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Deformed soliton solutions are studied in a typical set of (2+1)-dimensional complex modified Korteweg—de Vries (cmKdV)
equations. Through constructing the determinant form of the n-fold Darboux transformation for these (2+1)-dimensional
cmKdV equations, we obtain general order-n deformed soliton solutions using zero seeds. With no loss of generality, we
focus on order-1 and order-2 deformed solitons. Three types of order-1 deformed solitons, namely, the polynomial type,
the trigonometric type, and the hyperbolic type, are derived. Meanwhile, their dynamical behaviors, including amplitude,
velocity, direction, periodicity, and symmetry, are also investigated in detail. In particular, the formulas of \qm\ and
trajectories are provided analytically, which are involved by an arbitrary smooth function f(y + 4A*t). For order-2 cases,
we obtain the general analytical expressions of deformed solitons. Two typical solitons, possessing different properties in

temporal symmetry, are discussed.
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1. Introduction

Integrable systems, constructing and studying nonlinear
partial differential equations (NPDEs) describing
natural phenomena, have significant influence on both
mathematical and physical fields. In recent years,
nonlinear science has been highly developed and widely
applied in many areas such as hydrodynamics, plasma
physics, marine science, and optical fiber communication.
The earliest research on integrable systems can be
traced back to the Scottish scientist John Scott Russell,
who observed solitary waves in 1834 (Russell, 1844).
After six decades, Korteweg and de Vries developed a
mathematical model, namely, the Korteweg—de Vries
(KdV) equation, to describe the aforementioned water
wave, which helped to prove the existence of solitary
waves (Korteweg and de-Vries, 1895). In the mid-1960s,
Zabusky and Kruskal discovered the remarkably stable
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particle-like behavior of solitary waves (Zabusky and
Kruskal, 1965). According to their work, solitary waves
described by the KdV equation can pass through each
other keeping their speed and shape unchanged. As
a result, the name “soliton” is defined. In the wake
of these discoveries, solitary wave theory boosted the
development of many areas of science and technology.
After one hundred years, integrable systems developed
deeply and soliton theory was widely applied in many
areas (Ablowitz et al., 1991). Up to now, soliton
solutions have been found in hundreds of NPDEs, some
of which have been discovered in experiments (Ablowitz
et al., 1991; Mollenauer et al., 1980).

Through the Miura transformation, the KdV equation
can lead to the famous modified Korteweg—de Vries
(mKdV) equation, which is expressed as

@ + 66°qx + quaz = 0. (1)

It is applied well in dynamical systems, fluid mechanics,


mailto:wyulei@ustc.edu.cn

amcs@

plasma physics and other physical fields (Komatsu and
Sasa, 1995; Lonngren, 1998; Khater et al., 1998). The
mKdV equation has been studied by the inverse scattering
transformation (Wadati, 1972; 2008; Wadati and Ohkuma,
1982; E-Tantawy and Moslem, 2014), the Hirota bilinear
method (Hirota, 1972), and the Darboux transformation
(Wu et al., 2008; Xu et al., 2011; Xing et al., 2017a;
2017b). The Darboux transformation (DT), which can
construct new solutions from a trivial seed, has been
studied deeply to find new analytical solutions for many
NPDEs (Zhang et al., 2015; 2017).

After being generalized to the complex field,
the mKdV (@) forms the famous complex modified
Korteweg—de Vries (cmKdV) equation, namely,

qt + Qrax + 05|Q|2(Iz =0. (2)

This equation has been applied widely, e.g., in the
molecular chain model, the generalized elastic solid,
and so on (Gorbacheva and Ostrovsky, 1983; Erbay and
Suhubi, 1989; Erbay, 1998; Zha and Li, 2008; He et al.,
2014; Yan and Zheng, 2017). Especially, the cmKdV
equation shows its ability in construction of magnetic
confined fusion devices. Nonlinear interactions between
low-hybrid waves and plasmas can be described well by
using the cmKdV equation (Karney et al., 1979).

The development history of KdV systems implies
that mathematical generalization of nonlinear equations
can provide powerful theoretical support for physical and
experimental discoveries. Among all the generalization
ways, ascending dimensions of integrable systems is an
elegant one. Through extra variables, spatial dimensions
of nonlinear equations can be added, but the basic
properties of the original equations remain, which is
vital for analysis. In the cmKdV case, to study their
usage in applied magnetism and nanophysics, it has
been generalized to (2+1)-dimensions (Myrzakulov et al.,
2015). One typical form of the (2+1)-dimensional cmKdV
equation is

q + qzay + (qw)z + iq’U = 07
vz + 2i(qeyq" — q4,) = 0, 3)
w, —2(|g[?)y = 0.

