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CONTROLLABILITY AND MINIMUM ENERGY
CONTROL OF 2-D CONTINUOUS-DISCRETE
LINEAR SYSTEMS

TabpEUSZ KACZOREK*

A general 2-D continuous-discrete model of linear systems and its particular
cases the models of Fornasini-Marchesini type and Attasi type are introduced.
A general 2-D continuous-discrete model of Roesser type is also introduced. A
solution and the general response formula to the regular general 2-D model are
derived. The necessary and sufficient conditions for the local reachability and
the local controllability of the regular general 2-D model are established. The
minimum energy control of the regular general 2-D model is solved.

1. Introduction

The most popular models of two-dimensional (2-D) linear systems are the state space
models introduced by Roesser (1975), Fornasini-Marchesini (1976; 1978) and Kurek
(1985). The models have been extended in (Kaczorek, 1988b; 1990; Gregor, 1992) for
singular (implicit) linear discrete systems. A review of singular 2-D linear discrete
systems has been given in (Kaczorek, 1993c; Lewis, 1992). Continuous 2-D models of
linear and non-linear systems have been considered in (Bergman et al., 1989; Idczak
and Walczak, 1992; Walczak, 1988). Recently in (Kaczorek, 1994a) a singular 2-D
continuous-discrete model of linear systems has been introduced. In 2-D continuous-
discrete systems one independent variable is continuous and the second variable is
discrete. Such continuous-discrete models appear for example in the iterative learning
control synthesis (Kurek and Zaremba, 1993). Another example of such systems are
the repetitive processes (Rogers and Owens, 1992).

In this paper a general 2-D continuous-discrete model and a general Roesser
type model will be introduced. The general response formula to the regular general
2-D model will be derived and the necessary and sufficient conditions for the local
reachability and the local controllability will be established. The minimum energy
control problem for the regular general model will be solved.

* Institute of Control and Industrial Electronics, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warsaw, Poland



6 T. Kaczorek

2. Models and Relations Between Them
Consider a general 2-D continuous-discrete model of linear systems described by the
equations

Ei(t,k+1) = Az(t,k + 1) + Bz(t, k) + Cz(t, k)

+Dou(t, k) + Diu(t, k) + Dau(t, k + 1) (1a)
for teRy, ke Z,

y(t, k) = Fz(t, k) + Gu(t, k) (1b)

where (¢, k) = am—g;’—@, z(t, k) € IR™, is the semistate vector, u(t,k) € R™ is

the input vector, y(t,k) € IRP is the output vector E € IR*" A € IRI*",
B € RI*x™ C € RI*®, D; € R*™, i = 0,1,2, F € RP*", G € IRP*™, and
IR?*" is the set of real matrices, IRy and Z, is the set of non-negative real numbers
and integers, respectively.

If ¢#n or det £ =0 when ¢ = n, then model (1) is called singular (or implicit). If
n=g¢ and det £ =0 but

det[Es — A] # 0 for some s € C (the field of complex numbers)  (2)

then model (1) is called regular.
If ¢=n and det £ # 0, then premultiplying (1a) by E~! we obtain

e(t,k+1)= A'z(t,k+ 1)+ B'z(t, k) + C'z(t, k)

(1c)
+Dgu(t, k) + Diu(t, k) + Dyu(t, k + 1)

where A’ :== E~'A, B':= E-1B, C':= E~'C, D} :== E~'D;, i=10,1,2.
The model described by (1c) and (1b) is called standard.

Particular cases of model (1) are:
1) for Dy = Dy =0 the first model of Fornasini-Marchesini type
2) for B=0 and Dy =0 the second model of Fornasini-Marchesini type
3) for B=—CA and D; = D3 =0 the model of Attasi type

Boundary conditions for (1a) (and its particular cases) are given by
z(t,0)=21(t),t € Ry and =z(0,k)=zZ2(k) k€ Z; (3)

where Z1(t) and Z,(k) are known.

