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This paper introduces the concept of filters in a rough bi-Heyting algebra. The rough bi-Heyting algebra defined through
the rough semiring offers interesting properties. Filters on this rough bi-Heyting algebra are to be described in terms
of the R-upset. Then a one-to-one correspondence between the filters, the principle ideal and R-upsets is established.
Various filters are characterized on this rough bi-Heyting algebra. For each filter, a rough identity-summand graph is
constructed. This rough identity-summand graph is proved to be a complete bipartite graph in certain cases involving pairs
of elements. When more than two elements are involved, a rough identity-summand graph exists and generates multiple
complete bipartite graphs. The number of distinct complete bipartite graphs generated from this graph is defined to be an
RBP number. The union of these distinct complete bipartite graphs forms a subgraph of the rough identity-summand graph.
Additionally, this study demonstrates how two transition sequences obtained from the distinct complete bipartite graphs of
the rough identity-summand graph can be utilized to generate Gray codes, making a substantial contribution.
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1. Introduction

Rough set theory introduced by Pawlak (1982) has been
successfully applied in many fields. The idea behind
this theory is to approximate the information that is not
accurately described. The most important rough set
applications received extensive attention in various fields.
In rough set theory, for an approximation space I =
(U,R), lower and upper approximations are defined for
the subsets of U . This is achieved by introducing a
partition on U , forming the equivalence classes by an
arbitrary equivalence relation R. To expand the scope
of rough set theory in various applications, defining the
equivalence relation on U is extended to an arbitrary
equivalence relation. This is a more general and broader
way of considering the relationship between the objects
in U . This leads to relaxing the constraints over the
elements in the universe U imposed by R. In this
paper, the arbitrary equivalence relation R defined on U
induces the equivalence classes. Then for every X ⊆
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U , the rough set is defined through its lower and upper
approximations. The set of rough sets formed is denoted
by T and was proved to be a rough lattice by Praba and
Mohan (2013). Then the semiring structure on T was
described under the operations Praba Δ and Praba ∇ by
Praba et al. (2015) and later its characterization was given
by Manimaran et al. (2017). The ideals of rough semiring
(T,Δ,∇) are defined by Chandrasekaran et al. (2017),
and then the principal ideals concerning Praba Δ and
Praba ∇ are extended by Praba et al. (2025). This rough
semiring (T,Δ,∇) was taken as an underlying structure
in defining rough bi-Heyting algebra (T,Δ,∇,∗ ,+→
,←, RS(∅), RS(U)) in (Praba and Freeda, 2022). The
rough bi-Heyting algebra in (Praba and Freeda, 2022) is
defined by characterizing each weaker complement on
a rough semiring (T,Δ,∇). The construction of the
rough bi-Heyting algebra from the pseudocomplement
and relative pseudocomplement along with their duals
has many associations with lattices and Boolean algebras
(Halmos and Givant, 2009).

On the other hand, the graph theoretical concepts
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of West (2001) and Bondy and Murthy (1976) widened
their research area in algebraic structures such as rings,
ideals, and lattices. The association of graphs with
rings and the generalization of their structures have
become an increased research topic in various disciplines.
The application of semirings which are a powerful tool
in studying various languages in theoretical computer
science, further extended to graph theoretical background.
Combining graph and algebraic structures was initiated
on rings by defining a zero-divisor graph. A zero-divisor
graph involves both graph and ring properties.

Various graph structures that are associated with
the algebraic structures include identity-summand graphs
as well. An identity-summand graph is a graph
whose vertices are non-identity elements and two distinct
vertices are adjacent if their sum is 1 (Atani et al.,
2015b). The study of co-ideals of a commutative semiring
(R,+, ·) (Atani et al., 2015b; Atani et al., 2014; Atani
et al., 2015a) verifies the co-ideal properties using ∗ and
+. Then the primary properties and basic structures
of the identity-summand graph denoted by Γ(R) are
discussed by Atani et al. (2014). Later the results on
identity-summand graph ΓI(R) being a bipartite graph
and their planar properties are provided by Atani et al.
(2015b). Then, the total graph for the co-ideals of a
commutative semiring were established by Atani et al.
(2015a). The filter (co-ideals) based identity-summand
graph of a lattice L (Ebrahimi Atani et al., 2023;
Atani et al., 2018) verifies the filter and graph-theoretic
properties for ∨ and ∧. In (Atani et al., 2018), the
properties of filter F and the basic structure of ΓF (L) are
given. Then the verification of planarity of ΓF (L) for any
filter F of a lattice is provided. Finally, Ebrahimi Atani
et al. (2023), characterized the planarity of ΓF (L).

Gray codes are a unique type of binary coding
sequence sometimes referred to as reflected binary
codes in which there is a single bit difference between
neighboring values. It is named after Frank Gray, who
got a patent for the binary reflected code in 1953. The
characteristic of the Gray code sequence which has only
one bit of difference between neighboring numbers is
very important in applications where it is necessary to
minimize errors due to multiple-bit changes. A list of
binary words, each of length n, with only one-bit position
differentiating subsequent words forms the Gray code of
length n. The Gray code is said to be cyclic if both
the initial and final words indicate this characteristic;
otherwise, it is not cyclic. The transition sequence is made
up of the transition numbers, which are the points at which
subsequent code words differ. Vertices labeled from 1 to
n form the induced graph produced by the Gray code. In
the transition sequence of the Gray code, two vertices are
connected if and only if their corresponding bit positions
are successive transitions.

The graph structure captures the relationships

between bit places in the Gray code. Suparta (2017)
investigates bipartite graphs induced by Gray codes and
proves that certain kinds of bipartite graphs induced
by Gray codes are complete bipartite graphs. The
construction of an n-bit Gray code that induces the
complete graph Kn is the problem addressed by Wilmer
and Ernst address (2002). They propose a building
technique to generate an n-bit Gray code, G(n), such
that the complete graph Kn is induced by the transition
sequence S(n) of this Gray code. The main finding in
(Suparta and Van Zanten, 2008) is that the complete graph
Kn is induced by the generated Gray code G(n). This
indicates that the edges in the graph g(G(n)) correspond to
the edges in Kn. Also, the transition sequence of a Gray
code is defined as S(n) = S(n− 1), n, S(n− 1), n ≥ 2.

In this paper, the connection between the
above-mentioned concepts will be in the realm of
rough of bi-Heyting algebra. A mathematical structure
of bi-Heyting algebra combines the aspects of both
Heyting algebras and Boolean algebras in nature. The
generalization of a Boolean algebra by two weaker
complements, namely pseudocomplement and dual
pseudocomplement, a gives rise to a bi-Heyting algebra.
Bi-Heyting algebras satisfy both intuitionistic and
classical logical operations except the law of excluded
middle which holds for classical logic and does not hold
for intuitionistic logic. The study by Yao (1998) offers
insight into the many approaches used to investigate and
characterize rough sets in the literature by highlighting the
differences between the two methodologies: constructive,
which is based on binary relations, and algebraic, which
is based on axiomatization. To think about finite growing
sequences over Boolean algebras, SanJuan (2008) offers
an algebraic formalism. This formalism is mainly focused
on generalizations of rough set notions, with a particular
focus on how well they can be applied to representing
document relevance in an information retrieval system.
As a generalization of symmetric Heyting algebras of
order n and an extension of T -rough Heyting algebras,
Gallardo et al. (2023) introduce a new class of algebras
called T -rough symmetric Heyting algebras.

This article presents and investigates filters of rough
bi-Heyting algebras through rough semiring (T,Δ,∇),
adding to the theoretical foundations of rough sets. The
idea is to understand how these filters behave within this
rough bi-Heyting algebras. For any X ⊆ U , the filter
FX(T ) is a subset of T and the R-upset (RS(X)) is
proved to be a filter FX(T ). Therefore, for defining the
filters of a rough bi-Heyting algebra, the binary operations
Praba Δ and Praba ∇ are introduced over FX(T ) to
validate the filter conditions. Then the characterization of
filters is given in terms of the R-upset. The principle ideal
for Δ defined by Chandrasekaran et al. (2017) correlates
with the filter FX(T ).

