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SUBOPTIMAL NONLINEAR
PREDICTIVE CONTROLLERS

FiLie DECLERCQ*, RoBiN DE KEYSER*

Predictive control based on linear models has become a mature technology in
the last decade. Many successful real-time applications can be found in almost
every sector of industry. Nonlinear predictive control can further increase the
performance of this easy-to-understand control strategy. One of the main prob-
lems of implementing nonlinear predictive control is the computational aspect,
which is of most importance in real-life applications. In this paper, suboptimal
nonlinear predictive control strategies are proposed and compared. The non-
linear predictors are built based on neural identification methods or by white
modelling. The use of diophantine equations, which is a common technique to
calculate the optimal contribution of the noise model, is avoided by using a more
natural method. The comparison between the control algorithms is made based
on a simulated discrete multivariable nonlinear system and a continuous stirred
tank reactor.

Keywords: predictive control, nonlinear control, sequential quadratic program-
ming, diophantine equations.

1. Introduction

It is interesting to look at the history of the predictive control strategy. This strat-
egy was not a pure theoretical approach which took years to make the switch from
the academic world to the industrial world. The results presented in (Cutler and
Ramaker, 1980; Richalet et al., 1978) came directly from a large industrial plant,
where even the slightest optimization of the plant’s control strategy may result in
huge profits. Although the theoretical framework around the predictive control strat-
egy was rather limited at that time, the process industry was very interested in this
easy-to-comprehend control principle. From an industrial viewpoint, the possibility
to include the constraints imposed on the inputs, states and outputs directly into the
formulation of the control algorithm, is an interesting property of the predictive con-
trol strategy. The predictor models which were used in the early stages were mainly
linear models (impulse, step, ARMAX). Strategies using linear models are referred
to in this text as linear model-based predictive control (LMBPC). The term linear
only refers to the used predictor models and not to the control strategies because
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constraints can make the control action nonlinear. For more details about LMBPC
the authors refer to (Camacho and Bordons, 1995; De Keyser, 1991; 1998; Garcia et
al., 1989).

A straightforward extension of the linear predictive control algorithm is the non-
linear model-based predictive control algorithm (NLMBPC). This strategy has first
been studied thoroughly by many academic research groups before it was introduced
in industrial applications (a solar plant (Camacho and Berenguel, 1994), a binary
distillation column (Keeler et al., 1996)). The main problem of using NLMBPC is
not only the absence of a theoretical framework for an analysis but also the real-time
problems which occur due to the non-convexity of the optimization problem. New
techniques for modelling nonlinear processes based on neural and fuzzy modelling also
opened new possibilities for NLMBPC. In this paper, a ‘real’ process is simulated us-
ing the so-called white model. In the first example a predictor is built using neural
identification methods. Although the neural identification methods are not mature
yet and there is a need for a global theoretical framework, they have already proven
to be successful. It has to be said that although neural identification is based on a
black box modelling approach, nonlinear system identification is more than training
a neural net (Norgaard, 1995; Sjoberg et al., 1995). In the second example a white
model was used as predictor.

LMBPC with linear constraints can be easily tackled with quadratic program-
ming optimization techniques (assuming that the problem is feasible). These algo-
rithms only need a limited time to calculate the optimal feasible solution. A good
overview of these optimization algorithms is given in (Wismer and Chattergy, 1978).
A topic which was initially neglected during the development of NLMBPC and which
needed to be solved, is the real-time aspect of the algorithm. This is necessary for
a successful translation from the academic to the industrial world. Because of the
nonlinear model, the strategy is described by a non-convex constrained optimization
algorithm. It is obvious that NLMBPC needs much more computer power in compar-
ison with LMBPC. It is well-known that the present optimization algorithms which
can deal with non-convex problems never guarantee that the solution found is a global
optimum. In (Ohtsuka and Fujii, 1997) the predictive control problem (without in-
equality constraints) is converted into an initial-value problem which is solved without
an iterative numerical method.