Next, consider a general 2-D continuous-discrete model of Roesser type described
by the equations

—E—|: fl(t,k)
Tyt k+ 1)

= fl(t,k) —
_7 [ i } + Bu(t, k) (4a)
teRy, keZ,
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—| T1(t, k —
vt k)=T | 2GR B (4b)
:L‘z(t,]c)
where 7 = g—flég%k)—, Z1(t,k) € IR™ and %(t,k) € IR™ are the semistate

vectors, u(t,k) and y(¢,k) are the same as for (1), E € IRI*®, n := n; + ny,
A€eR>*™, BeRi*™, C cIRP*" and D € RP¥™,

If ¢ #n or det E = 0, then model (4) is called singular (implicit). If ¢ = n
and det £ # 0, then premultiplying (4a) by ! we obtain the standard model with

E = I,, where I, is the nxn identity matrix. Boundary conditions for (4a) are
given by

21(0,k) = Z1(k), k € Zy and Ty(t,0) = 5,(¢) (5)

where (k) and Z3(t) are known. If some or all entries of (1) and (4) depend on ¢
and k, then they are called the models with variable coefficients.

Defining
Ti(t, k) = Ex(t,k+ 1) — Cz(t, k), Ta(t, k) :=z(t, k)

we may write (1) in the form

I —A Z1(t, k)
0 E Ta(t, k+ 1)
u(t, k)
0 B Z1(t, k Dy D D
= R P u(t, k)
I C Za(t, k) 0 0 0
u(t,k+1)
Therefore, model (1) is a particular case of model (4).
Let
E=[E, E)]=[E10]+[0Es), E; € R¥*™, E, ¢ IRI*" (6a)
and
Zi(t, k
z(t, k) == z1(t, k) (6b)
Za(t, k)

Using (6) we may write (4a) in the form
[E10]2(, k) + [0 Es]e(t, k + 1) = Az(t, k) + Bu(t, k)

Therefore, model (4) is a particular case of model (1). Others well-known relations
between 2-D discrete models (Kaczorek, 1993c) can also be extended for the 2-D
continuous-discrete models.
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3. Solutions to the Models

To simplify the notation we write (1a) in the form
Ez(t,k+ 1) = Az(t,k + 1) + Bz(t, k) + Cz(t, k) + f(t, k) (M
where f(t,k) = Dou(t, k) + D1u(t, k) + Dou(t, k + 1)
In this section we shall find the solution z(t, k) to the regular model (7) with boundary
conditions (3).
If condition (2) is satisfied, then there exist non-singular matrices P, Q € IR"*"
such that (Gantmacher, 1959; Gregor, 1992; Kaczorek, 1994a)

Inl —SAl, 0 ]

8
0, Ns—1In, (®)

P[Es— A)Q = [

where nj is the degree of det[Es — A], ny :=n —ny, A; € R"x"1 N g IR?2x72 jg
a nilpotent matrix with index »(N¥~! #0 and N¥ =0).

It is assumed that z;(t) and u(t, k) are (v+1) — times differentiable with respect
to t. Premultiplying (7) by P, introducing the new vector

xl(t,k

Q lz(t, k) = |: k; jl , z(t, k) €IR™, zy(t, k) € R™

T2 t;
and using (8) we obtain

PEQQ‘la':(t, k+1)= PAQQ‘lx(t, kE+1)+ PBQQ“lr(t, k)
+PCQQz(t, k) + Pf(t, k)

and
:il(t, k+ 1) = Alzcl(t, k + 1) + Bll.’l:l(t, k‘) + Blgiﬂg(t, ’C) (9 )
a
+C1121(t, k) + Croza(t, k) + fi(t, k)
Ni‘g(t, k + 1) = mz(t, k + 1) + Bglml(t, ]C) + Bzg.’ﬂz(t, k)+
Cariy(t, k) + Cazia(t, k) + falt, k) : (9b)
for t € Ry, k€Zy
where
B t
PBQ = 11 B , PCQ = Ci1 Cia ’ PFE) = fi(t, k)
By By Ca1 Ca fa(t, k)

The submatrices Bjj, Cj;, ij = 1,2 and the vectors fi(t, k), fa(t, k) have dimen-
sions compatible with the dimensions of #; and z, respectively.

Knowing (3) we can find the boundary conditions for (9) in the form

[ .’L‘]_g(t)

ng(t)

.| = Q—lil(t% te€lRy, [ i:logz; ] = Q_1§2(k)> keZ, (10) '
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Note that equations (9) are coupled by the matrices Bj,, Bg1, C12 and Cy; and if
at least one of the matrices is non-zero then the equations cannot be solved indepen-
dently.