The corresponding Lax pair is

U, = AV, U, =4)\?¥, + BY, (4)
with
A=\ + Ay, B=\B;+ B,
RS R

E Yuan et al.
_ - % ey — Wq
Bo [ Tyy + WP 5 ] ’
| 0 ¢ | tw o 2igy
AO_[T 0}’ Bl_[%ry —qw |’
where r = ¢*, A € C, and “*” is the conjugation

operator, while v and w are real functions that denote
the scalar potential fields interacting with the spin field
(Myrzakulov et al., 2015). The usage of v and w can
also simplify the calculations of the (2+1)-dimensional
cmKdV equation. Further, ¥ is the eigenfunction of
the spectral problem (@) corresponding to the eigenvalue
A. Order-1 and order-2 regular solitons of this equation
have been deduced by using the two-fold Darboux
transformation (Yesmakhanova et al., 2017). In this paper,
however, we step forward and focus on deformed soliton
solutions.

In contrast to regular solitons traveling with
constant speed and shape, deformed solitons show
quite sophisticated behaviors, which possess temporal
changeable speed and might transform their shapes during
evolution. For NPDEs with variable coefficients, fruitful
deformed solitons have been discovered. Dai et al. (2010)
or Sun and Yu (2011) construct shape-changing soliton
solutions with variable speed, and trigonometric type
solitons have also been found in Li et al. (2007), Pal
et al. (2017) or Osman and Wazwaz (2018). Meanwhile,
for NPDEs with constant coefficients, many works have
been published on the topic of deformed solitons. In a
(1+1)-dimensional Hirota equation, the effects of soliton
interactions on the formation of deformed phenomena
are discussed (see He et al., 2013). Porsezian et al.
(2006), Kundu (2008), Tao and Porsezian (2013), Li et al.
(2013) and Liu et al. (2015) construct deformed soliton
solutions. For the (2+1)-dimensional equation, Biondini
(2007), Kodama et al. (2009) or Kao and Kodama (2012)
give the deformed solitons of KPI and KPII equations,
while Zhang and Xue (2009) construct a parabolic soliton
of a (2+1)-dimensional NLS equation. In this paper,
considering the attention paid to deformed solitons in
different types of NPDEs, we will look for deformed
soliton solutions with different orders for Eqn. (3). The
fundamental method we use is the N-fold Darboux
transformation. Dynamical behaviors of order-1 and
order-2 deformed solitons will be analyzed in detail.

This paper is organized as follows. In Section 2,
we give the determinant form of the n-fold Darboux
transformation (DT) and the order-n soliton solutions of
the (2+1)-D cmKdV equation (@). In Section 3, we study
in detail three types of order-1 deformed soliton solutions:
the polynomial type soliton, trigonometric type soliton,
and hyperbolic type soliton. Their formulas, trajectories,
and figures are provided. In Section 4, we study order-2
deformed solitons and analyze their dynamical behaviors.
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It is worth noting that we can obtain mixed-type deformed
solitons in high-order cases. In Section 5, we conclude
this paper.

2. Darboux transformation and order-n
solutions

The Darboux transformation is a gauge transformation
which can keep the form of the spectral problem
unchanged. The main assignment in this section is
to present the determinant representation of the n-fold
transformation and n-order solutions for the (2+1)-D
cmKdV equation. First, we need to find a 2 X 2 matrix
T, so that the spectral problem (@) is covariant, and then
obtain a new solution (¢, wl” v["l) expressed by the
elements of T, and the seed solution (g,w,v). Next,
we need to find the expressions of the elements of T},
in terms of the eigenfunctions of the spectral problem
corresponding to the seed solution (g, w, v).

Then we need to obtain the determinant
representation of the n-fold DT T}, and new solutions
(¢, wl™ vl"). The 1-fold and 2-fold Darboux
transformations of the (2+1)-D cmKdV equation () were
obtained by Yesmakhanova et al. (2017). In this paper,
we suppose the Darboux matrix 7, is in the form

Tn=Do+ADy +---+A""'D, 1 +A\"I, (5)

where T, and D;(j = 0,...,n — 1) are 2 x 2 matrices
and [ is the identity matrix. First, we introduce n
eigenfunctions ¥ as

. — [ Vi1 (Aj, 2,9, 1)
! Via(Nj, z,y,t)

From the algebraic equation

}, j=1,...,n.