In this paper, a number of algorithms is studied which are based on a simplifica-
tion of the nonlinear predictor. In LMBPC the predictions §(t + k/t) of the process
output y(t + k) based on information known at time ¢ and &k > 0 can be split into
two parts. In the GPC framework these are usually called the free §ee(t + k/t) and
the forced @forced(t + k/t) response (Clarke et al., 1987):

3}(75 + k/t) = Z;free(t + k/f) + @forced(t + k/t)a Vk >0 (1)

The first term refers to the response of the predictor when the control signal
u(t+k—1) Vk > 0 is fixed to its value at ¢t — 1. The second term is the part
of the system response which depends (linearly) on the difference of the future con-
trol signal with the control signal at time ¢ — 1. Because of this last property and
using a quadratic cost, the optimal future control signal can be easily calculated e.g.

—--
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by using quadratic programming. In the case of a nonlinear predictor it is not possible
to present the system response as a sum of the free and forced response. To avoid
this problem, a number of authors have modified the NLMBPC strategy by using a
simplified predictor. In (Camacho and Berenguel, 1994) a nonlinear model is used to
calculate the free response of the model and one fixed incremental linearized model is
used to calculate the forced response. This linear model is built around a certain state
of the process. In this paper, this strategy is referred to as nonlinear generalized pre-
dictive control (NGPC) as in (Camacho and Berenguel, 1994). Another strategy that
uses a similar approach is described in (Semino et al., 1997) and is called nonlinear
quadratic dynamic matrix control (NLQDMC). The forced response is calculated by
using a linear model which is a linearization of the system around the state at time ¢.
In this paper another approach is used. Instead of linearizing around one state, the
system is linearized around a trajectory (the predicted free response) of the process.
This control strategy is referred to in this paper as pseudo-NLMBPC. The pseudo-
NLMBPC strategy mentioned above can be looked at as the first iteration performed
for solving the nonlinear constrained optimization problem using gradient-based min-
imization techniques. Suboptimal-NLMBPC is a control strategy that results from a
finite number of iterations of the gradient-based optimization technique. More iter-
ations means that the suboptimal-NLMBPC algorithm results in lower values of the
cost function. When the number of iterations is increased, the suboptimal-NLMBPC
should approximate a local optimal solution of the non-convex constrained optimiza-
tion problem. In all these algorithms a suboptimal solution is found in a finite time.
This is a necessity for real-time applications. In this paper, a Levenberg-Marquardt
based algorithm which can deal with constraints is used.

2. The Constrained NLMBPC Strategy
2.1. The Nonlinear Predictor

The core of the strategy is the nonlinear model of the process to be controlled. Because
the paper does not emphasize the nonlinear identification problem, a general form of
the nonlinear model is assumed. In this paper, the following k-step ahead predictor
is presented in a state-space form but also an input-output formulation can be used:

Et+k)=fEC¢+k—1),ult+k-1))

D(g™1)

n(t+k)

y(t+ k) = g(3(t + k) + Cla™) e(t+k) (V>0 (2)
R e

The input vector w(t) has the dimension [nu x 1], Z(t) is the state vector of the
predictor ([nz x 1]) and y(t) is the system output vector {[ny x 1]). The prediction

model consists of a nonlinear model f(-), a function g(-) and a noise model —CE‘;—:%,

with C(¢~!) and D(¢™!) monic (matrix) polynomials. The notation g%g:ig is used

instead of the more common notation D(¢™!)~1C(g™!) for representing a multi-input
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multi-output system. The prediction error e(t) = y(t) — §(¢/t — 1) is assumed to be
a vector of white noise with average value 0 and §(¢/t — 1) is the one-step ahead
prediction of y(t) at time ¢ — 1. This model structure is closely related to a Box-
Jenkins model (when f(-) and g(-) are linear functions) which is well-known in the
world of linear system identification. This model can be used when the outputs of the

nonlinear system are corrupted by colored noise which is assumed to be generated by

a linear noise model %%. It is clear that (2) cannot be used directly to calculate