To find z,(¢,k) and z3(t,k) the solutions to (9) with (10) let us consider the
equations for k=0

z1(t,1) = A1z1(t,1) + Fio(t) (11a)
Nia(t, 1) = za(t, 1) + Faolt) (11b)

where
Fio(t) := Br1z10(t) + Biazao(t) + Cr1210(t) + Cra20(t) + f1(t,0) (12a)
Fo(t) := Ba1210(t) + Baz@2o(t) + Card10(t) + Caatao(t) + falt,0) (12b)

are known for given (10) and f1(t,k) and fy(t, k).
The solution z1(t,1) to (11a) has the form (Kaczorek, 1993¢; Klamka, 1991)

t
z(t,1) = eArtzl (1) +/0 e =T Fyo(7) dr (13)

Premultiplying (11b) successively by N, N2 ... N“~! and differentiating with re-
spect to t we obtain

N.‘i?g(t, 1) - Jiz(t, 1) = on(t)
N22P(8,1) = Nay(t, 1) = NFyo(t)

Nvz(t,1) - Nv=128 (1) = Nv- LR )

where zgi)(t, 1) (FQ((?(t)) denotes the i-th order derivative of z,(t,1) (on(t)).

Adding equations (14) and taking into account that N” = 0 we obtain the
solution of (11b) in the form

v—1
zat,1) == 3 N'EQ(0) | (15)
i=0
Substituting k =1 into (9) and using (13) and (15) we obtain
1(t,2) = A1z1(t,2) + Buiza(t, 1) + Biaza(t, 1) + Criza(t, 1) + Claza(t, 1)

t
+f1(t,1) = Ayz1(t,2) + Byy [6A1t$'10(1) +/ e#10=7) Fy(r) dT]
0
v—1
+Biz[ = YONFR®)] +Cun [Arertzto(1) + Fio(t) (163)
i=0

1 v—1 .
+A1/ eAl(t—T)Flo(T) dT] -+ Cl2 [ — ZN1F2(6+1)(t)] + fl (t, 1)
0 i=0

= Alzz:l(t, 2) + Fll(t)
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and

Nitz(t, 2) = :L‘g(t, 2) + Bgll‘l(t, 1) + Bzzzz(t, 1) + C21.1.31(t, 1) + szi:z(t, 1)

1
+£o(t,1) = 2a(t,2) + By [eAI‘:c’m(l)+/ e410=7) Fyo(7) dr
0

v—1
+B2a [~ SNTER (1)) + O [AreArialo(1) + Fuo(t)
=0

t v—1 .
+A; / eAr1(t=7) Fy (1) dr] + 022[— ZNinE(‘)"'l)(t)J + fo(t, 1)
0

i=0

= ZL‘g(t, 2) + F21(t)

where
t
Fi(t) =4 [GA‘txﬁo(l) +/ e (t=7) Fyo(1) dT] + C11F10(t)
0

v—1
—Z [BlzNiFZ(B)(t) + ClzNin((z)-*-l)(t)] + fl(t, 1)

1=0
Pay(t) := 7» [e*"ltm’lo(l) + / A=) Byo() dr| + o1 Fio(t)
—Z (BN FD (@) + CooN FSO@)] + a2, 1)
Ay = By + Cii4s, Az := Ba1 + Ca1A;

The solutions of (16) have the form

t
z1(t,2) = etriz) (2)+/ eM (=T Fy (1) dr

2(t,2) = ZN‘Fé;)(t)

Similarly, substituting k = 2 into (9) and using (17) we obtain

(16b)

(17a)

(17b)

$'1(t, 3) = Al.’l:l(t, 3) + Bn:l:l(t, 2) + Blgxz(t, 2) =+ Clli‘l(t, 2) + Clz.i'g(t, ].)

t
+f1(t, 2) = Al.’L‘l(t, 3) + B3 I:eAlt:Bllo(?) + / eAl(t_T)Fll(T) dT]
0

v—1
+B1a [ = SN ED()] + O [Aretitety(2) + Fu(t)
1=0

t v—1 ]
A / e (=T Fy (7) dr] +C1a [ - S NETW] + £4,2)
0

i=0

= All‘l(t, 3) + Flz(t)