Various filters such as a proper filter and a prime filter
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are defined, and their characterizations are also provided.
The idea of associating filters with graph structures
provides a way to represent knowledge hierarchies and
relationships in the approximation space. Also, the
graph structures derived from filters are used to represent
and visualize complex relationships among entities in a
knowledge base. Filters play a crucial role in various
algebraic and logical systems. The extensive study
of identity-summand graphs of lattices (Ebrahimi Atani
et al., 2023; Atani et al., 2018) and identity-summand
graphs of commutative semirings (Atani et al., 2015b;
Atani et al., 2014; Atani et al., 2015a) helped to define
G(FX(T )) for each filter of a rough bi-Heyting algebra
(T,Δ,∇,∗ ,+ ,→,←, RS(∅), RS(U)). The existence of
G(FX(T )) for the proper filters and prime filters of T are
verified in this study.

In general, this means the existence of G(FX(T ))
for the filter FX(T ) when X = {z1, z2, . . . , zρ}, where
z1, z2, . . . , zρ are xi (or) Xj for i, j ∈ {1, 2, . . . ,m,m +
1, . . . , n} and 2 ≤ ρ ≤ m,n are extended.

The rough identity-summand graph G(FX(T ))
obtained for any X ⊆ U , generates various complete
bipartite graphs. However, the results on distinct
complete bipartite graphs generated from G(FX(T ))
whose union is the subgraph of G(FX(T )) are discussed
in detail. For any X , the vertex cardinality of
the distinct complete bipartite graph of G(FX(T )) is
considered in finding two transition sequences that
generate Gray codes. The significance of defining the
rough identity-summand graph is highlighted in this paper
by deriving Gray codes of length k. Although filters
are established through various algebraic structures, their
characterization and behavior within the rough bi-Heyting
algebra particularly through the rough semiring (T,Δ,∇)
remain under-explored.

This research intends to deepen the understanding
of the structure filter and its application, which has
the potential to represent complex knowledge hierarchies
that have not been thoroughly examined so far. The
identity-summand graph of lattices (Ebrahimi Atani et al.,
2023; Atani et al., 2018) and the identity-summand graph
of a commutative semiring (Atani et al., 2015b; Atani
et al., 2014; Atani et al., 2015a) for the co-ideals extend
the graph structure from a complete 2-partite graph to a
complete r-partite graph and characterize their planarity.
In contrast, this paper uniquely focuses on generating
complete bipartite graphs from G(FX(T )). Furthermore,
it explores the distinct complete bipartite graphs whose
union forms the subgraph of G(FX(T )), which is a
perspective not addressed in the existing literature.

Various works provide insight into our proposed
method. In (Liu et al., 2021), complete bipartite graphs
analyze the coherence and stability of the networks,
which is discussed under the Laplacian matrix. Liu and
Pan (2016) offer insights into how to balance connectivity

and bipartiteness, which has applications in network
design, electrical networks, and theoretical graph studies.
Also, the paper focuses on graphs with a fixed number
of vertices and vertex bipartiteness. Liu et al. (2024)
derive precise expressions for consensus algorithms and
investigate network properties like the Kirchhoff index.
Applications of Gray codes go beyond particular fields,
making them useful resources for information processing
and optimization. Gray codes can communicate
knowledge by encoding connections between various
concepts (or) entities. They are useful for expressing
relationships between two sets of elements (e.g., genes
and functions, words and meanings) in a complete
bipartite network. Additionally, there is a research gap
on how these network structures generate Gray codes
and their implication in optimization techniques. By
offering a thorough analysis of filters in rough bi-Heyting
algebras, their graph-theoretic representations, and their
potential applications across various domains, this paper
aims to fill these gaps.

Finally, this paper is organized as follows: In
Section 2, some notation and basic concepts required are
reviewed. In Section 3, we define filters of a rough
bi-Heyting algebra and provide their characterization.
Also, various filters of a rough bi-Heyting algebra, for any
X ⊆ U are characterized. In Section 4, we define the
rough identity-summand graph G(FX(T )) for the filters
of a rough bi-Heyting algebra and discuss the nature of
G(FX(T )). The generation of Gray codes through the
complete bipartite graph is discussed in Section 5. In
Section 6, some conclusions and future work are given.

2. Preliminaries
A structure I = (U,R) where U is a nonempty finite
set of objects, called the universe, and R is an arbitrary
equivalence relation on U , is called an approximation
space. A partition induced by the relation R consists of
an equivalence class denoted by [x]R, which is a subset of
U . The lower and upper approximations defined for the
subset X of U are

R−(X) = {x ∈ U | [x]R ⊆ X},
R−(X) = {x ∈ U | [x]R ∩X �= ∅}.

Definition 1. (Pawlak, 1982) If X is an arbitrary subset
of U , then the rough set RS(X) is an ordered pair
(R−(X), R−(X)). The set of rough sets is denoted by
T and defined by T = {RS(X) | X ⊆ U}.
Definition 2. (Praba et al., 2015) For the approximation
space I = (U,R), let U =

⋃n
r=1 Xr be the union of

equivalence classes formed using the relation R and T =
{RS(X)/X ⊆ U} be the set of rough sets. Choose an
element xr, a representative element from an equivalence
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class Xr, whose cardinality is greater than 1. Then the
pivot set B = {xr ∈ Xr | |Xr| > 1}.
Definition 3. (Praba and Freeda, 2022)
A rough bi-Heyting algebra (T,Δ,∇,∗ ,+ ,→,←,
RS(∅), RS(U)) is a rough semiring (T,Δ,∇) with a
rough Heyting algebra and a dual rough Heyting algebra.

Definition 4. (Halmos and Givant, 2009) An atom of
a Boolean algebra is an element that has no nontrivial
proper subelements, when q is an atom if q �= 0 and if
there are only two elements p such that p ≤ q, namely 0
and q.

Definition 5. (West et al., 2001) The null graph is the
graph whose vertex set and edge set are empty.

3. Characterization of filters of a rough
bi-Heyting algebra

This section discusses an approximation space I = (U,R)
and its corresponding rough bi-Heyting algebra (Praba
and Freeda, 2022).

Definition 6. For any RS(X) ∈ T , the rough upset of
RS(X) is a subset of T defined by

R-upset
(RS(X)) = {RS(Y ) ∈ T | RS(X) ≤ RS(Y )}.

Definition 7. For any RS(X) ∈ T , the rough downset of
RS(X) is a subset of T defined by

R-downset
(RS(X)) = {RS(Y ) ∈ T | RS(Y ) ≤ RS(X)}.

Definition 8. For any X ⊆ U , the set S ⊆ T is a filter of
a rough bi-Heyting algebra if

(i) S is closed under∇,

(ii) for RS(Y ) ∈ S and RS(Z) ∈ T , RS(YΔZ) ∈ S.
Theorem 1. R-upset (RS(X)) is a filter.

Proof.
(i) Let RS(Y1), RS(Y2) ∈ R-upset(RS(X)). Then

RS(X) ≤ RS(Y1), (1)

RS(X) ≤ RS(Y2). (2)

Now we prove RS(Y1∇Y2) ∈ R-upset(RS(X)). From
(1) and (2) we get

RS(X∇X) ≤ RS(Y1∇Y2),

RS(X) ≤ RS(Y1∇Y2),

which yields RS(Y1∇Y2) ∈ R-upset(RS(X)).
Therefore, R-upset(RS(X)) is closed under∇.

(ii) Let RS(Y ) ∈ R-upset(RS(X)) and RS(Z) ∈ T .
Consider RS(Y ) ∈ R-upset(RS(X)). It follows that

RS(X) ≤ RS(Y ).

Now we prove RS(YΔZ) ∈ R-upset(RS(X)). It is clear
that RS(X) ≤ RS(Y ) and RS(Y ) ≤ RS(YΔZ), which
implies

RS(X) ≤ RS(YΔZ).