the value of y(¢t + k) because the value of the colored noise n(t + k) is unknown at
time ¢. Deriving the optimal predictor in the MBPC algorithm is closely related to the
derivation of the optimal one-step ahead estimator in prediction error identification
algorithms (Ljung, 1987). In (Clarke et al., 1987) an ARMAX model was used and in
order to derive an analytical solution of GPC the usage of diophantine equations was
introduced. To make a k-step-ahead optimal estimation of n(t + k) the noise model
is split into two parts using a diophantine equation

e Fe(@?)
D(g71)

n(t:k/t)

n(t+k)=Ep(g et +k) +¢ e(t+ k) : (3)

v

The first part contains the information unknown at time ¢; the second part depends
only on data known at time ¢. Ej(¢~!) is a (matrix) polynomial of degree k — 1.

The optimal prediction or the conditional expectation (Ljung, 1987) of y(t + k)
is defined by

Zt+k)=f(2t+k—1),ult+k-1))

Yt >0 (4)
gt + k/t) = g(&(t + k)) + n(t + k/t)

This is only one method to calculate the optimal prediction §(¢ + k/t). Another
straightforward method which is used in this paper is by directly filtering the optimal
estimation of the prediction error e(t + k/t) Vt,k. The optimal estimation of the
k-step-ahead prediction error e(t + k/t) based on the information available at time ¢
is defined by

et+k/t)=clt+k)=ylt+k)—Gt+k/t+k—-1) VE<O0

5
et+k/t)=FElet+k)]=0 VE>0 ®)

where E[-] stands for the expectation. From the theory of statistics it is known that
the optimal prediction of a white stochastic process is its mean value (Lewis, 1986).

Lemma 1. The k-step-ahead optimal prediction n(t + k/t) of the noise n(t+ k) at
-1
time instant t is the response of the noise model g((g_ )) which is driven by the optimal

prediction error e(t+k/t) and initialized by the colored noise n(t+k) (k <0) which
is known at time instant t,

C(qg™)
D(g71)

n(t+kjt) = et +k/t) Vk,t (6)
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The corresponding proof is given in the Appendix. Lemma 1 is now used to
calculate the optimal prediction of the output in a more natural way.

2.2. The Mathematical Description of the NLMBPC Strategy

To write the cost function of the NLMBPC strategy in a compact manner, some
vectors are to be defined. The future state output of the nonlinear predictor is defined
by

% = [icl(t+L0),...,:%m(t+L0),:%1(t+L0+1),...,ci;l(t+Ly),...,im(t—i—Ly)]T (7)

~ v

[nz-(Ly—Lo+1)x1]

Lo and L, being the minimum and maximum prediction horizon, respectively. The
future outputs ¥ and future setpoints W have a similar structure as X. The future
control sequence is defined by

a=[u(®),. .., Unu(t), s+ 1), ., us(t+ Loy = 1), Unu(t + Ly — " (8)

~

~

[nu-L. x1]

The control horizon L, is used to limit the number of future control moves. This
means that

Auj(t+k)=0 for j=1,...,nu and L, <k < Ly 9)

where A = 1 — ¢! and ¢~ ! is the backward shift operator. The quality of the
control action i (at time %) is measured using the cost function

1 1
J(@) = 5éTé + —épAﬁTAﬁ (10)

p being the weight for the control sequence. The error vector & has the same nature
as ¥ and is defined by & = P(¢7!)¥ — R(¢~!)W. The transfer functions in the cost
function are defined by P(¢g~') =1—ag ! and R(¢7!) =1—a were a acts as the
discrete pole of the reference system.

The constraints imposed on the control problem (e.g. y() < ymax) are represented
in a general form by

gl(ﬁ,y;i) =0 (11)

g?(ﬁ7}_’:i) S 0

At time £ the optimal control vector is the vector @ which minimizes the cost func-
tion (10) taking into account the constraints (11). Then the first nu elements of
the optimal control vector i are applied to the process and the whole optimization
procedure is repeated at ¢ + 1.
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2.3. A General Framework for Deriving a Suboptimal Solution of the
Cost (10) with the Constraints (11)

