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ANALYSIS AND APPLICATION OF OUTPUT
ROBUSTNESS FOR NON-LINEAR SYSTEMS

Gao FENG*, Sun YOUXIAN*

This paper studies the problem of robustness for non-linear control systems using
the differential geometric method. First of all, the paper proposes the concepts of
output robustness and feedback output robustness, and gives the sufficient and
necessary conditions for them. Furthermore, the paper studies the application
of them to the robust disturbance decoupling, robust input-output decoupling
and robust asymptotic tracking, such that the main robustness problems in
non-linear control systems can be dealt with by a unified method.

1. Introduction

With the development of differential geometric methods, there are many achievements
made in the field of non-linear control system theory, such as controllability, linea-
rization, stabilization and decoupling etc. (Isidori, 1989). Many of them have been
successfully applied in aircraft or robot technology.

However, for well known reasons, they must have uncertain terms in modelling
concrete control systems. The existence of those will affect seriously the control
performance, so the study of robustness is of a great importance not only in theory
but also in practice.

There have been many papers studying the robustness for non-linear control
systems (Barmish et al, 1983; Chen and Leitmann, 1987; Liu Jing-Sin and Yuan
King, 1991; Misawa, 1992; Teh-Lu et al., 1991). Misawa (1992) gives a better review.
From this paper and the references therein, we can see that there exist various study
methods, but no unified approach has been arrived at yet.

This paper tries to give a more unified method of study of the robustness for
non-linear control systems. It first proposes the concepts of output robustness and
feedback output robustness, and gives the sufficient and necessary conditions of them.
Secondly, it deals with the application of them to the problems of robust disturbance
decoupling, robust input-output (IO for simplicity) decoupling and robust asymptotic
tracking, respectively.

The meaning of the notations through this paper is as follows: M, N are
n-dimensional, [-dimensional smooth manifolds, respectively, T3 is tangent bun-
dle on M, C*(M, N) means all smooth maps from M to N, span{ } expresses the
distribution generated by all smooth vectors in { }, dA is the reduced generator of
h, kerdh represents the kernel of dh, R™ the m-dimensional Euclidean space. If
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f1, fo belong to the distribution A, [fi, fo] represents Lie bracket, then the [f, A]
means {[f,X]: X €A} '

The paper is organized as follows: Section 1 is introduction, Section 2 is preli-
minary, Section 3 deals with the output robustness and feedback output robustness,
Section 4 studies the application to robust disturbance decoupling, robust IO decou-
pling and robust asymptotic tracking, respectively, Section 5 is conclusion.

2. Preliminary

Consider the following affine non-linear system
i = () + G(z)u (1a)
y = h(z) A (1b)

where ¢ € M, f(z) € Ty, G(z) = (gl(w),gz(w),'--,gm(m)), gi(z) € T,

i=12,..,m, h=(hy,hag,---, b)) € C°(M,N), u = (u1,us, -+, um)? is control
vector.

Definition 1. A distribution A C Ty is said to be (f, g)-invariant on some open
set UCM,if

[f,AlcA+G (2a)
9, A]CA+G (2b)

where G = span{gi(x), g2(x),- - -, gm(2)}. If for each = € U, there exists a neighbo-
thood Up of x with the property that A is (f,g)-invariant on U,, A 1s said to be
locally [f, g]-invariant.

Definition 2. A distribution A 1is said to be controlled invariant on U if there exists
a feedback pair («, ) defined on U such that A satisfied

[f,.Alca (32)
[3:, Al C A \ (3b)

where f = f + Ga, g; = (GB)i, (GB); is the i-th column of the matrix GB. If for
each z € U there exists a neighborhood Uy of z with the properties (3a)—(3b) on
Uy, A is said to be locally controlled invariant.

The relation between Definition 1 and Definition 2 is as follows:

Lemma. (Isidori, 1989) Let A be an involutive distribution. Suppose that A, G,
and A+ G are non-singular on U, then A is controlled invariant on U if and only
if A is (f,g)-invariant on U.

3. The Analysis of Output Robustness

This section deals with the problem of output robustness. We first give the related
definition.
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Consider the following system with uncertain terms
i = f() + Af(x) + (G(z) + AG() )u (4a)

v = h(z) (4b)
where f, G, h,u are the same as in system (1), Af € Ty, AG = (Ag1, Aga, -+, Agm),
Ag; €Ty, 1=1,2,...,m.

System (1) is said to be the nominal system of system (4).
Definition 3. Suppose the solution of system (4a) is z({,zo,u) for initial va-

lue zo € U. If for any different vectors Afi(z), Afs(z) and different matrices
AG1(z), AGy(z), the corresponding solutions z1(t), z2(t) satisfy

h(21() = h(220), . (5)

then system (4) is said to be output robust on U. In addition, if system (4) is output
robust on some neighborhood of zy € M, it is said to be locally output robust.

