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A FAST CONVERGING ALGORITHM
FOR LANDAU’S OUTPUT ERROR METHOD

MoriTz HARTENECK*, ROBERT W. STEWART*

In this paper an approach to on-line ARMA parameter estimation based on a
pseudo-linear regression and a QR matrix decomposition is developed. The
algorithm has proven to be stable and has fast convergence properties if the un-
known ARMA model satisfies the strictly positive real condition. The derivation
of the algorithm is straightforward and the computational complexity is O(N?),
however, fakt versions of O(NN) computational complexity are readily available.

1. Introduction

Identification of the parameters which form a model of an unknown plant or transfer
path is a very important issue in many control and signal processing applications such
as controller design or in acoustic noise cancelation applications. In situations where
the parameters of the plant or transfer path are non-stationary or not-known a prior:
then the use of on-line adaptive identification algorithms is a common approach. As a
moving average model (MA) requires many adjustable parameters to model the plant
satisfactorily usually auto regressive moving average (ARMA) models are preferred.
However, the estimation algorithm becomes very complex and due to the non-qua-
dratic nature of the performance surface the algorithm can converge to local minima.

Therefore many adaptive filtering algorithms for ARMA models have been devel-
oped such as full gradient or simplified gradient algorithms (Shynk, 1989). However,
these algorithms exhibit a slow convergence if they are initialized in regions with a
small gradient (i.e. close to local maxima, minima or saddle points) and can even con-
verge to a local minimum yielding a non-optimal solution. To increase convergence
speed of these algorithms, variants which incorporate the inverse of the autocorrela-
tion matrix have been proposed but the on-line calculation of this matrix bears a high
computational burden in addition to the computational complexity introduced by the
weight update schemes. Furthermore, the necessary dynamic range of the algorithm
is considerably increased.

One way to obtain simpler parameter estimation algorithms is to apply a pseudo-
linear regression in the derivation of the algorithm as done in Landau’s output error
method (Landau, 1976) and in the signal processing community by Feintuch (1976).
This method is shown to converge for unknown systems which satisfy the strictly
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positive real condition (Ljung and Séderstrém, 1983). To overcome this strictly pos-
itive real constraint adaptive filtering algorithms based on hyperstability have been
proposed (Larimore et al., 1980; Johnson et al., 1981) but these assume some prior
knowledge of the unknown system.

In this paper a parameter estimation algorithm based on a pseudolinear regression
and an orthogonal matrix decomposition is presented which operates on data values
directly and therefore reduces the necessary dynamic range for computation. The
algorithm shows rapid convergence even in noisy conditions and is able to track system
changes effectively.

In Section 2, the algorithm is derived and some comments on convergence and
computational complexity are made. In Section 3, a hierarchical signal-flow-graph
representation is presented which is the basis for fast versions of the algorithm which
can be derived using algorithmic engineering techniques as shown in (Harteneck et al.,
1996a; McWhirter, 1992; Proudler and McWhirter, 1994). In Section 4, simulation
results are presented which show the performance of the algorithm in different set-ups.
Finally, in Section 6, some concluding remarks are made.

2. Derivation

The output (k) of the structure shown in Fig. 1 at time & can be written as

M-1 L—-1
k) = > au(R)ulk — i)+ Y bi(k)g(k —1) (1)
1=0 i=1

where u(k) is the driving input, §(k) is the output sequence of the estimation al-
gorithm and {a} and {b} are the adaptive feedforward and feedback parameters,
respectively. Note that this is a representation of Landau’s output-error model (Lan-
dau, 1976; Ljung and Soderstrém, 1983). The error signal e(k) of the estimation
algorithm can then be written as

e(k) = d(k) — §(k) (2)
where d(k) is the desired signal which is composed as

d(k) = y(k) + n(k) (3)
where y(k) is the signal to be estimated and n(k) is additive observation noise
(cf. Fig. 4). It is assumed that z(k) and n(k) are statistically independent and

as y(k) is calculated by a similar model as (1), y(k) and n(k) are also statistically
independent.
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Fig. 1. Underlying structure.