Minimization of (10) with respect to @ is performed by using a gradient-based
method. The core of such an iterative optimization algorithm is the calculation of an
incremental change d1; (during the (i+ 1)-th iteration) so that J(@; +01;) < J(@;)
with ; being the future control vector of the previous (i-th iteration). The
Levenberg-Marquardt optimization method uses implicitly a model of the nonlin-
ear predictor which is linear in §1; (Declercq and De Keyser, 1995). A ‘general’ form
of such a linearized predictor is as follows:

ox odu

T
) ou; (12)

The term ‘general’ refers to the possibility of easily transforming (12) into different
simplified predictors. This is done by making a specific choice of the vectors X* and
G* (see Section 2.4).

y(u; + 6u;) = y(1;) + (

From eqn. (12) it is clear that the response of the predictor due to du; is linearized
along @* and X*. Note that the right part of eqn. (12) becomes the first-order Taylor
expansion of ¥(@; + 61;) when O* is replaced by @; and X* is replaced by X;.

Inserting (12) in (10) and adding (as proposed by Levenberg) a quadratic cost of
the form %udﬁ?&ﬁi to the considered cost result in

1
Jin(61;) = Eéﬁf(G + pI)éa; + g7 6d; (13)

with G and ¢ defined by

T
oeT onaT | | geT oAaT
¢= {a_ﬁﬁ*,,_(* VP 5a Ha_ﬁux VP53 } (14)
deT _ oAaT | _

9= Ba . elﬁ,-,)‘(i +p 7a Al ox. (15)

i

In an (unconstrained) Levenberg-Marquardt optimization algorithm, the incremental
change 404; in the control vector is the solution to the quadratic cost (13).

The Levenberg-Marquardt optimization algorithm which is normally used for
unconstrained optimization can be extended so that it can also be used for constrained
optimization problems. When there are constraints, é4; is calculated by solving the
quadratic programming problem defined by

Hdl_ln Jlin((Sfli) = %61_131(G -+ ,uI)éﬁi -+ gT(Sﬁi

o oVl 991 | 0g1 0%  Og1 Oy _—
n@5 e (55 s 90 oy =0 | (0
- = Oga  Oga OX  0Og Oy _
;% v — =+ oo Ao i <
92,7, %) a5 + ( ot + ox ot + dy ou o % 0t <0 )
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The quadratic programming problem (16) is solved using the gp.m procedure of
(Grace, 1995). The constraints in (16) are obtained using the same methodology
as for the ‘general’ predictor (12). The constraints (11) are linearized but the part
related to the future control moves is defined by the vectors #i* and X*. The new
control sequence ;11 is then calculated by

ﬁi+l = ﬁi + 61_1i (17)
If J(fisy1) < J(@;), the value of @;41 is accepted and p is decreased. If J(#i;41) >
J(ii;), then the quadratic programming problem (16) is solved again with an increased
value for the parameter p. The basic idea for updating the p parameter is based on
the fact that increasing p moves §ii; towards the direction of the steepest descent
and reduces the step length. Decreasing p results in a 4; that swings towards the
Gauss-Newton direction. The way of updating the value of p is described in the
flowchart of the algorithm (Fig. 1) and is based on the technique used in' (Demuth
and Beale, 1994). The optimization algorithm is initialized (¢ = 0) using the control
vector 1y which contains only the control action w(t — 1) known at time t. This
procedure is repeated until a minimum is found or when the maximum number of
iterations (epoch,,,) has been exceeded. The optimization algorithm is also stopped
when the norm of the gradient g is smaller than a predefined value gmin or when
the value of the cost J(#i;) is smaller than a predefined value Jni, or when u has
reached its maximum value fimax- »

2.4. The Vectors t* and X*

By using the flowchart of Fig. 1 and by making a specific choice of the vectors a*
and X* the different algorithms mentioned in the Introduction can be generated.

2.4.1. NGPC and NLQDMC

The algorithm NGPC presented in (Camacho and Berenguel, 1994) can be generated
when in egn. (16) the vectors u* and X* are fixed and when they contain only
the control signals and the state of the process around which the incremental model
was initially built. This means that the forced response is a linear function in .
Because of the initialization of the control vector with iy, the first vector of the right
part of eqn. (12) is the free response of the nonlinear predictor.

