot prove that ψ̇rd is
bounded, unless τem∗ is bounded. In position-speed control, τem∗ is not a priori
bounded, since it will be generated by Col. Therefore, Col must be chosen with care
and a new argument should be invoked to complete the proof. The proposition below
shows that Col can be taken as a linear filter.

4.2.3. Speed Tracking PBC

Main result. A globally stable speed tracking PBC is presented in the proposition
below, whose proof can be found in Ortega et al., 1998.

Proposition 1. The nonlinear dynamic output feedback nested-loop controller

u = Lsi̇sd +Me
Jnpθ i̇rd + npMJ eJnpθθ̇ird︸ ︷︷ ︸

ψ̇sd

+Rsisd (40)

7 This function was used in (Martin and Rouchon, 1996a) to give an “implicit observer” inter-
pretation of the PBC controller.
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with

id =




1

M

[(
1 +

Lrβ̇∗
Rrβ∗

)
I2 +

Lr
npβ2∗

τemdJ
]
eJnpθψrd

−
(
τemd
npβ2∗
J + β̇∗

Rrβ∗
I2

)
ψrd



, (41)

where

ĩ =

[
ĩs

ĩr

]
=

[
is − isd
ir − ird

]
,

τemd = Jθ̈ ∗ −z + τL,

and controller state equations

ψ̇rd =

(
Rr
npβ2∗

τemdJ +
β̇∗
β∗
I2

)
ψrd, (42)

ż = −az + b ˙̃θ (43)

with
˙̃
θ
4
= θ̇ − θ̇∗ and a, b > 0, provides a solution to the speed and rotor flux norm

tracking problem. That is, when placed in the closed loop with (23) and (24), eqns. (26)
and (27) ensure

lim
t→∞

˙̃θ = 0, lim
t→∞
| ‖ψr‖ − β∗(t)| = 0

for all initial conditions and with all internal signals uniformly bounded.

Extensions.

� Position control. It is easy to see that choosing the desired torque in the con-
troller above as

τemd = Jθ̈∗ − z − f θ̃ + τL (44)

yields global asymptotic position tracking for all positive values of a, b, f . The
proof of global asymptotic rotor flux norm and position tracking follows verbatim
from the proof of the main result above.

� Adaptation of load torque. We can extend the result given in Proposition 1 to
the case of unknown but linearly parameterized load,

τL = η
tφ(θ, θ̇),

where η ∈ � q is a vector of unknown constant parameters and φ(θ, θ̇) is a
measurable regressor.
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� Integral action in stator currents. It is common in applications to add an integral
loop around the stator current errors to the input voltages. The experimental
evidence presented Ortega et al., 1998 shows that, indeed, this robustifies the
PBC by compensating for unmodeled dynamics. It is interesting to note that
the global tracking result above still holds in this case.

5. Flatness-Based Control

5.1. Structural Properties of the Model

5.1.1. Complex Form of the Model

For simplicity, we prefer to work with a complex8 model instead of the real one given
by (7)–(9). To this end, for any variable x introduce the notation

x• = xα• + xβ•, (45)

where we set • = s or • = r depending on whether one considers a stator or a
rotor variable, respectively. To simplify the proof of flatness, it is useful to consider
some variables in the frame rotating at the speed npω which is the natural frame to
consider variables of the rotor. In order to distinguish the value of a given variable
between being referenced in the fixed frame and in the rotating frame, we mark the
variable with a tilde when it is given in the rotating frame; otherwise, it is referenced
in the fixed frame which is the natural frame for considering the variable of the stator.

Therefore, eqns. (7a) and (7b) take on the forms

ψ
s
= Ls is +M e

npθ ĩr, (46a)

ψ̃
r
=M e−npθ is + Lr ĩr, (46b)

Equations (9) become

dψ
s

dt
+Rs is = us, (47a)

dψ̃
r

dt
+Rr ĩr = 0, (47b)

respectively. The advantage of considering complex variables will clearly appear in
the sequel. It reduces the number of equations, and changes of frames are simply ac-
complished by multiplying complex variables by an appropriate complex exponential.
We thus have ψ

r
= ψ̃

r
enpθ, ψ

s
= ψ̃

s
enpθ, ir = ĩre

npθ and is = ĩse
npθ.

In this notation the expression for the electromagnetic torque (8) becomes

τem =
npM

Lr
=m

(
isψ
∗

r

)
. (48)

8 We denote by  the pure imaginary number satisfying 2 = −1. The real part, the imaginary
part and the conjugate of a complex quantity x are respectively denoted by <e (x), =m(x),
and x∗.
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5.1.2. Flatness of the Model

The concept of (differential) flatness was introduced in 1992 and we refer to (Fliess et
al., 1995) for an introduction to this subject. Recall that a (nonlinear) control system
ẋ = f(x, u), where x is the n-dimentional state and u the m-dimentional input, is
(differentially) flat if there exists a set of variables y = (y1, . . . , ym) such that:

1. y = A(x, u, u̇, . . . , u(q)) for an appropriate integer q;

2. x = B(y, ẏ, . . . , y(r)) and u = C(y, ẏ, . . . , y(r+1)) for an appropriate integer r;

3. the components of y are differentially independent.