In a least-squares formulation, the aim of the parameter estimation algorithm is
to minimize the power of the error signal e(k) assuming the parameters {a} and
{b} to be fixed for all time prior to k. In the following equations this condition is
denoted by subscript ©. The performance criterion we wish to minimize is therefore

k
(k) =Y XN (k—ilg (4)

1=0

where A is a forgetting factor slightly smaller than 1 which enables the parameter
estimation algorithm to adapt to changing environments. To present this performance
criterion in a more structured way it is useful to define some vectors and write it in
a matrix-vector notation. The necessary definitions are

a(k) = [ao(k) a1(k) ... aam—1(k)]" (5a)
b(k) = [ba (k) ba(k) ... bp_1(k)]T (5b)
u(k) = [u(k) w(k —1) ... w(k—M+1)]T (5¢)
G(k)le = [i(k - e 9k —2lg ... ik - L+1)|g]" (5d)
g(k) = [k - 1) G(k —2)... g(k— L+ 1)]" (5€)
d(k) =[d(1) d(2) ... d(k)]* (5f)
e(k) = [e(1) e(2) ... e(k)]” (5g)
A(k) = diagonal(A\*"1 A2 . A1) (5h)

where “T” denotes matrix transpose. In particular, note the difference between (5d)
and (5e). The elements of (5d) are calculated assuming the adaptive weights were
fixed for all time prior to k, whereas (5e) uses the time varying weights, i.e. (5e) is
composed of the output signal §j(k) of the parameter estimation algorithm. Now (4)
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can be written as

- <112
d(1) uT(1) 97Dl
, d2)| |v7@) 37 @le| [ak)
k) = ||[A2(k - -
€0) = |AF(b) | o
. S——
d(k) uT' (k) 9" (Mlo) e
N AN — ”
L d(k) k)le J
= |AR(R)d(k) - AE(R)A(K)| O ()| (6)
where || - || denotes Euclidean norm. The estimation algorithm has to minimize

the norm of (6) by choosing the adaptive parameters accordingly. This is, however,
a nonlinear minimization problem because of the dependency of the data matrix
A(k)|g on the adaptive parameters 0.

One possible approximation is to substitute §i(k)|g by #(k) (the output sequence
of the parameter estimation algorithm) and so break the parameter dependency of
A(k)lg on ©. Equation (6) can then be approximated as

- =112

dn)] v y;a)
A a@)| |«"@) 72| [a
ew ~ |aioy ||| &gﬂ

d(k) UT(k) AT(k) A (k)

N —

L d(k) A(k) i

~ ||AE(k)d(k) — A2 (k ®|° (7)

This approximation is known in the literature as pseudo—linear regression (PLR) and
its convergence criteria are reviewed in (Ljung, 1987; Shynk, 1989) and studied in
(Ljung and Séderstrom, 1983). In (Ljung and Séderstrom, 1983) a convergence proof
for the PLR is given for the sufficient-order case if the transfer function 1/B(z) of
the unknown system is strictly positive real (SPR), i.e

1
Re[m—§}>o, Vor<w<T
where B(z) =1+ ZL 12—t For the undermodeled case some useful results can
be found in (Regalia, 1994)

To achieve the. minimization of (7), this equation is premultiplied by a kx &
unitary matrix Q(k) to produce a structured matrix equation which is easy to solve.
The unitary matrix Q(k) is chosen in such a way that

Q@Mﬂ@ﬂm={%ﬁ} ®
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where R(k) is an (M +L — 1) x (M + L — 1) upper-triangular matrix and 0 is a
(k=M —~L+1)x(M+L~1) zero matrix. This matrix decomposition is referred to
in the literature as QR decomposition (Haykin, 1991; Golub and Van Loan, 1989).
Premultiplying (7) with Q(k) and using (8) gives

£k) ~ |QUk)A% (k)d(k) — Q(k)AZ (k) A(k)O (k)|

&

P23

(9)

where the vector Q(k)A%(k)d(k) is partitioned in a suitable way into the vectors
p(k) and v(k). As R(k) is an upper-triangular matrix, the parameters which mini-
mize this performance criterion can be extracted via backsubstitution from