The NLQDMC strategy can be generated when the vector X* contains only the
state of the process at time ¢ and @* = Gg. As in NGPC, the forced response is a
linear function in dGy but it is built up based on the model linearized at the current
state of the process. Using the general framework (Subsection 2.3), only one iteration
(i.e. epoch,,, = 1) of the constrained L-M optimization algorithm is needed to
generate NGPC and NLQDMGC, i.e. the value Tig + 011y calculated after one iteration
is applied to the process. The same idea is used in the pseudo-NLMBPC algorithm.

2.4.2. Pseudo-NLMBPC

In this algorithm X* is the response of the predictor to the input @* = Ug. This
means that X* represents the free response (of the states) of the predictor and that the
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Fig. 1. Optimization algorithm.
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process is linearized around this free response. Since the cost using pseudo-NLMBPC
is lower than when NGPC or NLQDMC are used, this results in a better control
strategy, especially when the system is highly nonlinear around the trajectory of
the free response. The differences between NGPC, NLQDMC and pseudo-NLMBPC
can be clearly seen in the partial derivatives matrix %}Z(‘g%]ﬁ*yi* (eqn. (18) when
Lo = 1). This matrix is built up with the (matrix) impulse response coefficients
hF ([ny x nu]) being the I-th impulse response coefficients of the linearized model
at the k-th prediction step. Note that these linearized models are not calculated
explicitly during the algorithm. In NGPC —g—%%% g%+ 1s fixed during the control
(independent of the time) because ©* and X* do not change during the control. In
pseudo-NLMBPC and NLQDMC the impulse response coefficients are recalculated
every sampling period, because the values of @* and X* change. When NLQDMC

is used, the impulse response coefficients

B T
hl 0 0
2 2
h2 . 0
0y 0%
- = = L L L
% oul.. . | hw hru-i - hy (18)
a*,x*
Lu+1 Lu+1 Lu+1 Lu+1
pEutl pkutl o plutl oy pl
Ly Ly Ly~Ly+1 3Ly
h’Ly h’Ly~—1 k=1 Ry,

fulfil the simple relationship h¥ = h V.

2.4.3. Suboptimal-NLMBPC

When a process is highly nonlinear over the prediction horizon, it is possible that
the results of the pseudo-NLMBPC are poor. The performance of the control action
can be increased by using a control vector @; such that the cost J(@;) is sufficiently
reduced. This is done by applying only a finite number (epoch,,.) of searches when
minimizing the constrained optimization algorithm. This number is called the level
of the suboptimal control strategy. The vector X* changes during the optimization:
during the first iteration X* contains the free response of the predictor, during the -
th iteration X* is the response of the predictor when the control vector @i;—; (derived
during the (¢ — 1)-th iteration) is applied to the predictor.

2.4.4. NLMBPC

In this paper, NLMBPC is the control action which minimizes the constrained cost
function. Due to the already mentioned optimization problems, the NLMBPC is
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approximated by a suboptimal-NLMBPC of a sufficiently high level, e.g. epoch,,,, =
200. Note that due to the non-convex nature of the problem it is not sure that the
minimum found by this algorithm is global.

3. Illustrative Examples
3.1. Narendra’s 5-th System

The first example is a MIMO system which was used in (Narendra and Parthasarathy,
1990) and is often used as a benchmark for neural identification methods. The system
has no real physical meaning but it is highly nonlinear and coupled. The system is
described by two difference equations:

_ _z(k)
_ z1(k)za (k)

In this example a neural model was used in the nonlinear predictor to estimate
f(-)- In (Declercq and De Keyser, 1997) the neural identification method used is
described. The diagonal elements of the polynomial matrices of the noise model are
set as Cy(g) =1 and Dy(q) =1-¢71 (i =1,2). Two constraints are imposed on
the system, i.e.

y1(t) <0.8, y2(t) <0.5 WVt (20)

The parameters of the cost (10) are set as follows: L, =10, L, =1, L, = 3, o = 0.5
and p = 0. The parameters for updating g in the optimization algorithm are set
t0 pinit = 1 X 1073, pine = 10, pdec = 1 x 1071, The parameters gmin, Jmin and
Hmax Which determine when a minimum of the NLMBPC cost is found, are set to
Pmax = 1 x 1019, goin = 1 x 10719, Join = 1 x 10712, These values were selected
based on simulation experiments.

