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In this paper we study the inference of node and edge replacement graph grammars. We search for frequent subgraphs and
then check for an overlap among the instances of the subgraphs in the input graph. If the subgraphs overlap by one node, we
propose a node replacement graph grammar production. If the subgraphs overlap by two nodes or two nodes and an edge,
we propose an edge replacement graph grammar production. We can also infer a hierarchy of productions by compressing
portions of a graph described by a production and then inferring new productions on the compressed graph. We validate the
approach in experiments where we generate graphs from known grammars and measure how well the approach infers the
original grammar from the generated graph. We show graph grammars found in biological molecules, biological networks,

and analyze learning curves of the algorithm.
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1. Introduction

Noam Chomsky (1956) pointed out that one of the main
concerns of a linguist is to discover simple grammars
for natural languages and study those grammars with the
hope of finding a general theory of linguistic structure.
While string grammars represent language, we are looking
for graph grammars that represent graph properties and
can generalize these properties from finite graph exam-
ples into generators that can generate an infinite number
of graphs. String grammars can be inferred from a finite
number of sentences and generalize to an infinite number
of sentences. Inferring graph grammars will generalize
the knowledge from the examples into a concise form and
generalize to an infinite number of entities from the do-
main.

We developed an algorithm to infer graph grammars
from structured data represented as a graph. In this work
we use graph grammar inference as a data mining tool.
Graph grammars in our study show interesting patterns
and organize data into a hierarchy. We implemented the

algorithms and tested them on synthetic and nonsynthetic
data. For this reason we developed and implemented a
generator which generates a graph from a known graph
grammar. We showed how inferring graph grammars de-
pends on the presence of noise, the complexity of the
graph grammar structure and the number of different la-
bels present in the graph. We show how the algorithms
perform in inferring grammars from biological networks
and how the inference error in this domain depends on the
number of examples in the input set.

2. Related work

A vast amount of research has been done in inferring
grammars. These analyses focus on string grammars
where symbols appear in a sequence. We are concerned
with graph grammars, which can represent much larger
classes of problems than string grammars. Only a few
studies can be found in graph grammar inference.

Jeltsch and Kreowski (1990) did a theoretical study
of inferring hyperedge replacement graph grammars from
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simple undirected, unlabeled graphs. Their paper leads
through an example where from four complete bipartite
graphs (K3,1; K3,2; K3,3; K3,4) the authors describe
the inference of a grammar that can generate a more gen-
eral class of bipartite graphs (K3,n), where n > 1. The
authors define four operations that lead to a final hyper-
edge replacement grammar. Jeltsch and Kreowski start the
process from a grammar which has all the sample graphs
in its productions. Then they transform the initial pro-
ductions into productions that are more general but can
still produce every graph from the sample graphs. Their
approach guarantees that the final grammar will generate
graphs that contain all sample graphs.

Oates, Doshi, and Huang (2003) discuss the prob-
lem of inferring probabilities of every grammar rule
for stochastic hyperedge replacement context free graph
grammars. They call their program Parameter Estimation
for Graph Grammars (PEGG). They assume that the gram-
mar is given. Given a structure of a grammar S and a fi-
nite set of graphs F generated by the grammar S, they ask
what are the probabilities 6 associated with every rule of
the grammar. Their strategy is to look for a set of param-
eters ¢ that maximizes the probability p(E | S, 6).

In terms of similarity to string grammar inference
we consider the Sequitur system developed by Nevill-
Manning and Witten (1997). Sequitur infers a hierarchi-
cal structure by replacing substrings based on grammar
rules. The new, compressed string is searched for sub-
strings which can be described by the grammar rules, and
they are then compressed with the grammar and the pro-
cess continues iteratively. Similarly, in our approach we
replace the part of a graph described by the inferred graph
grammar with a single node and we look for grammar
rules on the compressed graph, and repeat this process it-
eratively until the graph is fully compressed.