(18a)
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and
N(l',‘z(t, 3) = .’132(t, 3) + B21$1(t, 2) + Bgzxz(t, 2) + Czli‘l(t, 2) + szi'g(t, 2)
13
+f2(t,2) = z2(¢,3) + Bas [eAI’w’m(2) + / eAr(t=T) (1) dr]
0
v—1
+Ba [ = SN (0)] + Con [ dretitato(2) + Fua(t) (18b)
i=0
t v—1 .
+A1/ eAl(t—T)Fll(T) dT] + sz [ — ZN’F2(1+1)(t)] + fg(t, 2)
0 i=0
= :L'Q(t, 3) + Fzz(t)
where

t
Fia(t) = A [BA‘tfﬂllo@) '*‘jo e (=T Fy (1) dT] + Cr1Fu(t)

v—1
=3 [BuN ) + CuN EI @) + £1(2,2)
=0

t
Fas(t) := Ay [EA‘tm'lo@) +/ et (=T Fy (1) dT] + Ca1 F11(t)
0

v—1
S [BaN D) + 0N FEI @) + £a(1,2)

1=0

Continuning this procedure after k steps we obtain

i
21(t k) = eArtal (k) +/ A =D Fy () dr (19a)
0
teRy, keZ,
v—1 ) . ’
23t k) = — D NF( (1) (19b)
=0

where Fy ;_1(t) and Fy;-1(t) satisfy the equations

t
Fl,lc(t) = Zl [BA‘tﬁao(k) + / eAl(t—T)Fl,k_l(T) dT] + CllFl,k—l(t)
0

v—1 ) . (208.)
> [BuN’Fzgflz_l(t) + Cl2N’F2(fzj—li(t)] + fi(t, k)
=0

t
Foi(t) =4 [eAltm’m(k)—{-/ eArt=TFy o _1(7) dr] + Co1 F k-1(t)
0

=N

- [B2zNiF2(f;3_1(t) + C22NiF2(f;-.}i(t)] + fa(t, k)

i=

(20b)

o
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Py Py

Let P, :=
21 Poy

] be a linear operator (map) defined as follows

PllFl(t) = Zlv/UtCAlgt_T)Fl(T) dr + CllFl(t)

PryFy(t) = _”‘2 [BlzNin(i)(t) + cuNz’Fy“)(t)]
i=0

P Fi(t) = ZZ/OteAl(t_T)Fl(T) d7 + Ca1 Fi(2)

Py Fy(t) = _Vz_:l [BZZNin(i)(t) + CZZNiFZ(iH)(t)]
i=0

and P¥ := PoPo...oP is the k multiple composition of P (PY:=1 the identity).

Using (21) and
ha(t, k) := Aredrzl (k) + fu(t, k)
ha(t, k) = Asertayo(k) + fo(2, k)
we may write equations (20) as
[ Fa@) | _ [ P L | Mm@
=5
| Fax(t) | Fypo1(t) ha(t, k)
It is easy to show that the solution to (22) has the form
[ | k-1 )
t t .
Fii(t) _ Ptk Fio(t) + Eptk,z_l hl(t,z.—}— 1)
[ Far(t) | Fa(t) | = Ro(t, i+ 1)

where Fio(t), Fo(t) are defined by (12).
Therefore, the following theorem has been proved

]) tEIR.thZ}.

Theorem 1. The solution z(t, k) to equation (7) with (3) has the form

efitg! (k) + /teAl("T)Fl,k_l(T) dr
$(t’k):Q u—lo ) tEIR,+, k€Z+
—> N ()
i=0
where Fy i(t), For(t) are given by (23).
Substitution of (24) into (1b) yields the general response formula

etz (k) + /teAl(‘_T)Fllk_l(T) dr

u(t, k) = CQ Vo + Du(t, k),
—Y NI (@)

i=0 teRy, keZ,

(22)

(23)

(24)

(25)
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Using (25) we may find y(t,k) for given u(¢,k) and boundary conditions (3). In
particular case for £ = I,(N =0, 3 = 0) we have.