In Fig. (2) the control results are plotted for the pseudo-NLMBPC, suboptimal-
NLMBPC and NLMBPC. The plot in the upper-left panel shows the results of the
pseudo-NLMBPC strategy of Subsection 2.4.2 (linearized around the free response).
The control results are good but there is a ripple at time 17 in z,(¢) and the de-
coupling at time 55 is not completely satisfied. If a suboptimal-NLMBPC strategy of
the second level (upper-right panel) is applied, the ripple at time 17 is removed and
the decoupling is improved. It is clear that the difference between the suboptimal-
NLMBPC of the third level (lower-left panel) and NLMBPC (level 200) (lower-right
panel) is small. This means that only a few iterations are needed to find a good
suboptimal solution of the control vector. In Fig. (3) the results of the control used in
(Camacho and Berenguel, 1994) are presented (NGPC). The incremental model was
built around the origin. In Fig. (4) the linear incremental model was built around the
current, state of the system at every sampling instant ¢ (NLQDMC). It is clear that
the results of these control strategies (that use a linear model to predict the forced
response) are not as good as when the process is linearized around the free response.
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Fig. 2. Control results using pseudo-NLMBPC, suboptimal-NLMBPC and NLMBPC
strategy, with z1(¢) (thin solid line) and z»(t) (thick solid line).

Note that the approximations used to simplify the predictor are also present in the
constraints of the quadratic programming problem (16). The performance of NGPC
and NLQDMC degrades when the difference between the linearized models along the
trajectory of the free response becomes higher. It is interesting to note that in the
case of a linear predictor all strategies are identical.

3.2. Control of a Continuous Stirred Tank Reactor (CSTR)

The dynamics of the process are represented by four nonlinear differential equations
(Chen et al., 1995; Engell and Klatt, 1993):

&y = u1(t) [210() — 21 ()] — k1 (z3(8)) 22 (t) — ks (23(t)) 21 (2)? (21)

Ty = —wy (t)xg(t) + k)l ($3(t)>$1 (t) — ko (.’L’3 (t))l‘z (t) (22)
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s = (1) an(t) = 25(8] + 27 [m4(t) = (1)

_ % {AHRAE Joy (3 (£)) 2. (£)

+ AHppo ks (@3(8))@2(t) + AHp,p ks (23(8)) 3 (1) (23)
o = o [ua(6) + FuAr(za(t) — 24(2)] (24)

with k;(z3(t)), ¢ = 1,2,3 coming from the Arrhenius law

E; . -
ki(z3(t)) = kio exp (m); 1=1,2,3 (25)

and the other model parameters as listed in (Chen et al., 1995).

The process model has four inputs (i.e. the normalized feed flow wuy(¢) (h™!),
the heat removal uy(t) (kJ/h), the feed temperature z30(t) (°) and the concentration
of the initial reactant x10(t) (mol/1)). In this paper, the inputs z30(¢) and z0(t)
are assumed constant during the experiment. The process has four states z(t) =
[21(t) z2(t) z3(t) z4(t)]T. =1(t) is the concentration in mol/l of the educt and
x2(t) is the concentration in mol/l of the desired product. The temperature of the
contents of the reactor is z3(¢) in (°) and z4(¢) is the temperature of the reactor
coolant (°). The task of the controller is to produce an output flow which has a certain
concentration »(¢) and temperature z3(t) in the reactor. The steady state point of
the process is o = [2.14 1.09 114.2 112.9]7 when the inputs are set to u; (0) = 14.19,
u(0) = —1113.5, z30(0) = 104.9 and z10(0) = 5.10. This point is also referred to as
the point of maximum yield in (Chen et al., 1995). In Figs. 5 and 6 the steady state
behavior of the CSTR is depicted and the point of the maximum yield is marked by
the top of the thick line. A zero-order-hold with a sampling period of 20s is placed
in front of the continuous system. The differential equations are integrated using a
fifth-order Runge-Kutta method with fourth-order step-size control, i.e. the Matlab
procedure rk45.m. The function g(-) is for this example (MIMO-control) defined by

y(t) = Cu(t) (26)

0:0100
0 0 001 O

The range of the two control signals is limited, namely

where

5 <uy(t) <35
Vi (27)
—9000 < us(t) <0
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Fig. 5. Steady-state values of ;.