Thus,

RS(YΔZ) ∈ R-upset(RS(X))

Therefore, R-upset(RS(X)) is a filter. �

Definition 9. For any X ⊆ U , define FX(T )
by FX(T ) = {RS(Y ) | Y = XΔVΔW,V ∈
P (E \ EX),W ∈ P (B \ BX)}, where E is the set of
equivalence classes in U and EX be the set of equivalence
classes in X , B is the pivot set of representative
elements of equivalence classes and BX is the pivot set
of representative elements in X of equivalence classes,
whose cardinality is greater than 1.

Theorem 2. FX(T ) is a filter.

Proof. Let RS(X1), RS(X2) ∈ FX(T ). Then by
definition

RS(X1), RS(X2)

∈ {RS(Y ) | Y = XΔVΔW,

V ∈ P (E \ EX),W ∈ P (B \BX)}.
Therefore, when RS(X1) ≤ RS(X2),

RS(X1∇X2) = RS(X1) ∈ FX(T )

and, if RS(X2) ≤ RS(X1),

RS(X1∇X2) = RS(X2) ∈ FX(T ).

Hence

RS(X1∇X2) ∈ FX(T ).

FX(T ) is closed under∇.
Now, let RS(X1) ∈ FX(T ) and RS(X2) /∈ FX(T ).

We see that
RS(X2) ∈ T \ FX(T )

This gives

RS(X2)

∈ {RS(A) | A ∈ P (E \R−(X))ΔP (B \BX)}
⊆ T \ FX(T ).

Consequently,

RS(X1ΔX2)

∈ {RS(Z) | Z ∈ XΔP (E \ EX)ΔP (B \BX)}.
Thus

RS(X1ΔX2) ∈ FX(T ).

Therefore, FX(T ) is a filter. �
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Theorem 3. R-upset(RS(X)) = FX(T ).

Proof. First we prove that FX(T ) ⊆ R-upset(RS(X)).
Let RS(Y ) ∈ FX(T ). Then Y = XΔVΔW , for V ∈
P (E \ EX) and W ∈ P (B \ BX). To prove RS(Y ) ∈
R-upset(RS(X)) means to prove RS(X) ≤ RS(Y ).
Since Y = XΔVΔW and RS(X) ≤ RS(XΔVΔW ),
we get

RS(X) ≤ RS(Y )

and then
RS(Y ) ∈ R-upset(RS(X)).

Therefore,

FX(T ) ⊆ R-upset(RS(X)). (3)

Now we show that R-upset(RS(X)) ⊆ FX(T ). Let
RS(Y ) ∈ R-upset(RS(X)). Then RS(X) ≤ RS(Y ).
To prove RS(Y ) ∈ FX(T ), it is enough to prove Y =
XΔVΔW for V ∈ P (E \ EX) and W ∈ P (B \ BX).
From the hypothesis RS(X) ≤ RS(Y ) we get

RS(X)ΔRS(Y ) = RS(XΔY ) = RS(Y )

= RS(XΔ(EY \ EX ∩EY )Δ(BY \BX ∩BY )).

This forces
RS(Y ) ∈ FX(T ).

Therefore,

R-upset(RS(X)) ⊆ FX(T ) (4)

Thus, from (3) and (4), R-upset(RS(X)) = FX(T ) �

Remark 1. When X = B, FB(T ) = {RS(X) ∈
T | X = BΔN,N ∈ P (E)}, where E is the set of
equivalence classes in U and the pivot set B = {xr ∈
Xr | |Xr| > 1}.
Remark 2. R-upset(RS(B)) = FB(T ) .

Definition 10. For any subset X of U , the principal ideal
generated by RS(X) in T (with respect to Δ) is given by
RS(X)ΔT = {RS(Y ) | Y ∈ XΔP (E\EX)ΔP (PX)},
where PX is the complement of the pivot set PX .

Theorem 4. For any subset X of U , FX(T ) =
RS(X)ΔT .

Proof. Let RS(Y ) ∈ FX(T ). Then

Y = XΔVΔW,

for V ∈ P (E \ EX) and

W ∈ P (B \BX), Y = XΔ(VΔW )

for V ∪W ∈ P ((E \ EX) ∪ (B \BX)), with

RS(Y ) = RS(X)ΔRS(VΔW ) ∈ RS(X)ΔT,

FX(T ) ⊆ RS(X)ΔT. (5)

Now, let RS(Y ) ∈ RS(X)ΔT . Then Y ∈
XΔP (E \ EX)ΔP (PX) and we see that

Y = XΔV1ΔW1 for V1 ∈ P (E \ EX),

W1 ∈ P (PX), RS(Y ) ∈ FX(T ).

Accordingly,

RS(X)ΔT ⊆ FX(T ). (6)

Hence, from (5) and (6), FX(T ) = RS(X)ΔT . �

Definition 11. A filter FX(T ) is said to be to be proper
if FX(T ) �= T .

Theorem 5. (Characterization theorem for proper filters)
FX(T ) is a proper filter iff RS(X) �= RS(∅).
Proof. Assume FX(T ) is a proper filter. Then FX(T ) ⊂
T implies

RS(X) �= RS(∅).
Conversely, assume that RS(X) �= RS(∅). To prove

that FX(T ) is a proper filter, we must have FX(T ) ⊂ T .
Suppose that FX(T ) = T . We get

RS(∅) ∈ FX(T ),

which yields
RS(X) = RS(∅),

a contradiction. Hence FX(T ) is a proper filter. �

Definition 12. A filter FX(T ) of a rough bi-Heyting
algebra is said to be prime if

(i) FX(T ) is a proper filter,

(ii) RS(YΔZ) ∈ FX(T ) implies either RS(Y ) ∈
FX(T ) (or) RS(Z) ∈ FX(T ).

Theorem 6. (Characterization theorem for prime filters)
FX(T ) is a prime filter.

Proof. Let RS(Y ) ∈ FX(T ). Then

FX(T ) = {RS(Y )|Y = XΔVΔW

for V ∈ P (E \ EX),W ∈ P (B \BX)}.
When X = ∅, we get FX(T ) = T, which implies that
FX(T ) is not proper (by Definition 11).

Suppose that when X �= ∅, there exists RS(Y ) ∈
FX(T ) and let Y = Y1ΔY2. We get

RS(Y1ΔY2) ∈ FX(T ),

which implies

RS(Y1)ΔRS(Y2) ∈ FX(T ).

Hence

RS(Y1) ∈ FX(T ) (or) RS(Y2) ∈ FX(T ).

Therefore, FX(T ) is a prime filter. �
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4. Rough identity-summand graph of filters
of a rough bi-Heyting algebra

In Section 3, the filters of the rough bi-Heyting algebra
are defined. The identity-summand graph of lattices
(Ebrahimi Atani et al., 2023; Atani et al., 2018) and the
commutative semiring from (Atani et al., 2015b; Atani
et al., 2014; Atani et al., 2015a) are also integrated to
define the rough identity-summand graph G(FX(T )) for
the filters of a rough bi-Heyting algebra. The results on
the graph G(FX(T )) obtained for the various filters of T
are discussed in this section.

Definition 13. Let

(T,Δ,∇,∗ ,+ ,→,←, RS(∅), RS(U))

be a rough bi-Heyting algebra and X ⊆ U . A rough
identity-summand graph of filter FX(T ), denoted by
G(FX(T )), is a graph whose vertex set is V (FX(T )) =
{RS(Y ) ∈ T \ FX(T )| for some RS(Z) ∈ T \
FX(T ), RS(Y )ΔRS(Z) = RS(YΔZ) ∈ FX(T )} and
the edge between the vertices of RS(Y ) andRS(Z) exists
if and only if RS(YΔZ) ∈ FX(T ).