= T (0 AL Asy Aoy, T3 =0 (6)
we can obtain the determinant representation of 7,.

Theorem 1. The n-fold Darboux transformation of the
(2+1)-dimensional cmKdV equation () is

Tn = Tn<A;)\17A27---7An)

_ 1 (E)ll (E)m O
Waon | (Th)ar (Tn)2a |’
where we have as in (8)—(12).
Comparing (B)) and (), we get

(D)1
Dy_1)n = oot 13
(Dn-1)11 Wor (13)

(Du-1)12
Dyy)ig = 212 14
(Dn—1)12 Wor (14)

—~—

D,,_

(Dp—1)21 = % (15)
D,

(Dy_2)11 = % (16)

where the numerators are given by (17)—(20). Next, we
consider the transformed new solutions (¢}, w™), v["])
of the (2+1)-dimensional cmKdV equation. = Under
the covariant requirement of the spectral problem, (@)
becomes

gl = Al = (A + Alhywlnl,

ul = 42l 4 gl gl 1)

— 4220l 1 B 4 BIywl,
Then we get

(T)e = AT, — T, A,

(22)
(Ty): = 4N\X(T3,), + BT, — T, B.

Substituting 7T}, given by Eqn. (@) into Eqns. @2)
and taking account of (I3)—(16), we get the new n-fold
solutions as follows:

—~

Do)
[n] _ 2( n—1)12
q q+2 Wor, ,
(n] _ 4 (Dp-1)11
w w —+ 41 <7W2n R
. (Du—t)i2 . (Du_v)z
'U[ ]’U4< W2n qyi W2n Qy
—_— —_— 23
8 (Dn—1)11 { (Dn—1)11 23)
W2n W2n
y

+ (Dn-1)12\ (Dn-1)21
W2n W2n
y
| (Dn—2)11
+8z< W .
y

After choosing the seed solutions ¢ = w = v = 0, @)
becomes

U, =AJV, U, =4\20,. (24)

Then we obtain the basic eigenfunction

U = (25)

AT —f(y+4A"1))

e—idztf(y+4A1)) ]

where f(y + 4A%t) is a smooth arbitrary function.
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Y11 P12 A1 A1tP12 >\7f—11/)11 A?_liﬁu
o1 a2 A2tba1 A21Pao DN D 10}
Wap = : : : : . . , ()
Yon1 Yon2 AenWPon1  A2nW2n2 Agn_liﬁzn,l )\7217:11/)271,2
1 0 A 0 o A1 0 A"
i1 Y2 A1 A2 Nl NPT e ATY11
(T =| Yor V2 Ao A2th22 AT o AT e ABYoy 7 9)
Yon1 Yon2 AenWon1  A2nW2n2 Ag;11/)2n,1 )\grfliﬁzna A on,1
0 1 0 A . 0 An—l 0
i Y A1 Ath12 D PR VS PD 2T
(ﬁ)u =| ¥z Y2 A2t21 A2th2a Ay har AT g Agthar | (10)
Yon,1 Yan2 Aenton1  A2nW2n2 Mo hon 1 Ao ibane NS o
1 0 A 0 . Ant 0 0
Y1 P2 A1911 AMY12 N7t NNy AT
(TNn)zl —| Y2 Y2 A2p21 A2th22 D R Vs % Agthaa | an
Yon,1 Yon2 AenWon1  A2nWan2 Ag;11/)2n,1 )\grfliﬁzna A% o2
0 1 0 A .. 0 A1 A"
i1 Y2 A1 A2 M AT g AT Y12
(ﬁ)ﬂ =| Y2 Y2 A2p21 Agthaz Ay gy Ay o Aythay | (12)
Yon,1 Yan2 Aenton1  A2nl2n2 Mo hon 1 Agn Mbone NS tban o

The order-n deformed solitons can be obtained by Then we choose three typical illustrative examples. Since

(23) with the following eigenfunction: we have
wlt =2 [ (1gP), d.
Yo—1,1 = exp(—iAap—12 + for—1),
Yor—1.2 = exp(idok_12 — fop-1), 26) o = _2i/(qu1q[1]* Mgl de,

or,1 = — exp(—idarx + for),
or,2 = exp(idor® — for),

we just analyze |¢[*| minutely in this section.

where \ox = A5, 1, for = fip 1 = f(y+4)‘2k— t), k= 3.1. Polynomial type. If we choose f1 = pi(y +
1 n. e 2 et ANZ)™ ] fy = pa(y+4A3t)™, the solutions given by (23)
and [27) are defined by (28) , where i1, j12 are complex
constants satisfying uq = p3, 01 is a real constant and m

geeey

3. Order-1 deformed soliton solutions

In this section, we focus on the order-1 deformed solitons
of @@). Setting k = 1 in (26), we get

Y11 = exp(—idix + f1 + 1),
P12 = exp(idix — f1 — d1),
P21 = —exp(—iex — fo — d1),
a2 = exp(idoz + fo + 01).