Fig. 6. Steady-state values of z3.
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Fig. 7. Control result using pseudo-NLMBPC and (suboptimal)-NLMBPC
(epoch,,,, = 200) with z;(t) (thin line), 3(¢)/100 (thick line), w:(t)
(thick line, using left scale), u2(¢) (thin line, using right scale).

The control results of the CSTR. using pseudo-NLMBPC and NLMBPC are depicted
in Fig. 7. The parameters of the cost (10) are the same as in the previous example
except for the value of the control horizon L, which was set to 5. A white model was
used in the predictor with slightly perturbated parameters when compared with those
used in the ‘real’-process (Chen et al., 1995, Case 1). In this example the predictor is
configured as an input-output model, i.e. it is not initialized with the measured state
of the process but with the output of the predictor at time ¢ —1. When the predictor
is initialized with the state of the process z(¢) and there is a model mismatch between
the real process and predictor, an offset will occur in the control results even when
an extended Kalman filter is used to optimize the measured state z(t). This was also
noted in (Semino et al., 1997).

From Fig. 7 it is clear that there is a small difference between the pseudo-
NLMBPC and (suboptimal)-NLMBPC for this example. The reason lies probably
in the fast dynamics of the system, i.e. the coefficients h] with j = 1,...,L, in
eqn. (18) are much larger than the other coefficients. The fact that the difference
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between pseudo-NLMBPC and NLMBPC is small (non-detectable by eye) makes it
also possible to use large (quasi-infinite) prediction horizons as proposed in (Chen
and Allgdwer, 1997) even in real-time control applications.

4. Conclusions

A number of nonlinear model based predictive control strategies are presented and
compared with strategies presented by other authors. The proposed pseudo-NLMBPC
strategy acts as the first iteration in a constrained Levenberg-Marquardt based opti-
mization algorithm. In spite of its simplicity, the control results are very good. An
optimization algorithm which can deal with the constrained non-linear least-squares
problem of the NLMBPC was introduced in this paper. It is based on a sequential
quadratic programming method and the Levenberg-Marquardt algorithm.

The performance of the pseudo-NLMBPC can be improved by using suboptimal-
NLMBPC strategies. These are algorithms with a finite (often very small) number
of maximum iterations in the optimization algorithm. These algorithms have a finite
calculation time which makes them useful for real-time implementations. The results
of these strategies lay between those of the pseudo-NLMBPC and ‘exact’-NLMBPC.
The simulations of two highly nonlinear MIMO systems were used to illustrate the
control algorithms.

Appendix

To proof Lemma 1, the equivalence between the diophantine equations and the lemma,
is shown. First, based on a proof by induction a general form

Clg™") = D(¢g")Ex(g™")
D(g™)

is derived which uses an iterative formula to calculate

Ei(g™") = Era(g )+ Cil(g™)

n(t+k/t) = ( ) e(t+k) (A1)

k-2
=Y D@ [EBi(g7Y) - Ejn (q_l)} (A2)
=0

and taking into account that Eg(g™!) = 0. To complete the proof, it is shown that
this general form is equivalent with the diophantine equations (3).

To make the proof more compact, the (matrix) polynomial D(g~!) is denoted
by D and Dy is defined as the polynomial which contains the first & coefficients of
the original D(g~!) polynomial:

D(g™*) =TI+ dig7l + g dpag ™ (A3)

Dk(q_l) = I+ dqul + -+ dk_lq"k"'l (A4)

g~
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In the case of a multivariable noise model, I is the identity matrix and di becomes
a square matrix of dimensions [ny % ny].