R(k)O(k) = p(k) (10)
In (Haykin, 1991) a time-recursive version of the above algorithm is derived which
can be summarized as N
R(k) ATR(K—1)
=J(k 11
[ o } ) [uT(k) 7 (b e
p(k) Aep(k - 1)
=J(k 11b

where §(k) is the last element of Q(k;)A% (k)d(k) and J(k) isan (M+L—1) x (M +
L — 1) orthogonal rotation matrix which annihilates [w”() §"k)]. One way to
construct J(k) is to use a sequence of M + L — 1 Given’s rotations which each zero
one element of [w7(k) §”(x)]. Note that all the matrices of the algorithm are of fixed
size and so it is possible to implement the algorithm on-line.

If standard Given’s rotations are used for the calculation of the orthogonal matrix
J(k), then 2N? 4+ 7N multiply-accumulates (MACs) and N inverse-square-roots are
needed for the computation of the rotation (11) and 1N? + 1N MACs and N
divides are needed for the backsubstitution (10) where N is the number of adaptive
parameters,ie. N =M + L — 1.

In applications where the parameter vector @ (k) is of no interest but the error
signal e(k), or the parameter vector is only needed after adaptation, the potentially
unstable backsubstitution step can be circumvented by applying the technique of
direct residual extraction (McWhirter, 1983) which calculates the a-posteriori error
residual directly from

e(k) = 6(k)y(k) (12)
where (k) is defined by (11b) and ~(k) is the likelihood factor which is defined as
V() = 7T (k)7 = w7 Q(k)m ' (13)
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Table 1. Parameter estimation algorithm for Landau’s
output-error method.

1 R=0;p=0;

2 FOR k=0 TO SIMTIME DO

3 R=): R, p=A%.p;

4 FOR i=0 TO L-1 DO

5 TL+M-1,i = Uk—i}

6 FOR i=0 TO M -2 DO

7 TL+M—1,L+i = Jk—i—1;

8 PL+M—1 = di;

9 6k = 1;

10 FOR i=0TO L+ M -2 DO
11 IF r;; == 0 THEN

12 c=0; s=1;

13 ELSE

14 d=(r}; +T%+M—1,i)—%;

15 c=riidy s=Trym—1,"0d;
16 FOR j=i TO L+ M —2 DO
17 Tij =C-Tij + 8 TLy+M-1,4;
18 TL+M—-1,j = C TL+M—-1,5 — 5 T4 j;
19 Pi=C pi+ 8 DM+L-1;

20 PLyM—-1 = C PL+M~1— S Di;
21 (Sk, = (Sk <G

22 ek = PL+M—1 - Ok;

23 Uk = di, — ey;

where w7 = [0 ... 0 1] is a pinning vector of appropriate dimension. In Tab. 1 the
proposed algorithm is shown in pseudo-code applying the direct residual extraction
method. If the parameters are needed after adaptation, then the backsubstitution
step (10) has to be performed once when, the matrix R(k) is well behaved and so no
numerical problems occur.

By using this technique, the computational complexity reduces to 2N? + 8N
MACs and N square-roots for the rotation and the calculation of the likelihood
value.

3. Signal-Flow-Graph Implementation -

In Fig. 2, a signal-flow-graph representation of the proposed algorithm is shown for 3
feedforward and 2 feedback parameters for the case of direct residual extraction. The
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d(k)

Fig. 2. Signal-flow-graph implementation of the proposed algorithm for
3 feedforward and 2 feedback parameters.

shown array consists of two types of cells, internal and boundary, where the boundary
cells calculate the rotation parameters of the rotations which zero the elements of
[uTk) §° )] (cf. (11)) and the internal cells perform the actual rotations. The
implementation of these two types of cells depends strongly on the environment where
the algorithm is used (e.g. floating point, fixed point, dynamic range) and which type
of rotation is therefore preferred. Some specific implementations can be found in
(Haykin, 1991; 1996; McWhirter et al., 1995). In Fig. 3 one possible set of cells
implementing standard Given’s rotations is shown.