A set of variables y with these properties is called the flat output. A strong interest
in flatness stems from the fact that it allows a straightforward solution to the mo-
tion planning problem: in practice, the flat output has a clear physical meaning with
respect to the control objective. This leads to a huge collection of industrial applica-
tions (Fliess et al., 1995). See (Boichot et al., 1999) and (Hagenmeyer et al., 2000) for
flatness-based control regarding other kinds of motors.

The flatness of the model of the induction motor was established in (Martin and
Rouchon, 1996b). We recall the proof in the present notation. Set ρ = |ψ

r
| and define

δ as the angle such that ψ
r
= ρeδ; therefore δ is the angle of the rotor flux with

respect to a fixed frame. Set α = δ − npθ.
A flat output of the induction motor is y = (θ, α). As usual, this flat output has

a physical meaning which will simplify the control design: θ (or its first derivative
ω) is the variable to be controlled, and α is the angle of the rotor flux with respect
to a frame rotating at speed npω (recall that npω is called the synchronous speed).

Notice that α̇ = δ̇ − npω is the slip speed, usually only defined on constant speed
operations.

We thus have ψ̃
r
= ψ

r
e−npθ = ρeα. It is useful to express the electromagnetic

torque produced by the motor in terms of ρ and α: using (46b) and (47b) leads to

ĩs =
1

M
(ψ̃

r
+
Lr
Rr

d

dt
(ψ̃

r
)).

Thus,

is ψr
∗ = ĩs ψ̃r

∗
=
1

M
(|ψ̃

r
|2 + Lr

Rr

d

dt
(ψ̃

r
) ψ̃

r

∗
),

and finally, τem = npρ
2α̇/Rr. So the mechanical equation of the induction motor

becomes

ω̇ =
np
JRr

ρ2α̇− f

J
ω − 1

J
τL. (49)

Hypothesis: The torque load is an unknown function of time which can possibly
depend on θ or its derivatives, but not on other variables (is, ir, ψr, . . . ).
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It is obvious that

ω = θ̇, (50a)

δ = npθ + α. (50b)

From (49), ρ satisfies

ρ =

√
Rr(Jθ̈ + fθ̇ + τL)

npα̇
= a(θ̇, θ̈, α̇, τL) (50c)

which is a function of the flat output and its two first derivatives. Consequently,

ψ̃
r
= ρeα = b(θ̇, θ̈, α, α̇, τL). (50d)

Continuing the calculations using successively (46b), and (47a), we obtain

ĩr = −
1

Rr

d

dt
(ψ̃

r
) = c(θ̈, θ(3), α̇, α̈, τL, ˙τL), (50e)

is =
enpθ

M

(
ψ̃
r
− Lr ĩr

)
= d(θ, . . . , θ(3), α, . . . , α̈, τL, ˙τL), (50f)

ψ
s
= Ls is +M e

npθ ir = e(θ, . . . , θ
(3), α, . . . , α̈, τL, ˙τL), (50g)

us = Rsis +
d

dt
(ψ

s
) = f(θ, . . . , θ(4), α, . . . , α(3), τL, . . . , τ̈L). (50h)

Accordingly, y = (θ, α) is a flat output of the induction motor.

5.1.3. Stationary Operation

The most useful frame to study stationary operations of the motor is certainly the
frame of the flux, usually called the dq-frame. We denote by xdq the value of the
variable x in this frame, i.e., xdq = xe−δ = x̃e−α. Then the state-variable complex
model reads as follows:

ω̇ =
np
JRr

ρ2α̇− f

J
ω − 1

J
τL, (51a)

ρ̇+ α̇ρ = − 1
Tr
ρ+

M

Tr
is
dq, (51b)

d

dt
(is
dq) =

M

σLsLr
(
1

Tr
− npω)ψdqr −

(
a+ δ̇

)
is
dq +

1

σLs
us
dq, (51c)

with

a =
1

σLs

(
Rs +

M2Rr
L2r

)
.
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Notice that as ρ and α are real variables, eqn. (51b) can be splitted into

ρ̇ = − 1
Tr
ρ+

M

Tr
<e
(
is
dq
)
and α̇ =

M

Tr ρ
=m

(
is
dq
)
.

A stationary operation at constant speed ωo with constant load τL = τLo is
obtained when θ = ωot+ θo, α = α1t+ αo, where α1 and αo are constant (i.e., the
slip speed is constant). In this case δ̇ = npωo + α1 = δ1 is constant.

As a consequence, (51a) implies that ρ is constant ρ = ρo and thus, ψ
dq

r
= ρo.

In turn, (51b) implies that is
dq = is

dq
o is constant, and finally, with (51c), so is

us
dq = us

dq
o .

In conclusion, ψ
r
, is and us are periodical functions of time with pulsation

δ1 = npωo + α1. To run at a constant speed with constant load, the induction motor
has to be fed by sinusoidal voltages.