During the proof the following relationships are used:

(D — Di)n(t + k/t) = (D — Di)n(t + k)
(AB)
(C — Cp)elt + kft) = (C — Cple(t + k)

The notation ‘/t’ can thus be omitted here due to the fact that (Dy, — D)n(t + k/t)
and (C — Cy)e(t + k/t) contain only information known at time ¢.

Proof of Lemma 1. The optimal one-step ahead prediction of n(t + 1) using the
lemima gives

n(t+1/t) = (D1 — D)n(t + 1/t) + (C — Cr)e(t + 1/t) + C1e(t + 1/t) (AB)
In the first and second term on the right-hand side ‘/t’ can be omitted (see eqn. (A5)).

Using the definition of the optimal prediction error the third term is equal to zero.
This results in '

n(t+1/t) = (Dy —D)n(t+ 1)+ (C —Cr)e(t +1) (A7)
Using the definition of n(t + &) this can be written as

n(t+1/t) = (C—_D?ﬁ) e(t+1) (A8)

This gives the same result as (A1) and (A2).

Assuming that eqn. (A1) is correct for n(t + k/t), we have to show that n(f +
k +1/t) has a similar form. Using the lemma, we have

n(t+k+1/t) = (Dgp1 — D)n(t +k+1/t) — (Dpg1 — Dn(t + k4 1/1)

+(C = Cry1)e(t+ k+ 1/t) + Cryre(t + k+1/t)  (A9)

In the first and third term on the right-hand side ‘/¢’ can be omitted (see eqn. (A5)).
Using the definition of the optimal prediction error, the fourth term is equal to zero
which results in

n(t+k+1/t) = Dpg1 = D)nt+k+1) = (Dpr — Dn(t + 5+ 1/1)

+(C— Cpy1)elt+ k+1) (A10)
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Noting that the second term on the right-hand side contains only the prediction of
n(t+j/t) for j=1,...,k and using (A1), it is possible to rewrite this term as

C—-DEy,_;
(Diys = Dn(t+k+1/t) = Y d; (%) e(t+k+1—7)
j=1
c &
= | (Dg1 — 1) —5 Y (Djs1 = Dj) By | et + k+1)
j=1
C
= <(Dk,+1 - I)—D— + B
k—1
+ Z‘Dk+1—j(Ej —Ej+1) 8(t+k’+1) (All)
=0
Inserting (A11) into (A10) results in
— DE;
n(t+k+1/t) = (C—b——’i) et+k+1) (A12)
with
k—1
Brn = By + Copn + Y Di1—j(Bj1 — Ejin) (A13)
j=0

which proves that the lemma is equivalent to (A1) by using an iterative formula of
eqn. (A2) to calculate Ej.

To complete the proof of the lemma, it must be shown that C — DE), can be
written as

C — DEy = q *F (A14)

F}, being a polynomial in ¢~!. This means that the first k coefficients of ¢ — DE,
have to be equal to zero. To make this clear, eqn. (A2) and the condition imposed
on eqn. (Al4) will be written in matrix form Ey, is defined as a column vector
containing the coefficients of the polynomial Ey; Cj, is defined similarly; Tp, isthe
Toeplitz matrix containing the coefficients of the polynomial Dy:

I I 0 ... 0O

€1 dl I 0
Be=| |, Tp=| _ (A1)

k

€p—1 dr—1 dy—o ... T
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This means that Ehe statement ‘the first k& coeflicients of C'— DEj, are equal to zero’
is equivalent to ‘Cy —Tp, Er = 0.

This can easily be seen if we write the recursive form of Exy; (eqn. (A13)) in
its matrix form:

E; E, Cy Tp 0 Ey
A + - " (A16)
€k 0 Cr dk e 1 0

It is clear from (A16) that Cy — Tpp, By = 0 which proves the correctness of (A14).
Combining (A1) with (A14) shows that n(t + k/t) calculated with the lemma is
equivalent to using diophantine equations (3). This finishes the proof.
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