Theorem 2. The solution z(t,k) to the equation
z(t,k+ 1) = Az(t,k + 1)+ Bz(t, k) + Cz(t, k) + f(t, k) (26)
with boundary conditions (3) has the form

1
m(t,k):ef“az(kH/ ACDF,_\(r)dr, teRy, keZi  (27)
0

where Fi_1(t) is given by

Fy_1(t) = PF-1 [Bal (t) + C31(t) + f(t, 0)]

o (28)
+3pE-i-2 [(B + CA)eA Ty (i + 1) + f(t,i + 1)
i=0

and P; s an operator defined as follows

PF(t) .= (B+ CA) /t A= F(r)dr + CF(t) (29)

4. Local Reachability and Local Controllability

The local controllability of 2-D discrete and continuous linear and non-linear systems
has been considered in many papers (Bergman, et al., 1989; Fornasini and Marchesini,
1976; 1978; Idczak and Walczak, 1992; Kaczorek, 1988a; 1990; Kaczorek and Klamka,
1986; 1987; Klamka, 1983; Roesser, 1975) and books (Kaczorek, 1993c; Klamka,
1991). In this section the necessary and sufficient conditions for the local reachability
and local controllability of 2-D continuous-discrete regular systems will be established.

Consider the regular system described by the equation
Ez(t,k+1) = Az(t,k + 1) + Bz(t, k) + Cz(t, k) + Du(t, k) (30)
which is a particular case of (la) for D = Dy, D; = Dy =0 and of (7) for f(t, k) =
Du(t, k).
Definition 1. System (30) is called locally reachable in the rectangle
[h,r]::{(t,k)EIR+xZ+:Ogtgh,0<k§r} | (31)

if for any boundary conditions (3) with Z1(¢), 0 < ¢t < h, Zy(k), 1 < k < r and
every vector =y € IR" there exists u(t,k) for 0 <t < h, 0 < k < r—1 such that
z(h,r) = zy.

Using

i _ | Pis : . —
Pt = : , 1€ Z.'., F()(t) =
P,

Flo(t)
Fy(t)
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hl(t)k)
h(t, k) = , teRy, ke
(t, k) [ ha(t, §) + Z,
we may write (23) as

k-1

Fy(t) = PEFo(t) + ZPf,;i‘lh(t, i+1)
i=0
k-1 i

Fai(t) = PEFo(t)+ Y _PFri~ h(t,i+ 1)
i=0

From (24) we have

(32)

t v—1 .
z(t, k) = Q1 [eAltxﬁo(k) +/ eM=D R e 1(7) d"'] - Z Q2NiF2(,112_1(t) (33)
0

where @ = [@1, Q2]
Substitution of (32) into (33) yields

1
o(t,8) = Quetriato(k) + [ QueAC-DPI R(r

k=2
+Z/ Qe (=N PF T 2h(r, i + 1) dr —
i=0 0

v—1k—-2

- QN B+ 1)

1=0 j=0
From (12) for f(t,k) = Du(t, k) we obtain
Fo(t) = B#(t) + Cz:1(t) + Du(t, k)
and
h(t, k) = Hev'zl (k) + Du(t, k)

B

where B := PB, C = PC, D= PD, H=
; By,

Let assume that

u(t, k) :=ux for 0<t<h, 0<k<r

where uy, is independent of ¢. In this case formula (34) for (30) takes the form

:
z(t, k) = zpo(t, k) +/ QleAl("T)P{“’:lﬁ drup
0

k-2 At v—1
+Z/ Q16A1(“’)P1’°,:‘_2D dru;y; — Z
i=0 V0 i=0

v—1k-2

=3 QN [pzklt-iﬂﬁ} (i)u,-+1

i=0 j=0

=0

)dr

v—1

Z:Qﬂvi [P;,TIFD(U] R (34)

C
+ 1
Ca

7

Q,N? [sz,t_lﬁ]( )

Ug

(35)