Definition 14. An element RS(X) ∈ T of a rough
bi-Heyting algebra is said to be to be an atom if there
exists RS(Y ) ∈ T and, if RS(Y ) ≤ RS(X), then
RS(Y ) = RS(∅).
Remark 3. An atom of a rough bi-Heyting algebra is
defined by

A(T ) = {RS({x1}), RS({x2}), . . . ,
RS({xm}), RS(Xm+1),

RS(Xm+2), . . . , RS(Xn)}.
Theorem 7. The rough identity-summand graph
G(FX(T )) is a null graph if RS(X) is an atom.

Proof. Let RS(X) be an atom. Then RS(X) ∈ A(T ).
To prove that G(FX (T )) is a null graph, assume that
RS(Y1), RS(Y2) ∈ V (FX(T )). We have

RS(Y1), RS(Y2) ∈ T \ FX(T )

⇒ RS(Y1), RS(Y2) ∈ T \ {RS(Y ) | Y
= XΔVΔW,V ∈ P (E \ EX),W ∈ P (B \BX)}
= {RS(Z)|Z ∈ P (E \R−(X))ΔP (B \BX)}
⇒ RS(Y1), RS(Y2) ∈ {RS(Z)|

Z ∈ P (E \R−(X))ΔP (B \BX)}
⇒ RS(Y1ΔY2) /∈ FX(T )

⇒ V (FX(T )) = ∅.
Therefore, G(FX(T )) is a null graph. �

Remark 4. For Theorem 7, the converse is not true.
Indeed, if G(FX(T )) is a null graph, then RS(X) need
not be an atom.

Example 1. To verify Remark 4, consider I =
(U,R) as an approximation space, where the universal set
U = {x1, x2, x3, x4, x5, x6} and an arbitrary equivalence
relation R induces the equivalence classes X1 =
{x1, x3}, X2 = {x2, x4, x6} and X3 = {x5} on U .

Let X = {x1, x3} ⊆ U . Then the filter for X =
{x1, x3} is

F{x1,x3}(T )
= {RS(X1), RS(X1 ∪ {x2}),

RS(X1 ∪X3), RS(X1 ∪X2),

RS(X1 ∪ {x2} ∪X3), RS(U)}
and

T \ F{x1,x3}(T )
= {RS(∅), RS({x1}), RS({x2}),

RS({x1} ∪ {x2}), RS(X2), RS(X3),

RS({x1} ∪X2), RS({x1} ∪X3),

RS({x2} ∪X3), RS(X2 ∪X3),

RS({x1} ∪ {x2} ∪X3),

RS({x1} ∪X2 ∪X3)}.
There is no RS(Y ), RS(Z) ∈ T \ F{x1,x3}(T ) such that
RS(YΔZ) ∈ F{x1,x3}(T ). This forces

V (F{x1,x3}(T )) = ∅.
Thus G(F{x1,x3}(T )) is a null graph, but RS(X1) is not
an atom. �

Theorem 8. The rough identity-summand graph
G(FX(T )) is a null graph if X = xi (or) Xj for i =
1, . . .m and j = 1, . . . , n.

Proof. We consider two cases: when X = xi (or) Xj for
i = 1, . . .m and j = 1, . . . n.

Case 1. Suppose X = xi for i = 1, . . . ,m. Then EX = ∅
and BX = {xi}. Assume RS(Y ) ∈ V (F{xi}(T )). Then

RS(Y ) ∈ T \ F{xi}(T )
⇒ RS(Y ) ∈ T \ {RS(Z)|Z ∈ {xi}

ΔP (E)ΔP (B \ {xi})}
= {RS(A)|A ∈ P (E \ {Xi})ΔP (B \ {xi})}
⇒ RS(Y ) ∈ {RS(A)|A
∈ P (E \ {Xi})ΔP (B \ {xi})}.

Let RS(Y ) = RS(Y1ΔY2), where Y1 ∈ P (E \
{Xi}) and Y2 ∈ P (B \ {xi}). Now let some RS(Z) ∈
T \ F{xi}(T ). Then RS(Z) = RS(Z1ΔZ2), where
Z1 ∈ P (E \ {Xi}) and Z2 ∈ P (B \ {xi}). Therefore,

RS(Y )ΔRS(Z) = RS(Y1ΔY2)ΔRS(Z1ΔZ2)

= RS(Y1ΔZ1)ΔRS(Y2ΔZ2).
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Since Y1, Z1 ∈ P (E \ {Xi}) and Y2, Z2 ∈ P (B \ {xi}),
we get

Y1ΔZ1 ∈ P (E \ {Xi})
⇒ Y2ΔZ2 ∈ P (B \ {xi})
⇒ YΔZ ∈ P (E \ {Xi})ΔP (B \ {xi})
⇒ RS(YΔZ) /∈ F{xi}(T )
⇒ RS(Y ) /∈ V (F{xi}(T )),

V (F{xi}(T )) = ∅,
which means that G(F{xi}(T )) is a null graph.

Case 2. Suppose X = Xj for j = 1, . . . , n. Then
BX = ∅ and EX = {Xj}. Assume that RS(Y ) ∈
V (F{Xj}(T )). We get

RS(Y ) ∈ T \ F{Xj}(T )

⇒ RS(Y ) ∈ T \ {RS(Z)|Z ∈ {Xj}
ΔP (E \ {Xj})ΔP (B)}

= {RS(A)|A ∈ P (E \ {Xj})ΔP (B)}
⇒ RS(Y ) ∈ {RS(A)|A ∈ P (E \ {Xj})ΔP (B)}.

Let RS(Y ) = RS(Y1ΔY2), where Y1 ∈ P (E \
{Xj}) and Y2 ∈ P (B). Now for some RS(Z) ∈
T \ F{Xj}(T ) we have RS(Z) = RS(Z1ΔZ2), where
Z1 ∈ P (E \ {Xj}) and Z2 ∈ P (B). Thus

RS(Y )ΔRS(Z) = RS(Y1ΔY2)ΔRS(Z1ΔZ2)

= RS(Y1ΔZ1)ΔRS(Y2ΔZ2).

Since Y1, Z1 ∈ P (E \ {Xj}) and Y2, Z2 ∈ P (B), we
have

Y1ΔZ1 ∈ P (E \ {Xj})
⇒ Y2ΔZ2 ∈ P (B)

⇒ YΔZ ∈ P (E \ {Xj})ΔP (B)

⇒ RS(YΔZ) /∈ F{Xj}(T )

⇒ RS(Y ) /∈ V (F{Xj}(T )).

Therefore,

V (F{Xj}(T )) = ∅,
which implies that G(F{Xj}(T )) is a null graph. �

Remark 5. The converse holds for Theorem 8.

Example 2. To verify Remark 6, let X = {x5} ⊆ U
from Example 1. Then the filter for X = {x5} is

F{x5}(T ) = {RS(X3), RS({x1} ∪X3),

RS({x2} ∪X3), RS(X1 ∪X3),

RS(X2 ∪X3), RS({x1} ∪ {x2} ∪X3),

RS(X1 ∪ {x2} ∪X3),

RS({x1} ∪X2 ∪X3), RS(U)},

F{x5}(T ) is a prime filter, and

T \ F{x5}(T )
= {RS(∅), RS({x1}), RS({x2}),

RS({x1} ∪ {x2}), RS(X1), RS(X2),

RS(X1 ∪ {x2}), RS({x1} ∪X2),

RS(X1 ∪X2)}

As it is clear, that there are no two RS(Y ), RS(Z) ∈
T \ F{x5}(T ) such that RS(YΔZ) ∈ F{x5}(T ), we get
V (F{x5}(T )) = ∅ which means that G(F{x5}(T )) is a
null graph, where F{x5}(T ) is a prime filter and also
RS({x5}) is an atom. �

Theorem 9. The rough identity-summand graph
G(FX(T )) generates complete bipartite graphs when
X = {z1, z2, . . . , zρ}, where z1, . . . , zρ are xi (or) Xj

for i, j ∈ {1, . . . ,m,m+ 1, . . . , n}, 2 ≤ ρ ≤ m,n.

Proof. From the definition of G(FX(T )), V (FX(T )) ⊆
T \ FX(T ).