27)

is a positive integer greater than 1. It is worth noting that,
if m < 0, the eigenfunction is singular at ¢t = 0, y = 0; if
m = 1, the solution is a soliton given by Yesmakhanova
et al. (2017). For convenience, we write

A=yt (42 — 482, B=8ampit, (29)
and
AL = aq + P,
1 =m + &t

A2 = o — B,

30
po =11 — &1t 0)
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P11 P2 A1¢11 A2 N 72, AT e APy
n— n—1 n
— o1 a2 A21ha1 A21p2 A 2ahg AD T Moy ARthay
(Dp—1)11 = : : : : . . . (17)
Yon,1 Yon2 AenWon1  A2nW2n2 Ag;21/)2n,2 )\ggliﬁzna Mg on,1
P11 P12 A1 A1tP12 AL 21 P ATY11
— o1 a2 A2thay A2tpag )\711_21/)22 A§_1¢21 A5thay
(Dn-1)12 =~ : : : : : : : (18)
Yon,1 Yon2 AenWPon1  A2nW2n2 )\?721/)271,2 )\7217:11/)271,1 ASan,1
Y11 P12 A1 A1tP12 PP A e AT12
n—2 n—1 n
— o1 a2 A21ba1 A21Pao D Y (Y D VR ) Aythag
(Dp—1)21 = : : : : . ) : (19)
Yon,1 Yon2 AenWon1  A2n2n2 )\371_21/)271,2 )\grfliﬁzna Agn o2
(Dpn—2)11
i1 Y2 AM11 A112 D P N PR Vet VPR Vol V) ATY11
n—3 n—2 n—1 n—1 n
o1 a2 A2tbar A21)22 Ay %han NS T o AT har NG T ARtbay
Vo1 Yan2 AenWon1i  A2nton2 /\S,Zngn,z )\g;2¢2n,2 )\7217:11/)271,1 )\ggliﬁzna Agon,1
(20)
n s — o) exp(—i(A + Ao)a + pu (y + 4NTH)™ — pa(y + 4A3)™)
cosh(—i(A1 — A2)x + w1 (y + 4N28)™ + pa(y + 4N38)™ + 261)
Sl = 2miA = Ao)(pa(y + 4ATH™ T o pa(y + 4M5H)™ ) 28)
cosh?(—i( A1 — Ao)x + pu1 (y + 4N20)™ + pa(y + 4N3H)™ +26,)
’U[l] _ 4m2(/\1 — /\2)(/\1/141(y + 4)\%t)m_1 + /\Quz(y + 4/\%t)m_1)
cosh?(—i(A1 — o)z 4 pa (y + AN2)™ 4 po(y + 4N3)™ 4 26,)
Here oy, 51, 11, &1 are real constants. Then |q[1]| is in the = _5_1 _ i(my2 + (804%771 161
form of (31). B B
By solving the equation |¢!!!|, = 0, we can obtain — 862 )yt + (16m1 (o — 60357 + BY) 34

the trajectory of |¢!!)| as follows:

B 75_1 R . N
) 2ﬁ1((m+z€1)(“4+&) (32)

+ (m — &) (A = Bi)™).

The expressions (3I) and (32) are real functions and
B2) is a polynomial function. Therefore, we call this
deformed soliton solution a polynomial type soliton
solution. We can obtain denumerable kinds of deformed
solitons theoretically. Substituting (32) into (1), we
obtain that the amplitude is 237 and is independent of m.
Next, we give two specific cases for analysis.

Case m = 2. We have the expression (33), and the
trajectory is

— 64&100 A1 (0] — B))17).

Then we find out that the trajectory is a parabola at any
moment and its shape changes over time. Therefore, we
name this soliton a parabolic one. Figure [1 shows the
3D map, density figure, and trajectories. The velocity in
the (z, y)-direction is (12802 B1mt, —4(a? — 3%)). Itis
easy to check that |¢!"(z,,t)| = |¢!Y (z, —y, —t)|. This
means that the parabolic soliton has the same shape at
times ¢ and —t, but the position is symmetric with respect
to the plane x = 0. The symmetry is shown in Fig.[lc).