4. Simulations

Representative simulations were carried out using a system identification set-up
(Fig. 4) as used in (Astrém and Eykhoff, 1971). There, the driving input u(k) is
a pseudo-random binary sequence (PRBS) and the unknown system is realized by

y(k) = u(k — 1) + 0.5u(k — 2) + 1.5y(k — 1) + 0.7y(k — 1)
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Fig. 3. Realization of the internal and boundary cells implementing a
standard Given’s rotation.
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Fig. 4. System identification set-up with feedback path.
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which has a complex conjugate pole pair at 0.75+ 30.3708 and a single zero at —0.5.
The observation noise n(k) is realized in the simulations as a pseudo-random sequence
(PRS) with a Gaussian distribution which is independent of the input sequence u(k).
The feedback path is meant to simulate the effects of online simulation of a closed
loop controller.

The first set of simulations, which is shown in Fig. 5, is parameter identifica-
tion for the noise free case, i.e. n(k) = 0, and no feedback path present. In Fig. 5,
the averaged squared error (over 20 simulations) against time are shown for (a) an
IIR least mean squares (IIR-LMS) algorithm (Landau, 1976; Feintuch, 1976) with 3
feedforward and 2 feedback parameters and (b) for the proposed IIR-QR algorithm
with 3 feedforward and 2 feedback parameters. The step size for the gradient based
algorithm was p = 0.001 for all parameters and the forgetting factor was chosen
to be A = 0.999 which results in the excess mean squared error (which is, in this
case, higher than the noise floor). The proposed algorithm converges almost instanta-
neously to the real parameters, which are found, in this case, as well by the IIR-LMS
algorithm. Simulations for higher order unknown systems as shown in (Harteneck et
al., 1996b; Harteneck and Stewart, 1996) show that the IIR-LMS can converge to a
local minimum while the proposed algorithm finds the real parameters. In (Harteneck
et al., 1996b; Harteneck and Stewart, 1996) the algorithm is compared with an IIR
recursive prediction error (ITR-RPE) (Haykin, 1996) which is outperformed but in the
presented (low order) simulations the IIR-LMS and the ITR-RPE behave very similar.

The second set of simulations was system identification of the same unknown
system but with an observation noise present, i.e. n(k) # 0. The level of observation
noise was chosen such that a signal-to-noise ratio in the desired signal d(k) of —20dB
was achieved. In Fig. 6 the averaged squared error (over 20 simulations) is shown for
the (a) IIR-LMS algorithm and the (b) IIR-QR algorithm with the same parameters
as in the first set of simulations. It can be seen that the IIR-QR. algorithm adapts
again very quickly to a low mean squared error which this time is the noise floor.
To demonstrate that the proposed algorithm converges to the real parameters, the
learning curves of the adaptive parameters are shown in Fig. 7 which reveal that the
true parameters are found. The IIR-LMS converges to the same solution but with a
much slower rate of convergence.

The third set of simulations was system identification with the same unknown
system, observation noise and a feedback path present. The feedback path was mod-
eled as a delayed and attenuated version of the unknown system. The simulation
results obtained with the proposed algorithm showed no degradation compared to
the second set of simulations (c.f. Figs. 6 and 7). The algorithm converged quickly
to a low minimum mean squared error reaching the true parameters. Trials with the
ITIR-LMS algorithms resulted in instability of the algorithm which is caused by the
feedback nature of the set-up and therefore an ill-conditioned autocorrelation matrix
of the input signal.

Finally, Table 2 and 3 show the results of the identification of a real world acoustic
transfer path to compare the number of parameters necessary to model the system.
The 16 bit/8 kHz data was captured inside two acoustic enclosures which are slightly
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Fig. 5. Ensemble squared error signals (over 20 simulations) of sys-
tem identification with no observation noise, (a) IIR-LMS al-
gorithm, (b) IIR-QR algorithm.
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Fig. 6. Ensemble squared error signals (over 20 simulations) of sys-
tem identification with 15dB observation noise, (a) IIR-LMS
algorithm, (b) ITR-QR algorithm.
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Fig. 7. Adaptive parameters with SNR of —20dB in the desired signal d(k).