(36)
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where

t .
Z3e(t, k) = QueAitalo(k) + / Quett-DPy (B3 (r) + Ci(r)) dr

k-2 ¢
+Z/ QreM =N PFTi=2eAiTyl (i 4 1)dr
i=1 70

v—1 R . (%) (37)
=Y QN [PE; (Baa(t) + Caa(1))]
i=0
v—1k-2 ) ) ()
—Z szzNz {P;,;]_ZHCAIt] z10(j +1)
1=0 j=0
Theorem 3. System (30) is locally reachable in rectangle (31) if and only if
rank[Ro,Ry,...,R,—1]=n (38)
or
rank(Vo,Vi,...,Vi_1i]=n (39)
where
h Ahenypi A S~ il A1)
R,_;_1=R(h) ::/ Qe _T)Pl“’TD dr — Q2N? [P-ihD] (40)
0 j=0
1=0,1,...,r—1
Vi = V;(h) := R;RT and T denotes the transposition.
Proof. Using (36) for t = h, k =r, (37) and z(h,r) = z; we obtain
Uo
U
oy —wuelh,r)= | Ro, Ry, .., Recy | | (41)
Ur-1

From (41) it follows that for any boundary conditions (3) and every vector z; there

exists a sequence wuo,uy,...,ur—1 if and only if (38) holds. The equivalence of con-
ditions (38) and (39) can be shown in a similar way as for 1-D case (Klamka, 1991).
|

In particular case for (26) with f(¢,k) = Du(t, k) we obtain.

Theorem 4. System (26) with f(t,k) = Du(t, k) is locally reachable in rectangle
(81) if and only if

rank[Rg, Rl, ey R,-_1] =n (42)
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or
rank[Vo,V1,...,Vec1]=n (43)

where

h
R; ;:/ Qe Pipdr (44)
0 i=0,1,...,r—1

V; = RiRY
and the operator P, is defined by (29).

Example. Consider system (26) with

32[01]) C:[lo], A:[l o]
10 0 1 0 2
£(t,k) = Du(t, k) = [ ; } u(t, k)

To check the reachability of the system in rectangle (31) with h = 1, r = 2 using (44)
we calculate
e—1
0

h h T
Ry = / A1 p Ddr = / e#2(h=T) [(B+OA) / eA(h_TI)dn—l—C‘] dr D
0 0

[5("’ +1)‘6}

From (42) for r = 2 we have

h 1
RO:/ eA<h—T>P£DdT:/ eA"drD=A"'[eA - I|B =
0 0

e—1

, e
1 =2
0, —2—(e2+1)—e:l ‘

Therefore, by Theorem 4 the system is locally reachable in the rectangle (Bergman
et al, 1989; Fornasini and Marchesini, 1976).

To find a sequence {ug,u1} which transfers the system from the boundary con-
ditions

rank[Ro, R1] = rank [

il(t)=“], t € Ry, @(k):{
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to the desired final state z;(t) =

1 ] at the point (1,2) we use the formula
R
z; — A 3y(r) — / At [P, (Bay(r) + Ca1(r)) + (B + CA)eAT 2, (1)] dr

0
U1
Ug

= [Ro, R1]

Taking into account that

1-2 | e + e
Ty —el%y(2) = , B+ CA)eA™z4(1) =
5 —etT2(2) [1_62_ ( )T Ty(1) o 4 96
i e’
P Bzi(1)+ Cz:(7)) =
(Bam+cam)=| [

/ cA(- 1)[ (Bxl(r)+Ca:1(T)) +(B+CA)eAz (1)] dr

0
e2+e
- %62—26+—;-

we obtain the equation
e—1, e u —e?2 —3e+1
0 l(ez—f-l)—e w | -—262-{-28-{--1-
©2 0 2 2

(e+1)(1—Te+ 9e? — €3)

and

up | (e—1)3
w | 1+ 4e — 9e?
-1

Definition 2. System (30) is called locally controllable in rectangle (31) if for any
boundary conditions (3) with Z1(¢), 0 <t < h, Zy(k), 1 < k < r there exists u(t, k)
for 0<t<h, 0<k<r—1 such that z(h,r)=0.

Theorem 5. System (30) is locally controllable in rectangle (31) if and only if con-
dition (38) or (39) is satisfied.