Case m = 3. We have that |¢!Y)| is given by (35). The
trajectory of |g!!| is

1
r=—— — —(my> + (12037 — 24016:&
B B
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M| = : 261 : : . 31
cosh(2Fro + (1 + 1€1)(A + Bi)™ + (m — i€0) (A — Biy™ + 207)
261
1 —

a7l cosh(261z + 21 (A? — B2) — 46 AB + 201) (33)
g™ = e : (35)

cosh(2f1z + 2m A3 + 26,83 — 61 AB2 — 661 A28 + 251)

— 12687m)y°t + (48m1 (] — 60357 + B1)
— 192a1 81&1(0F — B7))yt? + (64m(af

— 15047 + 150781 — B7) — 12861 (303 1
— 100383 + 301 87))t3).

Then we find out that the trajectory is a cubic function
over time. That is why we name this kind of deformed
soliton a cubic one. Figure 2l shows the 3D map, density
figure, and trajectories. The velocity in (x, y)-direction
s (—15360332&,t%, —4(af — B7)). It is easy to check
that |¢!"(z,y,t)| = |¢M (=2 — 26,/61, —y, —t)|. This
means the parabolic soliton has the same shape on the time
t and —t, but the position is symmetric with respect to
x = —01/P1, y = 0. The symmetry is shown in Fig.[2lc).
If we choose

(36)

c;i(y +4X3t)7),

N
fr=m) )
j=2
N .
F2=pz ) ci(y +4A50)7)
j=2
(N is a positive integer), we can obtain the eigenfunctions
as follows:

N
11 = exp( z/\1x+ulzcjy+4)\2 ) +61),

N
P12 = exp(ihz — 1ch (y +4ATt) + 01),
=

N
o1 = —exp(—idox — 2 Z cj(y + 4\3t)7 + 1),
=2
N .
tap = exp(idox + p2 3 cj(y + 4M3t) + 61),
=2

(37)

where ¢; are integers and at least one of them is nonzero.
Substituting (37) into 23), we can rewrite ¢!l as (38),
from which (39) follows. Solving the equation|ql1][y2z =
0, we get (40). After simplification, we get the trajectory
(41).

3.2 Trigonometric type. If we choose f; =
prsin™(y + 4X3t), fo = posin™(y + 4A3t), the
expressions of the solutions given by @23) and 27) are
given by (42), where py = p3, 41 is a real constant and
m is a positive integer. We called this kind of solution
a trigonometric one. It is obvious that ¢!(z,y,t) =
qM(z,y + 2m,t). So ¢! of (42) has a period 27 in
the y-direction. Solving |¢!!)|, = 0, we can obtain the
trajectory

1

SV i(p1 sin™ (y + 42%t)

T =—
+ posin™ (y + 4X3t) +261)|.  (43)

Substituting @3) into |¢!)|, we get the amplitude 24;.
Then we analyze two examples in detail. Without loss
of generality, we assume 57 > 0.

Case m = 1. We have

lg!| =28,/ cosh(281x + 2n; sin A cosh B

. (44)
— 2&1 cos Asinh B + 201),
and the trajectory is
oo sin A cosh B — &7 cos Asinh B + 1 4s)

f1

Figure [3 shows the 3D map and trajectories. It
is interesting to see that the trajectory (43) is a carrier
wave on the (x, y)-plane and its amplitude is minimum
at t = 0, which grows with the increase in |¢|. The
velocity of |qlY(x,y,t)| in the (x, y)-direction is
(8a1&1 cosh(8ay fit), —4(a? — B7)). It is easy to see
that |¢!"(z,y,t)| = |l (=2 — 26,/B1, —y, —t)|. This
means the soliton has the same shape on the time ¢
and —t, but the position is symmetric with respect to
x = —01/P1, y = 0. The symmetries are also shown in

Fig.Blc).

Case m = 3. We have

201
COSh(2ﬂ1$ + 27]10 — 2§1D + 251)’

"] = (46)
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(a)

Fig. 1. |¢/Y| @3 with 6, = 0, ay = 2/3, B1 = 1/4, m

(b)

(c)

—1/5, & = 1/3: 3D figure at ¢ = 0 (a), density figure at ¢ = 0 and the

dashed curve in the center represents trajectories (34) (b); the trajectories (34)) (c).