Case 1. Let X = {xi1 , xi2 , . . . , xir} for i1, i2, . . . , ir ∈
{1, 2, . . .m}. Observe that when p = 1, the vertex
set partitioning of V (FX(T )) into V{xi1}(FX(T )) and
V{xi2 ,xi3 ,...,xir}(FX(T )) is given by

V{xi1}(FX(T ))

= {RS(Z)|Z ∈ {xi1}ΔP (E \ {Xi2 , Xi3 , . . . , Xir})
ΔP (B \ {xi1 , xi2 , . . . , xir})}

and

V{xi2 ,xi3 ,...,xir}(FX(T ))

= {RS(Z)|Z ∈ {xi2 , xi3 , . . . , xir}
ΔP (E \ {Xi1}))ΔP (B \ {xi1 , xi2 , . . . , xir})}.

Thus

V{xi1}(FX(T )) ∩ V{xi2 ,xi3 ,...,xir}(FX(T )) = ∅.
Let

V{xi1 ,xi2xi3 ...xir}(FX(T ))

= V{xi1}(FX(T )) ∪ V{xi2 ,xi3 ,...,xir}(FX(T )).

We want to prove that

V{xi1 ,xi2xi3 ...xir}(FX(T )) ⊆ V (FX(T )).

Let RS(Y ) ∈ V{xi1 ,xi2xi3 ...xir}(FX(T )). Then

RS(Y ) ∈ V{xi1}(FX(T ))

(or)
RS(Y ) ∈ V{xi2 ,xi3 ,...,xir}(FX(T ))
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implies RS(Y ) ∈ T \ FX(T )
Suppose there exists some RS(Z) ∈ T \FX(T ) and

RS(YΔZ) ∈ FX(T ) such that RS(Y ) ∈ V (FX(T )). It
follows that

V{xi1}(FX(T )) ⊆ V (FX(T ))

and
V{xi2 ,xi3 ,...,xir}(FX(T )) ⊆ V (FX(T )),

which yields

V{xi1}(FX(T ))

∪ V{xi2 ,xi3 ,...,xir}(FX(T )) ⊆ V (FX(T )),

This implies

V{xi1 ,xi2xi3 ...xir}(FX(T )) ⊆ V (FX(T )).

Now let RS(Y ) ∈ V{xi1}(FX(T )) and RS(Z) ∈
V{xi2 ,xi3 ,...,xir}(FX(T )). Then RS(YΔZ) ∈ FX(T ).
This implies there is an edge connecting RS(Y ) and
RS(Z) in G(FX(T )).

Observe that, for every RS(Y ) ∈ V{xi1}(FX(T )),
where Y = {xi1}ΔK1ΔK2, for K1 ∈ P (E \
{Xi2 , Xi3 , . . . , Xir}),K2 ∈ P (B \ {xi1 , xi2 , . . . , xir})
and RS(Z) ∈ V{xi2 ,xi3 ,...,xir}(FX(T )), where we have
Z = {xi2 , xi3 , . . . , xir}ΔG1ΔG2 for G1 ∈ P (E \
{Xi1}), G2 ∈ P (B \ {xi1 , xi2 , . . . , xir}), an edge
exists between RS(Y ) and RS(Z). This complete
bipartite graph is denoted by B(FX(xi1 , xi2xi3 . . . xir ))
and similar complete bipartite graphs obtained are
B(FX(xi2 , xi1xi3 . . . xir )), . . . , B(FX(xir , xi1xi2 . . .
xir−1 )). Thus rC1 complete bipartite graphs are obtained
when p = 1.

Suppose p = 2. Then using an argument similar to
p = 1, the number of complete bipartite graphs obtained
are (2C2 +

2C1)
rC2 and they are denoted by

B(FX(xi1xi2 , xi3xi4 , . . . , xir )),

B(FX(xi1xi3 , xi2xi4 , , . . . , xir )),

...

B(FX(xir−1xir , xi1xi2 , . . . , xir−2)),

...

B(FX(xi1xi2 , xi1xi3xi4 , . . . , xir )),

B(FX(xi1xi2 , xi2xi3xi4 , . . . , xir )),

...

B(FX(xir−1xir , xi1xi2xi3 , . . . , xir−2xir )).

This procedure is repeated for p = 3, 4, 5, . . . and
so on and the number complete bipartite graphs formed

are (3C3 + 3C2 + 3C1)
rC3, (

4C4 + 4C3 + 4C2 +
4C1)

rC4, (
5C5 + 5C4 + 5C3 + 5C2 + 5C1)

rC5, . . . ,
respectively.

Finally, when p = r − 1, similarly partitioning the
vertex set and using arguments from p = 1, the complete
bipartite graphs obtained is (r−1)C1[

rC(r−1)/2].
Therefore, when X = {xi1 , xi2 , . . . , xir},

G(FX(T )) generates a total of rC1 + (2C2 +
2C1)

rC2 +
· · ·+ (r−1)C1[

rC(r−1)/2] complete bipartite graphs.

Case 2. Let X = {Xs1 , Xs2 , . . . , Xst} for
s1, s2, . . . , st ∈ {1, 2, . . . ,m}. When p = 1, the vertex
set V (FX(T )) is partitioned into V{Xs1}(FX(T )) and
V{Xs2 ,Xs3 ,...,Xst}(FX(T )), where

V{Xs1}(FX(T ))

= {RS(Z)|Z ∈ {Xs1}ΔP (E \ {Xs1 , Xs2 ,

Xs3 , . . . , Xst})ΔP (B \ {xs1})}

and

V{Xs2 ,Xs3 ,...,Xst}(FX(T ))

= {RS(Z)|Z ∈ {Xs2 , Xs3 , . . . , Xst}
ΔP (E \ {Xs1 , Xs2 , Xs3 , . . . , Xst}))
ΔP (B \ {xs2 , xs3 , . . . , xst})}.

Thus, by the arguments in Case 1,
the complete bipartite graph obtained is
B(FX(Xs1 , Xs2Xs3 , . . . , Xst)). Similarly partitioning
the vertex set V (FX(T )), the complete bipartite graphs
obtained are

B(FX(Xs2 , Xs1Xs3 , . . . , Xst)),

...

B(FX(Xst , Xs1Xs2 , . . . , Xst−1)).

The complete bipartite graphs obtained for p = 1 is tC1

and so on.

Accordingly, when X = {Xs1 , Xs2 , . . . , Xst},
G(FX(T )) generates a total of tC1 + (2C2 +

2C1)
tC2 +

· · ·+ (t−1)C1[
tC(t−1)/2] complete bipartite graphs.

Case 3. Let X = {Xj1 , Xj2 , . . . , Xjk} for
j1, j2, . . . , jk ∈ {m + 1,m + 2, . . . , n}. When p = 1,
the vertex set V (FX(T )) is of the form V{Xj1}(FX(T ))
and V{Xj2 ,Xj3 ,...,Xjk

}(FX(T )), where

V{Xj1}(FX(T ))

= {RS(Z)|Z ∈ {Xj1}ΔP (E \ {Xj1 ,

Xj2 , Xj3 , . . . , Xjk})ΔP (B)},
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and

V{Xj2 ,Xj3 ,...,Xjk
}(FX(T ))

= {RS(Z)|Z ∈ {Xj2 , Xj3 , . . . , Xjk}
ΔP (E \ {Xj1 , Xj2 , Xj3 , . . . , Xjk}))
ΔP (B)}.

Then by the arguments in Case 1,
the complete bipartite graph obtained is
B(FX(Xj1 , Xj2Xj3 , . . . , Xjk)). Similarly partitioning
the vertex set V (FX(T )) for p = 1, the complete bipartite
graphs obtained are

B(FX(Xj2 , Xj1Xj3 . . .Xjk)),

...

B(FX(Xjk , Xj1Xj2 . . . Xjk−1
)).

Thus the complete bipartite graphs obtained for p = 1 is
kC1 and so on.