Proof. Using (36) for ¢t = h, k =r, (37) and z(h,r) =0 we obtain (41) for z; = 0.
From (37) for ¢ = h, k = r it follows that for any boundary conditions Qe41hz/(r)
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is any n-dimensional vector. Therefore, there exists a sequence ug,uy,...,u,—1 sati-

sfying (41) for z; = 0 if and only if (38) holds. |

From theorem 4 and 5 we have the following important

Corollary. For the 2-D continuous-discrete system (30) the local controllability is
equivalent to its local reachability.

5. Minimum Energy Control

The minimum energy control problem for 2-D discrete linear systems has been con-
sidered in many papers (Kaczorek, 1988a; 1990; Kaczorek and Klamka, 1986; 1987;
Klamka, 1983; 1991; 1993). In this section the problem will be extended for regular
2-D continuous-discrete linear systems.

Cousider system (30) and the performance index

I(u) := z_: ul Qu; (45)

where @) is the m x m symmetric and positive definite weighting matrix.

The minimum energy control problem for system (30) can be stated as follows. Given
the matrices E, A, B,C, D of (30), the weighting matrix @, the numbers h,r and
the boundary conditions Zi(t), 0 < t < h, Z3(k), 1 < k < r, find a sequence
Ug, U1, . .., Ur—1 which transfers the system to the desired final state z;,z(h,r) = 2y,
and minimizes the performance index (45).

To solve the problem we define the matrix

r—1
Wq =3 RQ'Rf (46)

i=0

where R; is defined by (40). It is easy to show that the matrix (46) is non-singular
if and only if system (30) is reachable in (31). Thus, we may define the input vector

U= Q' RIWS (g —mhe),  k=0,1,...,r—1 (47)
where z3. is given by (37) for t = h, k =r.
Theorem 6. Let us assume that
1) system (80) is reachable in rectangle (31),

i) ux 1is any input defined for k € [0, r — 1] which transfer system (30) to x;.
Then input (4{7) accomplishes the same task and

I(3) < I(=w) (48)
Moreover, the minimum value of (45) is given by

I(@) = (25 — ze) T W5 (z5 — e) (49)
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Proof. First we shall show that input (47) provides z(h,r) = z;. Using (36) for
t=nh, k=r,(40), (47) and (46) we obtain

r—1 r—1
w(hlr) = Tpe +ZRzaz = Tpe+ ZRiQ_IRg‘WC;I(.'L‘f — :cbc) = zy
i=0 i=0

Since u; and u; transfer system (30) to the same z; then

r—1 r—1
Y R = ) " Riil;
=0 i=0

and

r—1

> Rifm —w] =0 (50)

i=0

From (50) and (47) it follows that

r—1 r—1
> @ — wTRTWS (ef — 240) = > T - ) Qu = 0 (51)
1=0 1=0

Using (51) it is easy to show that

r—1 r—1 r—1
DuQm =Y il Qu + > fw — )T Qu: — u] (52)
i=0 i=0 =0

Inequality (48) holds since the last term in (52) is always non-negative.
To obtain the minimum value of (45) we substitute (47) into (45).

r—1 r—1 T
1@ =3 Q=3 [Q7 FTWg'(es - 2uo)] Q@' RIWg (s - mu]
i=0 1=0
r—1 .
= Z(:L‘f — :L‘bc)TWQ_lR,'Q_lR?WQ_I(:L‘f - :L'bc) = (.’L‘f - Z‘bc)TWQ_l(:L‘j — Tpe)
1=0

In particular case for E = I,, we obtain the results presented in (Kaczorek, 1994b).

6. Concluding Remarks

The general 2-D continuous-discrete model (1) for linear systems and the general 2-D
Roesser type model (4) for linear systems have been introduced. The solution (24)
to the regular model (7) with boundary conditions (3) and the general response for-
mula (25) have been derived. The necessary and sufficient conditions for the local
reachability (Theorem 3) and the local controllability (Theorem 4) of the regular
2-D model (30) have been established. It has been shown that for the regular 2-D
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continuous-discrete linear systems the local controllability is equivalent to their local
reachability. The minimum energy control problem for the regular 2-D continuous-
discrete linear system (30) has been solved (theorem 6). An extension of Theorems 1,
3, 4, 5 and 6 for the regular model (1) is straightforward. An extension of the above
considerations for singular model (1), which does not satisfy condition (2), is not easy
and it will be considered in subsequent paper.
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