(a)

Fig. 2. |¢Y| B3) with 6, = 0, ay = 2/3, B1 = 1/4, m

(b)

150

100

—1/5, & = 1/3: 3D figure at ¢ = 0 (a), density figure at ¢ = 0 and the

dashed curve in the center represents the trajectories (36) (b), trajectories (36) (c).

and the trajectory is

_ mC-&D+4

= 47
B “7)

Here

C = sin® A cosh® B — 3sin A cos? Asinh? B cosh B,
D = sinh® A cos® B — 3sin? A cos Asinh B cosh? B.

Figure H] shows the 3D map and trajectories. It
is different from (43), which is a carrier wave. The
trajectory (47) is a periodic modulating wave on the
(z, y)-plane, and each period in the z-direction has three
different peaks. The velocity in the (z, y)-direction is
(—24a:1€; cosh(8ay Bit) sinh? (8 Bit), —4(a2 — B3)).
It is easy to check that |¢!Y(z,y,t)| = |¢!Y(—2 —
261/P1,—y, —t)|. This means that the soliton has the
same shape at ¢ and —t, but the position is symmetric with
respect to z = —d1/1, y = 0. The symmetries are also
shown in Fig. dl(c).

3.3. Hyperbolic type. If we choose f; =
pisinh™(y + 4X2t), fo = posinh™(y + 4M3t), the
expressions of the solution given by @23) and @7) are
given by (48), where y1; = p3, 07 is a real constant and
m is a positive integer. We called this kind of solution
a hyperbolic one. Through solving |¢"|, = 0, we can

obtain the trajectory

x = —i(py sinh™ (y + 4)\3¢)

oM 2 (49)
+ posinh™ (y + 4A56) + 261) /A1 — A2

Substituting into |¢l!!|, we get the amplitude
2/31. Then we analyze two examples in detail.

Case m = 1. We have

|q[1]| :251/ COSh(261$ + 2n; sinh A cos B

. (50)
— 2&; cosh Asin B + 241),
and the trajectory is
o m sinh A cos B — &7 cosh Asin B + 1 51)

f1

Figure shows the 3D map and trajectories at
different times. The velocity in the (z, y)-direction
is (8a1&y cos(8ayfit), —4(af — B%2)). It is easy to
get [g(z,y,t)| = |¢M(—x — 26,/B1, —y, —t)|. This
means that the soliton has the same shape at times ¢
and —t, but the position is symmetric with respect to
x = —01/P1, y = 0. The symmetry is shown in Fig.[B(c).

Case m = 2. We have (52) and the trajectory is given by
(53).
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(A1 = A2) exp(—i(A1 + A2)z + 1 3 ¢y +4A) — o 3 ¢j(y +4A3t)7)
gt = =2 =2 . (38)
N
cosh(i(A — A2)x — p1 D ¢j(y +4NFt)T — po > ¢y + 4X\3t)9)
i=2

=

261
cosh(2612 + (m + &14) JXV: c;i(A+ Bi) + (m — &) f} ¢i(A—Bi)T) + 26

Jj=2 Jj=2

lgM| = (39)

M=

N
(m + &) > ¢i(A+ Bi) 4 (1 — &14) ¢ (A— Bi)’
xr = — =2 2 — _1 (40)
2p B

<
<.
I|

I
2

(1)kC?kA2kBj2k> —a (Cj
j k

7 =0 51

8 B

2k+1 g2k+11Rj—2k—1
21 ki )

L=

(41)

n_ (M — Ag) exp(—i(A1 + Ag)a + pa sin™ (y + AN2t) — pg sin™ (y + 4)\3t))
cosh(—i(A1 — A2)x + py sin™ (y + 4A2t) + po sin™ (y + 4\3t) + 261)
Wl — 2 (A1 — A2) (1 sin™ L (y + 4X2t) cos(y + 4N3t) + po sin™(y + 4A3t) cos(y + 4M\3t))
cosh?(—i( A1 — Ag)x + gy sin™ (y 4 4X\3t) + po sin™ (y + 4\3t) 4 261)
o1l — g QL= A2)Aapn sinh™ ! (y + 4\3t) cos(y 4 4A3t) + Aopo sinh™* (y 4 4X3t) cos(y + 4M\3t)) '
cosh? (—i( Ay — Ag)x + pug sin™ (y 4 4X\2t) + pa sin™ (y + 4\3t) + 261)

) (42)