Hence, when X = {Xj1 , Xj2 , . . . , Xjk}, G(FX(T ))
generates total of kC1 + (2C2 + 2C1)

kC2 + · · · +
(k−1)C1[

kC(k−1)/2] complete bipartite graphs.

Case 4. Let

X = {xi1 , xi2 , . . . , xir , Xj1 , Xj2 , . . . , Xjk},

where i1, i2, . . . , ir ∈ {1, 2, . . . ,m} and j1, j2, . . . , jk ∈
{m + 1,m + 2, . . . , n}. When p = 1, the vertex set
V (FX(T )) is partitioned into

V{xi1}(FX(T ))

and
V{xi2 ,...,xir ,Xj1 ,Xj2 ,...,Xjk

}(FX(T )),

where

V{xi1}(FX(T ))

= {RS(Z)|Z ∈ {xi1}ΔP (E \ {Xi2 , Xi3 , . . . ,

Xir , Xj1 , Xj2 , . . . , Xjk})
ΔP (B \ {xi1 , xi2 , . . . , xir})}

and

V{xi2 ,...,xir ,Xj1 ,Xj2 ,...,Xjk
}(FX(T ))

= {RS(Z)|Z ∈ {xi2 , . . . , xir , Xj1 , Xj2 , . . . , Xjk}
ΔP (E \ {Xi1 , Xj1 , Xj2 , . . . , Xjk}))

ΔP (B \ {xi1 , xi2 , . . . , xir})}.

Then using the argument of Case 1, the complete
bipartite graph obtained is B(FX(xi1 , xi2 , . . . ,
xirXj1Xj2 . . .Xjk)). We see that similarly partitioning

the vertex set V (FX(T )) for p = 1, the complete bipartite
graphs obtained are

B(FX(xi2 , xi1 , . . . , xirXj1Xj2 . . .Xjk)),

...

B(FX(xir , xi1xi2 , . . . , xir−1Xj1Xj2 . . . Xjk)).

Thus the complete bipartite graphs exist when p = 1 and
their number is rC1.

Also for p = 1, the kC1 ways vertex set V (FX(T ))
is divided into

V{Xj1}(FX(T ))

and

V{xi1 ,xi2 ,...,xir ,Xj2 ,Xj3 ,...,Xjk
}(FX(T )),

where

V{Xj1}(FX(T ))

= {RS(Z)|Z ∈ {Xj1}ΔP (E \ {Xi1 , Xi2 , . . . ,

Xir , Xj1 , Xj2 , Xj3 , . . . , Xjk})
ΔP (B \ {xi1 , xi2 , . . . , xir})}

and

V{xi1 ,xi2 ,...,xir ,Xj2 ,Xj3 ,...,Xjk
}(FX(T ))

= {RS(Z)|Z ∈ {xi1 , xi2 , . . . , xir , Xj2 , Xj3 , . . . , Xjk}
ΔP (E \ {Xj1 , Xj2 , Xj3 , . . . , Xjk}))

ΔP (B \ {xi1 , xi2 , . . . , xir})}.

Then using the arguments, the
complete bipartite graph obtained is
B(FX(Xj1 , xi1 , . . . , xirXj2Xj3 , . . . , Xjk)). Similarly
partitioning the vertex set V (FX(T )) for p = 1,
the complete bipartite graphs obtained are
B(FX(Xj2 , xi1 . . . xirXj1Xj3 . . . Xjk)), . . . , B(FX(Xjk ,
xi1xi2 . . . xirXj1Xj2 . . .Xjk−1

)). Thus the complete
bipartite graphs obtained for p = 1 is kC1. Hence for
p = 1, a (r+k)C1 complete bipartite graph exists.

When p = 2, a (2C2+
2C1)

rC2+(2C2+
2C1)

kC2+
(2C2 +

2C1)
rC1

kC1 complete bipartite graph exists and
so on.

Therefore, when

X = {xi1 , xi2 , . . . , xir , Xj1 , Xj2 , . . . , Xjk},

G(FX(T )) generates a total of (r+k)C1 + (2C2 +
2C1)

(r+k)C2 + · · · + (r+k)−1C1[
(r+k)C(r+k)−1/2]

complete bipartite graphs.
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Case 5. Let

X = {xi1 , xi2 , . . . , xir , Xs1 , Xs2 , . . . , Xst},

where {i1, i2, . . . , ir, s1, s2, . . . , st} ∈ {1, 2, . . . ,m}.
When p = 1, the vertex set V (FX(T )) is partitioned into

V{xi1}(FX(T ))

and
V{xi2 ,...,xir ,Xs1 ,Xs2 ,...,Xst}(FX(T )),

where

V{xi1}(FX(T ))

= {RS(Z)|Z ∈ {xi1}ΔP (E \ {Xi2 , Xi3 , . . . ,

Xir , Xs1 , Xs2 , . . . , Xst})
ΔP (B \ {xi1 , xi2 , . . . , xir})}

and

V{xi2 ,...,xir ,Xs1 ,Xs2 ,...,Xst}(FX(T ))

= {RS(Z)|Z ∈ {xi2 , . . . , xir , Xs1 , Xs2 , . . . , Xst}
ΔP (E \ {Xi1 , Xs1 , Xs2 , . . . , Xst}))

ΔP (B \ {xi1 , xi2 , . . . , xir , xs1 , xs2 , . . . , xst})}.

Then using the arguments from Case 1,
the complete bipartite graph obtained is
B(FX(xi1 , xi2 . . . xirXs1Xs2 , . . . , Xst)). Similarly
partitioning the vertex set V (FX(T )) for p = 1,
the complete bipartite graphs obtained are
B(FX(xi2 , xi1 . . . xirXs1Xs2 . . . Xst)), . . . , B(FX(xir ,
xi1xi2 . . . xir−1Xs1Xs2 . . . Xst)). Thus rC1 complete
bipartite graphs exist for p = 1.

Also for p = 1, the vertex set V (FX(T )) is divided
into

V{Xs1}(FX(T ))

and
V{xi1 ,...,xir ,Xs2 ,Xs3 ,...,Xst}(FX(T )),

where

V{Xs1}(FX(T ))

= {RS(Z)|Z ∈ {Xs1}ΔP (E \ {Xi1 , Xi2 , . . . ,

Xir , Xs1 , Xs2 , . . . , Xst})
ΔP (B \ {xi1 , xi2 , . . . , xir , xs1})}

and

V{xi1 ,...,xir ,Xs2 ,...,Xst}(FX(T ))

= {RS(Z)|Z ∈ {xi1 , xi2 , . . . , xir , Xs2 , Xs3 , . . . , Xst}
ΔP (E \ {Xs1 , Xs2 , . . . , Xst}))
ΔP (B \ {xi1 , xi2 , . . . , xir , xs2 , xs3 , . . . , xst})}.

Then, using the arguments the from
Case 1, the complete bipartite graph obtained is
B(FX(Xs1 , xi1 . . . xirXs2Xs3 . . . Xst)). Similarly
partitioning the vertex set V (FX(T )) for p = 1,
the complete bipartite graphs obtained are
B(FX(Xs2 , xi1 . . . xirXs1Xs3 . . . Xst)), . . . , B(FX(Xst ,
xi1xi2 . . . xir−1Xs1Xs2 . . . Xst−1)). Thus the number
of complete bipartite graphs obtained for p = 1 is tC1.
Hence when p = 1, (r+t)C1 complete bipartite graphs
exist.

When p = 2, (2C2 + 2C1)
rC2 + (2C2 +

2C1)
tC2+(2C2+

2C1)
rC1

tC1 complete bipartite graphs
are obtained and so on.

Hence, when

X = {xi1 , xi2 , . . . , xir , Xs1 , Xs2 , . . . , Xst},

G(FX(T )) generates a total of (r+t)C1 + (2C2 +
2C1)

(r+t)C2 + · · · + (r+t)−1C1[
(r+t)C(r+t)−1/2]

complete bipartite graphs.