Remark 1. The meaning of Definition 3 is that although system (4) has uncertain
terms, its variance only affects the internal structure of those but not the output, this
is to say that system (4) is robust with respect to output.

Theorem 1. System (4) is output robust on some neighborhood U of x € M if and
only if there exists a non-singular involutive distribution A on U, such that

[flA]CA7 [gT)A]CA) 121)2)7"1 (634)
Af+span{Ag;,Agy, -, Agm} C A (6b)
A C kerdh (6¢)

Proof. Since A is non-singular involutive, from Frobenius theorem, there must exist
a diffeomorphic coordinate transformation, z = 1(z) such that

A=spand 2 0 8
= 5P 022 023" 022 )’

T T .
where z = ((ZI)T:(ZZ)T) = <Z%,Z%,--- Zi_k,zf,---,z,§> , k=dimA on U.

Substitute z = 1(z) into system (4), without loss of generality, we still denote
the resulting system as follows

i = 1(2)+Af(2) + (G(2) + AG(2) u (7a)
y = h(z) (7b)
From (6a), we have

aa?fEA’ €A, =12,k j=1

@91’
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so f,g have the following forms

(1 (e
f( ) ( fz(z) )lk: gt( ) ( 91'2(2) )Ik

From (6b), we can get

0 0
Af(z) = (Afz(ff))l}c’ Agi(z) = (Ag?(z))lk

Condition (6¢) yields

So system (7) can be expressed

b= 1)+ G | (82)
i = () + AP + (G7() + AGY(2))u (8b)
y = h(z") (8¢c)

where G1(z1) = (g(s1), -+, 0h(s")), AGX(2) = (Agi(2), -, Agk(:2)).

That is to say that system (4) is output robust.

If system (4) is output robust, then there must exist a diffeomorphic transforma-
tion z = ¢(z) such that system (4) is changed into the form of system (8).

Set

A=spanl 0 0 . 0
=S 5 a0 g

formula (6a), (6b) can be easily verified. [ |

Theorem 1 gives the sufficient and necessary condition for output robustness.
But many systems do not satisfy this condition, so we must use feedback making up
those systems into output robust. -

Definition 4. For system (4), if there exist a feedback pair (a(z),ﬁ(z)) and a
diffeomorphic transformation z = (z) such that the resulting system is output
robust on some neighborhood U of z € M, then system (4) is said to be locally
feedback output robust. In addition, if U = M, system (4) is said to be feedback
output robust.
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Theorem 2. System (4) is locally feedback output robust on some neighborhood of
z € M if and only if there exists a controlled invariant distribution A on U such
that

Af+SpaH{A91:A92:)Agm} CA (ga')
A Ckerdh (9b)

Proof. Because A is involutive, there exists a diffeomorphic transformation z = P(x)
such that

A=spand 29 . 0
P 022’ 022" ' 0z}
T T
where k = dimA on U, z = ((zl)T,(zz)T> = (z},z%,---,zi_k,zf,---,zf) .

Since A is controlled invariant on U, so there exists a feedback pair (a(:z:), B(z)

such that through the transformation z = ¢(z), f+ Ga, (GB); have the following
forms respectively,

)
z2) +G(2)a(z) = | _,
f(z) + G(2)a(2) <f(z))|k

_ [ 7Y SR
COEOE ( e )|k, =12,

where (G(z)ﬂ(z)) _is the j-th column of the matrix G(2)8(z).
j
From (8a),(8b), we have

AF(2) + AG(z)a(z) = ( A?S " )I
k

(AG(z)ﬁ(z))j = (Mg(z) )I , h(z) = h(z")

so the system resulting from (4) can be expressed as

= fl(zl) + @1(21)1/ (10a)
2 =F @)+ 870 + (C') + AT (7)) v (10b)
Y= h(zl) (10C)

this means that system (4) is feedback output robust on U.
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If system (4) is feedback output robust, there must exist a feedback pair
a(:z:),ﬂ(a:)) and a transformation such that the resulted system has the form of
system (10).

Set
A:span{ a .._a.__ PN 8 }

It is easily verified that (9b) holds and
Af(z) + AG(2)a(z) € A

(AG(z)ﬂ(z))j €A

From the invertibility of §(z), we have
span{Ag1,Aga, -+, Agm} C A
so Af(z) € A, and (9a) holds. ]
We have the following remarks for Theorem 1 and Theorem 2.