A = Ci(A = )\2.) exp(—i(A1 + /\2){10 + pp sinh™ (y + 4)\%t.) — pg sinh™ (y + 4)3t))
cosh(—i(A1 — A2)x + py sinh™ (y + 4X3t) + po sinh™ (y + 4A3t) + 26;)
(A1 — Xo) (g1 sinh™ (y + 4X3t) cosh(y + 4A3t) + po sinh™ ! (y 4 42\3t) cosh(y + 4X3t))
cosh?(—i(A; — Ag)x + puy sinh™ (y + 4A3t) + po sinh™ (y 4 42\3t) + 26,)
1 g Q1 = A2)2 (A1 sinh™ ™ (y + 402t) cosh(y + 4A3t) + Aapg sinh™ (i + 4X\3t) cosh(y + 4A\3t)) '
cosh?(—i(A; — Ag)x + puy sinh™ (y + 4A3t) + pg sinh™ (y 4 4A\3t) + 26,)

wl = —2mi

; (48)

) = 261

) 52
cosh(261x + 2m; (sinh? A cos? B — cosh? Asin? B) — 4¢; sinh A cosh A sin B cos B + 26;) 62

lq

M (Sinh2 A cos? B — cosh? Asin? B) — 2&; sinh A cosh Asin B cos B + 01
B1 '

xr =

(53)
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Figure 16| shows the 3D map and trajectories at
different times. The velocity in the (z, y)-direction is
(81 &y sin(16a B1t), —4(a? — (53)). It is easy to check
that |¢!! (2, y,t)| = | (=2 — 26,/B1, —y, —t)|. This
means the soliton has the same shape at time ¢ and
—t, but the position is symmetric with respect to x =
—81/81, y = 0. The symmetry is shown in Fig.[6l(c).

We can also take f; and f2 as any other smooth
functions, and the calculation method is the same as
mentioned above. Hence we do not list them all.

Theorem 2. If we choose fi1 = f1(y + 4A3t), fa = ff

as smooth functions, the order-1 solution is

o (M — Ao)exp(—i(A + A2) + f1 — f2)
¢ = cosh(—i(A1 — Xo)x + f1 + fo +201)
2i(M — Xo)(f1 + fa)
cosh2(—i()\1 — X))z + fi1+ fa+261)

4i(A = X)L Sy + Aafa)
cosh2(fi()\1 —X)z+ fr+ fa+ 251)7

wlt = — , (54)

o1 —

where f, = Of1/0y, fy = 8f2/dy. The trajectory of
lq™ | is
o fl + f2 + 251
i(A1 — A\2)
The periodicity and symmetry of the function are deter-
mined by fj,.

(55)

4. Order-2 deformed soliton solutions

In this section, we discuss order-2 deformed solitons. If
we choose f1 = fi(y + 4A3t), f3 = f3(y + 4A3t) and
fa= fi, fa = f5, we can obtain the eigenfunction as

11 = exp(—iix + f1 + 01),
Y12 = exp(iMiz — f1 — 01),
o1 = —exp(—idox — fo — 01),
a2 = exp(idox + fo + 01),
Y31 = exp(—idsz + f3 + 02),
Y32 = exp(idsz — f3 — 02),
Y41 = —exp(—idgx — fi — 02),
g = exp(idgx + f4 + 92),

(56)

where . is a real constant. Using the same method as in
the previous section, we can obtain many kinds of order-2
deformed solitons from ([23). Because the formulas of
vl? and w[ are complicated, we just give a simplified
formula of ¢!?! as (44). Then we have (46).

Figure [7] shows four examples of |¢l?!| which
involved different cases of f;: (a) shows an order-2
parabola soliton where f, = ui(y + 4X2t)%; (b) shows
an order-2 trigonometric type solution where f;, =
prsin(y + 4X2t); (c) shows a mixed type solution

consisting of a trigonometric type soliton and a normal
soliton where f1 = pi(y + 4A{t), f3 = pssin(y +
4\3t); (d) shows a mixed type consisting of a parabola
soliton and a hyperbolic type soliton where f1 = p;(y +
4X\2t)?) f3 = pssinh(y + 4A3t). Let us now choose two
examples to show the time evolution.