Case 6. Let

X = {Xs1 , Xs2 , . . . , Xst , Xj1 , Xj2 , . . . , Xjk}

where we have s1, s2, . . . , st ∈ {1, 2, . . . ,m}, and
j1, j2, . . . , jk ∈ {m + 1,m + 2, . . . , n}. When p = 1,
the vertex set V (FX(T )) is partitioned into

V{Xs1}(FX(T ))

and
V{Xs2 ,...,Xst ,Xj1 ,Xj2 ,...,Xjk

}(FX(T ))

where

V{Xs1}(FX(T ))

= {RS(Z)|Z ∈ {Xs1}ΔP (E \ {Xs1 , Xs2 , Xs3 , . . . ,

Xst , Xj1 , Xj2 , . . . , Xjk})ΔP (B \ {xs1})}

and

V{Xs2 ,...,Xst ,Xj1 ,Xj2 ,...,Xjk
}(FX(T ))

= {RS(Z)|Z ∈ {Xs2 , . . . , Xst , Xj1 , Xj2 , . . . , Xjk}
ΔP (E \ {Xs1 , Xs2 , . . . , Xst , )Xj1 , Xj2 , . . . , Xjk})
ΔP (B \ {xs2 , xs3 , . . . , xst})}.

Then by using the arguments of Case 1,
the complete bipartite graph obtained is
B(FX(Xs1 , Xs2 . . .XstXj1Xj2 . . .Xjk)). Similarly
partitioning the vertex set V (FX(T )) for p = 1, the
remaining complete bipartite graphs obtained are

B(FX(Xs2 , Xs1Xs3 . . . XstXj1Xj2 . . . Xjk)),

...
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B(FX(Xst , Xs1Xs2 . . . Xst−1Xj1Xj2 . . .Xjk)).

Thus the complete bipartite graphs for p = 1 is tC1.
Also for p = 1, the vertex set V (FX(T )) is divided

into
V{Xj1}(FX(T ))

and

V{Xs1 ,Xs2 ,...,Xst ,Xj2 ,Xj3 ,...,Xjk
}(FX(T )),

where

V{Xj1}(FX(T ))

= {RS(Z)|Z ∈ {Xj1}ΔP (E \ {Xs1 , Xs2 , . . . ,

Xst , Xj1 , Xj2 , Xj3 , . . . , Xjk})ΔP (B)}
and

V{Xs1 ,Xs2 ,...,Xst ,Xj2 ,Xj3 ,...,Xjk
}(FX(T ))

= {RS(Z)|Z ∈ {Xs1 , Xs2 , . . . , Xst ,

Xj2 , Xj3 , . . . , Xjk}
ΔP (E \ {Xs1 , Xs2 , . . . , Xst , Xj1 , Xj2 ,

Xj3 , . . . , Xjk}))ΔP (B)}.
Then, by using arguments of Case 1,
the complete bipartite graph obtained is
B(FX(Xj1 , Xs1 . . . XstXj2 . . . Xjk)). Similarly
partitioning the vertex set V (FX(T )) for p = 1, the
remaining complete bipartite graphs obtained are

B(FX(Xj2 , Xs1Xs2 . . .XstXj1Xj3 . . . Xjk)),

...

B(FX(Xjk , Xs1Xs2 . . . XstXj1Xj2 . . . Xjk−1
)).

Thus the number of complete bipartite graphs for p = 1 is
kC1. Hence for p = 1, the number of complete bipartite
graphs obtained is (t+k)C1 and so on.

Therefore, when

X = {Xs1 , Xs2 , . . . , Xst , Xj1 , Xj2 , . . . , Xjk},
G(FX(T )) generates a total of (t+k)C1 + (2C2 +
2C1)

(t+k)C2 + · · · + (t+k)−1C1[
(t+k)C(t+k)−1/2]

complete bipartite graphs.

Case 7. Let

X = {xi1 , xi2 , . . . , xir , Xs1 , Xs2 , . . . , Xst ,

Xj1 , Xj2 , . . . , Xjk},
where i1, i2, . . . , ir, s1, s2, . . . , st ∈ {1, 2, . . .m}, and
j1, j2, . . . , jk ∈ {m+ 1,m+ 2, . . . , n}.

For p = 1, the vertex set V (FX(T )) is partitioned
into

V{xi1}(FX(T ))

and

V{xi2 ,...,xir ,Xs1 ,Xs2 ,...,Xst ,Xj1 ,Xj2 ,...,Xjk
}(FX(T )),

where

V{xi1}(FX(T ))

= {RS(Z)|Z ∈ {xi1}ΔP (E \ {Xi2 , Xi3 , . . . ,

Xir , Xs1 , Xs2 , . . . , Xst , Xj1 ,

Xj2 , . . . , Xjk})
ΔP (B \ {xi1 , xi2 , . . . , xir})}

and

V{xi2 ,...,xir ,Xs1 ,Xs2 ,...,Xst ,Xj1 ,Xj2 ,...,Xjk
}(FX(T ))

= {RS(Z)|Z ∈ {xi2 , . . . , xir ,

Xs1 , Xs2 , . . . , Xst , Xj1 , Xj2 , . . . , Xjk}
ΔP (E \ {Xi1 , Xs1 , Xs2 , . . . ,

Xst , Xj1 , Xj2 , . . . , Xjk}))
ΔP (B \ {xi1 , xi2 , . . . , xir , xs1 , xs2 , . . . , xst})}.

Then it can be proved that

V{xi1 ,xi2 ...xirXs1Xs2 ...XstXj1Xj2 ...Xjk
}(FX(T ))

⊆ V (FX(T )).

By using the similar arguments from Case 1,
the complete bipartite graph obtained is
B(FX(xi1 , xi2 . . . xirXs1Xs2 . . . XstXj1Xj2 . . . Xjk)).

Similarly partitioning the vertex set V (FX(T )) for
p = 1, the complete bipartite graphs obtained are

B(FX(xi2 , xi1 , . . . , xirXs1Xs2 , . . . ,

XstXj1Xj2 , . . . , Xjk)), . . . ,

...
B(FX(xir , xi1 , . . . , xir−1Xs1Xs2 , . . . ,

XstXj1Xj2 , . . . , Xjk)).

Thus the number of complete bipartite graphs for p = 1 is
rC1.

Also for p = 1, the tC1 and kC1 complete bipartite
graphs are obtained. Therefore, the number of complete
bipartite obtained for p = 1 is (r+t+k)C1 and so on.

Hence, when

X = {xi1 , xi2 , . . . , xir , Xs1 , Xs2 , . . . , Xst ,

Xj1 , Xj2 , . . . , Xjk},
G(FX(T )) generates a total of

(r+t+k)C1 + (2C2 +
2C1)

(r+t+k)C2

+ . . .+ (r+t+k)−1C1

[
(r+t+k)C(r+t+k)−1

2

]

complete bipartite graphs. �
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RS(X3)
RS({x1} ∪X3)

RS(X1 ∪X3)

RS(X2 ∪X3)

RS({x2} ∪X3)

RS(X2)

RS({x2})

RS(X1 ∪X2)

RS(X1 ∪ {x2})

RS({x1} ∪X2)

RS({x1} ∪ {x2})

RS(X1)

RS({x1})

Fig. 1. G(F{x1,x2,x5}(T )).

Remark 6.

1. In the cases discussed in Theorem-9, the union of all
complete bipartite graphs generated will be equal to
G(FX(T )).

2. The number of such complete bipartite graphs can
be reduced by identifying isomorphic graphs. For
example, when p = 1, the vertex set of G(FX(T ))
is partitioned into generating rC1 = r complete
bipartite graphs. Also, when p = r − 1, rCr−1 = r
complete bipartite graphs are generated. This leads
to generating distinct complete bipartite graphs from
G(FX(T )). It is important to note that the union of
these complete bipartite graphs will be a subgraph of
G(FX(T )).