Jonyer et al.’s approach to node-replacement graph
grammar inference (Jonyer et al. 2002; Jonyer et al. 2004)
starts by finding frequently occurring subgraphs in the in-
put graphs. They check if isomorphic instances of the sub-
graphs that minimize the measure are connected by one
edge. If they are, a production S — PS is proposed,
where P is the frequent subgraph. P and S are connected
by one edge. Jonyer’s method of testing if subgraphs are
adjacent by one edge limits his grammars to descriptions
of “chains” of isomorphic subgraphs connected by one
edge. Since an edge of a frequent subgraph connecting
it to the other isomorphic subgraph can be included in the
subgraph structure, testing subgraphs for overlap allows
us to propose a class of grammars that have more expres-
sive power than the graph structures covered by Jonyer’s
grammars. For example, testing for overlap allows us
to propose grammars which can describe tree structures,
while Jonyer’s approach does not allow for tree grammars.

3. Definitions

We give the definition of a graph and a graph grammar
which is relevant to our approach and the implemented
system. The defined graph has labels on vertices and
edges. Every edge of the graph can be directed or undi-
rected. The definition of a graph grammar describes the
class of grammars that can be inferred by our approach.
We emphasize the role of recursive productions in the
name of the grammar, because the type of inferred pro-
ductions is such that the nonterminal label on the left
side of the production appears one or more times in the
node labels of a graph on the right side. This is the main
characteristic of our grammar productions. Our approach
can also infer nonrecursive productions. The embedding
mechanism of the grammar consists of connection instruc-
tions. Every connection instruction is a pair of vertices
that indicate where the production graph can connect to
itself in a recursive fashion.

A labeled graph G is the sextuple G =
(V,E, u,v,n, L), where V is the set of nodes,E C V x V
is the set of edges, v : V' — L is a function assigning la-
bels to the nodes, v : £ — L is a function assigning labels
to the edges, n :  — 0,1 is a function assigning direc-
tion property to the edges (0 if undirected, 1 if directed).
L is a set of labels on the nodes and the edges.

Example 1. The graph on the left in Fig. 2 has the fol-
lowing components:

V =1{1,2,3,4,5,6,7,8,9, 10},

E={(1,2),(2,3),(2,4),(3,5),(5,6), (5,7), (4,8),
(8,9),(8,10)},

L={a,b,x,y,z},

w=1:a,2:b3:a,4:a,5:b,6:0a,7:a,8:0,9:a,
10 : a),

v=((1,2):2,(2,3) :y,(2,4) : 2,(3,5) : 2, (5,6) : v,
(5,7):2,(4,8) : 2,(8,9) : y,(8,10) : 2),

n=((1,2):1,(2,3):1,(2,4) : 1,(3,5) : 1, (5,6) : 1,
(5,7): 1,(4,8) : 1,(8,9) : 1,(8,10) : 1).

¢

A node replacement recursive graph grammar is the
quadruple Gr = (X, A, T, P), where ¥ is an alphabet of
node labels, A is an alphabet of terminal node labels, A C
>, I is an alphabet of edge labels, which are all terminals,
is a finite set of productions of the form (d, G, C'), where
d e ¥ — A, Gisagraph, C is an embedding mechanism
with a set of connection instructions, C' C V' x V', V being
the set of nodes of G. A connection instruction (v;,v;) €
C implies that derivation can take place by replacing v; in
one instance of G' with v; in another instance of G. All
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the edges incident to v; are incident to v;. All the edges
incident to v; remain unchanged.