Table 2. Real world data: slightly reverberant environment.
| FIR-LMS | ERLE || TR-QR | ERLE |
50taps | 1.6dB || L=M=9 | 1.5dB |

100taps | 29dB || L=M =12 | 2.7dB
150 taps | 42dB | L=M =21 | 4.3 dB

Table 3. Real world data: less reverberant environment.
FIR-LMS | ERLE | IIR-QR | ERLE
50 taps 71dB | L=M=19| 7.1dB

100 taps | 10.2dB || L=M =30 | 10.8 dB
150 taps | 11.2dB || L=M =35 | 11.5 dB

reverberant (length of impulse response about 0.06 seconds, Table 2) and less rever-
berant (length of impulse response about 0.02 seconds, Table 3). The criterion chosen
for this comparison was the power of the desired signal d(k) divided by the power
of the residual error signal e(k) after adaptation, which is called in echo cancelation
systems echo-return-loss-enhancement (ERLE). The results show that to achieve the
same amount of ERLE, the IIR-QR needs considerably less adaptive parameters than
the FIR-LMS algorithm.
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Table 4. Complexities of different algorithms (N =L+ M —1).

Algorithm MAC’s S}%éljgse Divides
IIR-RPE Algorithm with Simpli- | 5N2 + 3N 0 1
fied Gradient (Shynk, 1989)
IIR-LMS Algorithm (Feintuch, 2N 0 0
1976)
IIR-QR with Direct Residual Ex- | 2N2 + 5N N N
traction
Square root free IIR-QR with Di- | 2N? + 8N 0 2N
rect Residual Extraction

5. Computational Complexity

In Table 4, the computational complexities of the proposed algorithm, a square-root
free version and two other adaptive IIR algorithms are shown where N is the order
of the adaptive filtering problem (N = L+ M —1). The IIR-QR algorithm has a lower
computational complexity than the simplified gradient RPE. However, it needs more
divisions and square-roots to obtain the results but this is compensated by the lower
number of required MAC’s. In the square-root free version, the number of required
divisions is increased and therefore the overall complexity is actually not reduced.
(On a state of the art signal processor, an inverse square-root needs 11 clock cycles
whereas a square-root needs 12 clock cycles and a division 8 clock cycles (Motorola,
1989; Texas Instruments, 1991).) Compared with the IIR-LMS algorithm proposed
by Feintuch, the IIR-QR algorithm is a factor of N more complex but it clearly
converges faster than the IIR-LMS algorithm (Shynk, 1989).

To reduce the computational complexity from O(N?) to O(N) fast versions are
available for the direct residual extraction method, as presented in this paper, and a
version with parallel weight extraction as shown in (Haykin, 1991). These derivations
are presented in (Harteneck et al., 1996a) based on a derivation using algorithmic
engineering techniques applied to the representation shown in Fig. 2.

6. Conclusion

In this paper we propose a straightforward and efficient parameter estimation algo-
rithm for ARMA model estimation. The algorithm is realized by applying a pseudo-
linear regression (PLR) technique and a QR matrix decomposition to the non-linear
optimization problem and requires O(N?) computations. The PLR technique is well
studied and convergence proofs are known for strictly positive real systems in the
sufficient order case. A signal flow graph representation of the proposed algorithm
is shown which can be used to develop fast O(NN) and parallel realizations of the
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algorithm. To date floating point simulations with synthetic data and real acoustic
data have demonstrated that the proposed algorithm is a powerful and stable algo-
rithm and superior to gradient search based algorithms in terms of adaptation speed,
achievable minimum mean squared error and computational requirements. Another
advantage is that the algorithm remains stable if a feedback path is present from the
output to the input of the unknown system, a constellation which is often encountered
when on-line modeling of a plant in a feedback controller set-up.
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