Lemma 1. The rough identity-summand graph
G(FX(T )) is a complete bipartite graph if X = {z1, z2},
where z1, z2 are xi (or) Xj for i, j ∈ {1, 2, . . . ,m,m +
1,m+ 2, . . . n}.
Lemma 2. The rough identity-summand graph
G(FX(T )) is a

∑n−2
r=0

(n−2)Cr2
n−(r+1)-regular com-

plete bipartite graph if X = {z1, z2}, where X is {xi, xj}
(or) {Xi, Xj} for i, j ∈ {1, 2, . . . ,m}.
Lemma 3. The rough identity-
summand graph G(FX(T )) is a

∑m
t=2

(m−2)

Cm−t

∑n−m
k=0

(n−m)Ck2
m−{m−(t−1)} regular complete

bipartite graph if X = {z1, z2}, where X is {xi, xj} (or)
{Xi, Xj} for i, j ∈ {1, 2, . . . ,m,m+ 1,m+ 2, . . . , n}.
Definition 15. The number of distinct complete bipartite
graphs generated from G(FX(T )) is called the rough bi-
partite number. The rough bipartite number (or) RBP
number of G(FX(T )) is denoted by RBP (G(FX(T ))).

Example 3. From Example 1, the rough
identity-summand graph exists for the filter FX(T ) when
X = {x1, x2, x5} is given in Fig. 1

The total number of complete bipartite graphs
generated fromG(F{x1,x2,x5}(T )) is 6. But the number of
distinct complete bipartite graphs is 3. The union of these
distinct complete bipartite graphs forms a subgraph of
G(F{x1,x2,x5}(T )) and is given in Fig. 2. This subgraph
contains all the vertices of G(FX(T )). This is a proper
subgraph that has no edge between RS({x1}∪{x2}) and
RS({x2} ∪ X3), but has an edge in G(F{x1,x2,x5}(T )).
The subgraph of G(FX(T )) is considered in generating
the Gray code which will be discussed in the following
section. �

5. Gray code generation through a rough
identity–summand graph

A Gray code of length n is a list of 2n binary
numbers of n bis in which two consecutive numbers
differ by only one bit. The transition sequence
represents the changes in the bit positions between two
consecutive binary numbers represented by a decimal
number sequence of length 2n − 1. The applications
of Gray codes are found in various areas such as error
correction, rotary encoder sensors, the conversion of
analog to digital representations, and network addressing
in communication devices. The advantage of the Gray
code with the subsequent numbers, differing by one
bit is crucial in applications by minimizing the error
caused by the multiple changes. In this section, the idea
of generating Gray codes is extended through a rough
identity-summand graph G(FX(T )). This will begin by
considering an approximation space I = (U,R), where
U is the collection of n-bit binary numbers say U =
{00 . . .0, 10 . . .0, 01 . . .0, . . . , 11 . . . 1}. Note that the
cardinality of U is 2n. Consider the partition of U by
E = {X1, X2, . . . , Xn+1}, where Xi is the set of n-bit
sequences containing i zeros for 1 ≤ i ≤ n and Xn+1

is the n-bit sequence of all 1’s. Using this partition, we
can have a rough bi-Heyting algebra (T,Δ,∇,∗ ,+ ,→
,←, RS(∅), RS(U)). From Section 4, for any subset X
of U , the rough identity-summand graph G(FX(T )) is
obtained for the filter FX(T ). Also by the results from
Section 4, the subgraph of the rough identity-summand
graph G(FX(T )) can be expressed as the union of distinct
complete bipartite graphs.

The main application is to generate two Gray codes
of length k, k ≥ n using G(FX(T )). This is achieved
by obtaining two transition sequences of length 2k − 1,
where k = |V (FX(T ))|. Any set X of Gray codes in U
is defined using

RS(X) = (R−(X), R−(X)).

In any given n-bit sequenceα, Nn
0 (α) denotes the number

of zeros in α. For X ⊆ U , let Nn
0 (X) =

∑
α∈X Nn

0 (α)
(mod 2). Now the initial lower approximation transition
sequence SL(0) = Nn

0 (R−(X)) and the initial
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RS(X3)
RS({x1} ∪X3)

RS(X1 ∪X3)

RS(X2 ∪X3)

RS({x2} ∪X3)

RS(X2)

RS({x2})

RS(X1 ∪X2)

RS(X1 ∪ {x2})

RS({x1} ∪X2)

RS({x1} ∪ {x2})

RS(X1)

RS({x1})

Fig. 2. Subgraph of G(F{x1,x2,x5}(T )).

upper approximation transition sequence SU (0) =
Nn

0 (R
−(X)). Using these initial transition sequences,

two Gray codes of length k can be generated. The lower
approximation transition sequence is defined by

SL(k) = SL(k − 1), k, SL(k − 1)

and the upper approximation transition sequence is
defined by

SU (k) = SU (k − 1), k, SU (k − 1).

For example, consider the set of 3-bit binary number
sequences as the universal set U . The partition on U
is E = {X1, X2, X3, X4}. If X = {x1, x2, X3, X4},
the distinct complete bipartite graphs generated from the
rough identity summand graph G(FX(T )) are given to be

B(FX(x1, x2X3X4)),

B(FX(x2, x1X3X4)),

B(FX(X3, x1x2X4)),

B(FX(X4, x1x2X3)),

B(FX(x1X3, x2X4)),

B(FX(x1X4, x2X3)),

B(FX(x1x2, X3X4)).

For X = {x1, x2, X3, X4}, one of the complete
bipartite graphs of G(F{x1,x2,X3,X4}(T )) is considered to
be B(FX(x1x2, X3X4)) and

|V (B(FX(x1x2, X3X4)))| = 5

The initial lower and upper transition sequences are
SL(1) = 1 and SU (0) = 0.

RS(X3X4)

RS({x1x2})

RS(x1X2)

RS(X1x2)

RS(X1X2)

Fig. 3. B(FX(x1x2, X3X4)).

Hence the lower approximation transition sequence
is

SL(5) = {1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5,
1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1}

and the upper approximation transition sequence is

SU (4) = {0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0}.

This will generate a 5-bit Gray code sequence

G(5) =
{
00000, 00001, 00011, 00010, 00110,

00111, 00101, 00100, 01100, 01101,

01111, 01110, 01010, 01011, 01001,

01000, 11000, 11001, 11011, 11010,

11110, 11111, 11101, 11100, 10100,

10101, 10111, 10110, 10010, 10011,

10001, 10000
}
.

For the remaining complete bipartite graphs of
G(F{x1,x2,X3,X4}(T )), 14 Gray codes of varied length
can be obtained.

6. Conclusion
In this paper, various filters of a rough bi-Heyting algebra
(T,Δ,∇,∗ ,+ ,→,←, RS(∅), RS(U)) are formalized.
Filters of this rough bi-Heyting algebra are defined
through the R-upset of elements of T . The filters of a
rough bi-Heyting algebra are characterized and later its
generalization is addressed to establish the relevant graph
structures. For any X ⊆ U , a rough identity-summand
graph G(FX(T )) is constructed for the filter FX(T )
of a rough bi-Heyting algebra. Also G(FX(T )) is
proved to generate complete bipartite graphs. Then the
results providing the number of distinct complete bipartite
graphs generated from G(FX(T )) are given. The RBP
number of G(FX(T )) for any X is defined and the
RBP (G(FX(T ))) is also obtained.



384 B. Praba and L.P. Anto Freeda

The generation of the Gray code of length k for the
complete bipartite graphs of G(FX(T )) is achieved by
two transition sequences of length 2k−1. Generating Gray
codes for the rough identity-summand graph presents
numerous challenges in figuring out the most suitable
way to partition the vertex set and analyzing the graph’s
regularity. The study of the Gray code generation from
the rough identity-summand graph G(FX(T )) in network
analysis and optimization, for further advancement
can be viewed as a new direction for future work.
The computational efficiency of constructing complete
bipartite graphs from G(FX(T )) and generating Gray
codes are yet to be explored. This could be considered
as a limitation when scaling to larger datasets (or) more
complex graph structures.
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