Remark 2. In Theorem 1, A is first the (f,g)-invariant distribution included in
kerdh, so A is included in the unobservable distribution A* of the nominal sys-
tem (1) of system (4), that is to say that if (6b) holds, then we have

Af +span{Agi, Ags, -+, Agm} C A* (11)

Vice versa, if (11) holds, from Theorem 1, system (4) is output robust. So we get the
following corollary;

Corollary 1. System ({) is output robust if and only if (11) holds.
From Corollary 1 we naturally established the following definition.

Definition 5. If the unobservable distribution A of the nominal system (1) of system
(4) satisfies (11), then A is said to be output robust distribution.

Remark 3. In Theorem 2, A is a controlled invariant distribution included in ker dh,
so A isincluded in the biggest controlled distribution A** included in ker dh. Hence,
if (8a) holds, we have

Af+span{Ag;,Aga, -+, Agm} C A** (12)

On the other hand, if (12) holds, system (4) is feedback output robust. So we have
another corollary;

Corollary 2. Suppose that A is the biggest (f, g)-invariant distribution included in
kerdh, G/A** is non-singular at z € M, then system (4) is feedback output robust
if and only if (12) holds.

Proof. 1t is easily verified from the Lemma in Section 2. ]
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Definition 6. The biggest (f,g)-invariant distribution in kerdh with property (12)
is said to be feedback output robust distribution.

4. The Application of Feedback Output Robustness

This section studies the application of feedback output robustness to the robust dis-
turbance decoupling, robust IO decoupling and asymptotic tracking, respectively.

4.1. Robust Disturbance Decoupling

Consider the following system with uncertain terms
i = f(2) + Af(@) + (G(2) + AGE))u+ (P(2) + AP@))w  (13a)

y = h(z) (13b)

and its nominal system

= f(z) + G(z)u+ P(z)w (14a)
y = h(z) (14b)
where w is disturbance, P(z) = (pl(:c),pz(x), . -,p;(:c)), AP(z) =

(Apl(ﬁ),,Apl(CU)), pz(x) S TM: Apz(.'li) € TM: 1= l,2,---,m; f) G) hyu
are the same as in system (4).

Definition 7. For system (13),(14), if there exists a feedback pair (a(z),ﬁ(z)) on

the neighborhood U of zp € M with the property that the resulting closed loop
systems of (13), (14) are disturbance decoupling respectively, and for the initial value
zo, the outputs of systems (13), (14) are equal on U, then system (13) is said to be
locally robust disturbance decoupling. In addition, if U = M, system (13) is said to
be disturbance decoupling on M.

Theorem 3. Suppose that A is (f,g)-invariant distribution on some neighborhood
U of z € M, G/A is non-singular on U, then system (13) is robust disturbance
decoupling on U if and only if A is a feedback output robust distribution, and

pi €A, Ap;e A, 1=1,2,---1 (15)

Proof. Because of the involution of A, we can get a diffeomorphic transformation
z = 1(z) such that

A=spand 2 9 . 9
IR W5 P LA P

T
where z = ((z%)T,(z%)T> = (zll,-~-,z,1z_k,zf,--~,z,§) , k=dimA on U.
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From (15), pi(z), Api(z) can be expressed as follows;

0 0 '
i\2) = , AiZ: 5 i:1,2,~'-,l
pi2) (pzw)lk Ple) (Aﬁ(z))u

so we deduce from the proof of Theorem 2 that there exists a feedback pair (a, 8)
such that the resulting systems of (13), (14) expressed respectively as

A=F(N+C (M) (16a)

2= (2)+ AT (1) + (G'(2) + AT (2) ) v + (P2(2) + AP*(2))w  (16b)

y = h(z') \ (16¢)

and
A=F(E)+G (2w (17a)
2=F(2)+ G )+ P (2w (17b)
y = h(z") (17¢)

this means that system (13) is robust disturbance decoupling.

If system (13) is robust disturbance decoupling on U, then it can be changed
into the form of (15).

Set

A=spand 2 2 9
=P 022’ 922 9z}’
formula (15) can be easily verified. |

4.2. Robust Input-Output Decoupling

Counsider the following system with uncertain terms
& = f(2) + Af(z) + (G(z) + AG(z) u (18a)
y=h(z) (18b)
and 1ts nominal system
&= f(z) + G(z)u (19a)
y = h(z) (19b)

where f, G, Af, AG are the same as in system (4), h(z) € C®°(M, M), that means
that systems (18), (19) are square systems, respectively.
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Definition 8. For systems (18), (19), if there exists a feedback law u = a(z) +f(z)v
on some neighborhood U of z € M such that systems (18), (19) are IO decoupling
respectively, and the outputs of (18), (19) are equal on U, then system (18) is said
to be locally robust IO decoupling. If, in addition, U = M, system (18) is said to be
robust IO decoupling.