Case 1: Choosing fr, = ur(y + 4\it)? in (36), we have

A1 = Brz +my® + (8m(ai — A7) — 16a1p1&1)yt
+ (16m (o — 6aip} + B7)
— 646101 B1 (o — BY)E + 61,

Ay = Bz + m2y® + (8n2(a — B3) — 16028282yt
+ (16m2(ay — 60385 + )
— 64&00 82 (0 — B3))t% + 02,

Iy = oz + &y° + (86 (af — B7) + 16a1 Bim )yt
+ (16&1 (o] — 60757 + B7)
+ 64101 81 (a2 — B2 + 61,

Ly = oz + Loy + (882(aj — B3) + 16aaBame)yt
+ (16&2(a3 — 635 + 53)

+ 64772a2ﬁ2(a§ — ﬁ%))t2 + (52.
(60)

It is obvious that |¢!? (z,,t)| = | (z, —y, —1)].
This means that the evolution of |¢[?l| over time also
has the same symmetry with (33). Figure [8] shows the
symmetry and evolution over time.

Case 2. Choosing f1 = ui(y + 4 ), f3 = pgsin(y +
4)3t) in (36), we have

A1 = Brr +m(y +4(af — B7)t) — 8€ranfat + b,

[y = —awr +&(y +4(af — D) + 8mai fut,

Ay = Box — &g cos(y + 4(a3 — B3)t) sinh(8aa Bat)
+ nesin(y + 4(a — B3)t) cosh(8azfat) + da,

[y = —agr + &y sin(y + 4(ak — B3)t) cosh(8agfat)

+ m2 cos(y + 4(a3 — B3)t) sinh (8 Bat).
(61)

We can get |¢!?(z,y,t)| # |¢"? (x, —y, —t)|. This means
that the evolution of |¢[?!| over time has no symmetry.
Figure [9] shows the interaction between a soliton and a
trigonometric type soliton.

5. Summary and conclusions

In this paper, we studied the (2+1)-dimensional complex
modified Korteweg—de Vries equation. First, we gave the
determinant form of the n-fold Darboux transformation.
Through the seed solution ¢ = w = v = 0 and taking

@amcs
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(a)

(b)

Fig. 3. |¢!Y| @) with6; = 0, 6, =0, ou = 2/3, 1 = 1/3, m = —1/3, &1 = 1/2: 3D map at t = 0 (a), trajectories @3) (b).

(a)

Fig. 4. |¢!Y| @8) with 6, =0, an = 2/3, B1 = 1/3, m

f(y + 4X\%t) as a smooth function, we obtained order-n
deformed soliton solutions.

Then we focused on the order-1 deformed soliton
¢!, and discussed three kinds of deformed solitons in
Section 3. Here is the summary of our findings:

o If fi = pui(y + 4X3t)™, the solution |g!)| is
a polynomial one. The amplitude of |¢[Y)] is
231, and the trajectory is a polynomial function
over time on the (x,y)-plane.  Especially, if
m = 2, it is a parabolic soliton with the velocity
(12802 B1mit, —4(a? — %)) on the (z, y)-plane,
while in the case when m = 3, it is a cubic soliton
with the velocity (—1536a337mt%, —4(a3 — 7).

o If fi = pysin™(y + 4A\?t), the solution |¢l)] is a
trigonometric one. The amplitude of |¢[!]| is 23;
and its trajectory is a trigonometric function over
time on the (z,y)-plane. Especially, in the case
when m = 1, the trajectory is a carrier wave and
the velocity is (8a1&; cosh(8ay Bit), —4(a? — %))
on the (z, y)-plane, while in the case m = 3, the

6

(b)

—1/3, & = 1/2: 3D figure at t = 0 (a), trajectories @7) (b).

trajectory is a modulating wave, and the velocity is
(7240&151 COSh(sOélﬂlt) sinh2(8a161t), 74(0&% —
B7))-

o If fi = pi(y + 4\3t)™, the solution |¢lY)] is a
hyperbolic one. The amplitude of |¢[)| is 23; and its
trajectory is a hyperbolic function over time on the
(x,y)-plane. Especially, in the case when m = 1,
the velocity is (8a1&; cos(8ayBit), —4(at — %))
on the (x, y)-plane, while in the case when m = 3,
the velocity is (81 &y sin(16a4 81t), —4(a? — 7).

We gave the formulas of the order-1 deformed soliton
about arbitrary fi(y + 4A\}t), and the trajectory is z =
(fi+ fa+261)/i(M — A2).

Besides, we gave the formulas and figures of the
order-2 deformed soliton, and showed the evolutions of
two samples over time in Section 4. It is interesting to
study the interaction between two deformed solitons. We
are going to do it in the near future.
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(a)

Fig. 5. |¢!"| B0) with 6, =0, an =2/3, f1 = 1/3, m = —1/3, &

(a)

Fig. 6. |¢!Y'| B2) with 6, =0, an =2/3, f1 = 1/3, m
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