Notice that usually the stationary operation is analyzed by imposing us to be
sinusoidal under constant load and deducing that all electric and magnetic quantities
are periodic and finally, that the speed is constant. Here, with the flatness properties,
we are able to make the reverse analysis, i.e., beginning with the variable to be
controlled and deducing the control.

5.2. Trajectory Generation

By (50a)–(50h) we obtained the expressions for all system variables in terms of the
flat output components and the disturbance τL. In particular, these expressions allow
us to calculate the control us, at least when τL = 0, for a known mean value τLo of
τL or for an estimated value τ̂L.

As θ(4) and α(3) appear in the expression (50h) of the control us, the induction
motor can only follow trajectories such that t 7→ θ is everywhere 4-times left- and
right-differentiable and t 7→ α is everywhere 3-times left- and right-differentiable.
The choice of the reference trajectories of θ and α is made in order to fulfill the
constraints on all system variables.

For the first component θ of the flat output, the trajectory is often designed
with respect to the control objective. This corresponds to a known function of time
t 7→ θd on a given time interval [ti, tf ].

For the second component α of the flat output, the choice of the desired tra-
jectory t 7→ αd is not so obvious because the value of α does not correspond to a
clear control objective. However, this variable gives a degree of freedom in order to
perform a complementary control task. For example, it is possible to minimize the
copper losses in the stator at every constant speed with an appropriate choice of the
value of α̇: We get ψ

r
= ρeδ = ρe(npθ+α). So, using (51b), we have

d

dt
(ψ

r
) = (− 1

Tr
+ npω)ψr +

M

Tr
is.
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At a constant speed ω = ωo, ρ = ρo and α̇ = α1 are both constant and therefore

is =
Tr
M
ρo

(
1

Tr
+ α1

)
e(npθ+α),

|is|2 =
Tr
2

M2
ρ2o

(
1

Tr
2 + α

2
1

)
.

Thus,

|is|2 =
Tr
2

M2
Rr(fωo + τLo)

np

(
1

α1Tr
+ α1Tr

)
.

The magnitude of is is minimum if α1 = 1/Tr (see (Chelouah et al., 1996) for more
details).

Between two time intervals on which ω is constant, t 7→ αd can be chosen as a
function of ω. For example, we refer to Chelouah et al., 1996 for a detailed planning
of the reference trajectories of θ and α in order to start the motor from rest to a
nominal speed without any singularity9 (us, is and ir remain bounded everywhere).

5.3. Stabilization around Desired Trajectories

In this section, we present a tracking feedback law which is designed by studying the
stationary operation of the system. We use a singular perturbation approach due to
the good separation of the time scales.

Coupling ψ̃
r
= ψ

r
e−npθ, ĩr = ire

−npθ and (47b), it is possible to write

d

dt
(ψ

r
e−npθ) +Rrire

npθ = 0,

d

dt
(ψ

r
)e−npθ − npωψre

npθ +Rrire
npθ = 0,

d

dt
(ψ

r
)− npωψr +Rrir = 0, (52)

which is the expression of the electrical equation of the rotor in the fixed frame. The
stationary modes of eqns. (47a) and (52) are

δ̇ψ
s
+Rsis = us, (53a)

(δ̇ − npω)ψr +Rrir = 0, (53b)

respectively. As ψ
s
= Ls is +M ir and ψr =M is + Lr ir, we have

ir =
1

Lr

(
ψ
r
−Mis

)
, (54a)

ψ
s
= Lsis +

M

Lr

(
ψ
r
−Mis

)
. (54b)

9 This is an important industrial problem as mentioned by Bartos (1998).
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Equations (53) and (54) lead to

(
Rs + σδ̇Ls

)
is + δ̇

M

Ls
ψ
r
= us,

−MRr
Lr
is +

(
Rr
Lr
+ (δ̇ − npω)

)
ψ
s
= 0.

Thus

is = Zs(ω, δ̇)us, (55a)

ψ
r
= Zr(ω, δ̇)us, (55b)

where

Zs(ω, δ̇) =
Rr/Lr + (δ̇ − npω)

Z
, Zr(ω, δ̇) =

MRr/Lr
Z

and

Z =
(
Rs + σδ̇Ls

) (Rr
Lr
+ (δ̇ − npω)

)
+M

Rr
Lr

δ̇
M

Ls
.

Finally, the control law is given by

|us|2 =
JLr

npM=m
(
Z∗r (ω, δ̇

d)Zs(ω, δ̇d)
) (ω̇d − κ(ω − ωd)

)
,

where ωd = θ̇d is the reference trajectory of the angular speed and δd = αd − npωd
is the reference trajectory of the slip speed. This control does not necessitate a flux
observer.

5.4. Experimental Results

We conclude with the presentation of some experimental results10 of a flatness-based
control scheme. The first experiment (Fig. 4(a)) consists in starting the motor from
rest to its nominal speed. We observe a good tracking for the acceleration motion (the
experimental trajectory is hardly distinguishable from the reference one) and a small
overshoot. Figure 4(b) shows the braking of the motor from its nominal speed to rest.
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