Define the relative degree d; of the output y; and decoupling matrix as follows,

d; = min{k; ngL;i_lh,-(x) #0, for some j}

Az) = (Ly, L5 hy)

mxim
Set
m d; )
N=(\N,  Ni={[)kerdLi 'h;
i=1 j=1

Theoi'em 4. System (18) is robust IO decoupling on the neighborhood U of x € M
if and only if A(z) is invertible and N is o feedback output robust distribution.

Proof. If the conditions in Theorem 4 is satisfied, then we have

¥ =Lsh;

L Y w L, =120
j=1

Denote

T
b(z) = (Lgl h1, Léhs, - -,L;'mhm)

u:A‘l(m)(—b(x)+z/>, V:(Vl,uz,n-,vm)T
then we have

¥ = Ljsh;

y’?i:’/h 1::1,2,--"711
It is easily deduced that for (18) we still get the formula above. So system (18) is
robust IO decoupling.
The property of system (18) being IO robust yields that A(z) is invertible. The
IO robust of system (18) means that N is a output robust distribution. [ |

Remark 4. Theorem 4 is equivalent to the main theorem in (Liu Jing-Sin and Yuan
King, 1991). We only give it another expression here.
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4.3. Robust Asymptotic Tracking
We only consider the following SISO system

i = f(z) + Af(2) + (9(2) + Ag(x) ) (20a)

y = h(z) (20b)
and its nominal system

& = () + g(a)u (21a)

y = h(z) (21b)

for simplicity, where f, g, Af, Ag are all belong to T, h(z) € C®(M, RY).

Definition 9. For any initial value zy € M, if there exists a feedback pair (o, 8)
such that the outputs of systems (20), (21) asymptotically converge to a prescribed
reference function yg(t) respectively, then system (20) is said to be robust asympto-
tically tracking the function yg(t).

Theorem 5. Suppose the relative degree of system (21) is d, N = ﬂfxlker dLi " h s
a feedback output robust distribution, then the reference function yr(t) with the r-th
derivative can be robust asymptotically tracked by the output of system (20).

Proof. From the condition of the Theorem, we can get
g=Lh
(22)
v = Léh+uL,L{th
Set zy =h, zg=Lsh, - +,25 = L?‘lh. The involution of span{g} implies that there
must exist 2441 = Yay1(), -+, 20 = ¥n(z) such that z = ¢(z) is a diffeomorphism

with the property Ly¢i(z) =0, i = k,k+1,---,n, where z = (z;,---,2,)7, ¥ =
(h‘:'"7L_?_1h;¢d+11"':¢n)T-

Denote £ = (z1,---,2a)T, 17 = (2441, *,2n)7. System (20) can be expressed
by

& = Eiga, i=1,2,---,d—1
€a=b(6,) + a(, n)u
1=q(&n) + Ag(€,n) + q1 (€, n)u
y==4&

(23)

where Ag, g1, ¢ are all (n — d) dimensional smooth vector functions, & = 6, i=
1,2,...,d.
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If we take
u=a”'(Em) (- b, n) + k) - Z GEFa0)

where c; are the Hurwitz polynomial coefficients, co+cys+---+cq_15% 1 + 5%, and
denote e(t) = y(t) —yr(t), then the following equation can be obtained, cg + cie(t) +
st cgo1eT1(t) + €4(t) = 0.

It is easily verified that y(¢) asymptotically converge to yr(tf) as t tends to
infinite. At the same time, the output of system (21) also asymptotically converge to
yr(t). The proof is completed. |

Remark 5. This theorem can be compared with the paper (Teh-Lu et al., 1991) which
studied the problem of robust output tracking via a Lyapunov-based approach. The
main assumption there is the mismatching condition, that is that there exist smooth

functions 6;(z), 62(z) and smooth vector functions fi, g; such that the uncertainties
Af, Ag satisfy

Af(z) = g(z)b1(z) + fi(z) (24a)
Ag(z) = g(z)b2(z) + g1(z) (24b)

with fi1, g1 satisfying some properties. The tracking error in (Teh-Lu et al., 1991)
only remains bounded but not converges to zero. If fi(z) = g1(z) = 0, it is easy to
verify that system (20) with (24a), (24b) satisfies the condition of Theorem 5. So the
tracking error converges to zero.

5. Conclusion

This paper has studied the problem of robustness for non-linear control systems. The
sufficient and necessary conditions of output robustness and feedback output robust-
ness are given. From Theorem 1 and Theorem 2, we can conclude that the so called
output robustness and feedback output robustness are in fact included the uncer-
tain terms. Furthermore, the paper has studied the application of feedback output
robustness to the problems of robust disturbance decoupling, robust IO decoupling
and robust asymptotic tracking, respectively. Therefore, the main robust problems
in non-linear control systems can be studied by a unified method.
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