Example 2. The grammar on the right in Fig. 2 has a
set P of two productions. If we refer to the nonterminal
graph (with three (.S)s next to the nodes on the left of the
vertical line) as G'1 and to the terminal graph (on the right
of the vertical line) as G2, then the productions are

pP= {(5,01, 1-3,1-4), (S, G2, 1-3, 14)},
Y ={ab,S}, A={ab}, T ={xy,z}
¢

An edge replacement recursive graph grammar is the
quintuple Gr = (X, A, T, Q, P), where X is an alphabet
of node labels, A is an alphabet of terminal node labels,
A C X, I' is an alphabet of edge labels, {2 is an alphabet
of terminal edge labels, 2 C 3, P is a finite set of produc-
tions of the form (d, G, C), G is a graph, where d € T'—),
C' is an embedding mechanism with a set of connection
instructions, C' C (V' x V;V x V, where V is the set of
nodes of G. A connection instruction (v;, v;; vg, v;) € C
implies that derivation can take place by replacing v; and
v, in one instance of G with v; and v;, respectively, in
another instance of G. All the edges incident to v; are in-
cident to v;, and all the edges incident to vy, are incident to
v;. All the edges incident to v; and vy, remain unchanged.
If, in the derivation process after applying a connection
instruction (v;, vj; vy, v;), nodes v; and v; are adjacent by
an edge, we call edge e = (v;,v;) a real edge, otherwise
edge e = (v;,v;) is used only in the specification of the
grammar and we call this edge a virtual edge.

In Fig. 1 we show an example of an edge replace-
ment recursive graph grammar. This example corresponds
to a graph in Fig. 4. The grammar has two productions:
one nonterminal production with (S) on edges and one
terminal production. All nonterminal edges identified by
(S) are real edges. There are two connection instructions
(2-3,6-4) and (1-1,2-2)

We introduce the definition of two data structures
used in our algorithm.

A substructure S of a graph G is a data structure
which consists of: (i) a graph definition of a substructure
SG which is a graph isomorphic to a subgraph of G, (ii) a
list of instances (I1, Io, . .., I;) where every instance is a
subgraph of G isomorphic to Sg.

A recursive substructure recursiveSub is a data
structure which consists of:

(i) a graph definition of a substructure S which is a
graph isomorphic to a subgraph of G,

(ii) a list of connection instructions which are pairs of
integer numbers describing how instances of the sub-
structure can overlap to comprise one instance of the
corresponding grammar production rule,

(2-3, 6-4)
(1-1, 2-2)

Connection instructions

Fig. 1. Edge replacement recursive graph grammar
example.

(iii) a list of recursive instances (IRy,IR2,...,IR;,)
where every instance I Ry, is a subgraph of G. Ev-
ery instance I Ry, consist of one or more isomorphic
copies of S¢, overlapping by no more than one ver-
tex in the algorithm for node graph grammar infer-
ence and no more than two vertices in edge grammar
inference.

We show an example of a recursive substructure in Fig. 3.

In our definition of a substructure we refer to sub-
graph isomorphism. However, in our algorithm we are not
solving the subgraph isomorphism problem. We are using
a polynomial time beam search to discover substructures
and a graph isomorphism to collect instances of the sub-
structures.

4. Graph grammar inference algorithms

The example in Fig. 2 shows a graph composed of three
overlapping substructures. The algorithm generates can-
didate substructures and evaluates them using any one of
the learning biases, which are discussed later. The input
to our algorithm is a labeled graph G' which can be one
connected graph or a set of graphs. G can have directed
or undirected edges. The algorithm starts by creating a list
of substructures where every substructure is a single node
and its instances are all nodes in the graph with the same
node label. Initially, the best substructure is the node with
most instances. The substructures are ranked and placed
on the expansion queue (). It then extends all substruc-
tures in @) in all possible ways by a single edge and a
node or only by a single edge if both nodes are already
in the graph definition of the substructure. We keep all ex-
tended substructures in new(. We evaluate substructures
in new( according to the chosen evaluation heuristic.
The total number of substructures considered is de-
termined by the input parameter Limit. The best substruc-
ture identified becomes the right side of the first gram-
mar production, and the graph G is compressed using this
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Connection
instructions
1-3
1-4

Fig. 2. Graph with overlapping substructures and its graph grammar representation.

best substructure. Compression replaces every instance
of the best substructure with a single nonterminal node.
This node is labeled with a nonterminal label. The com-
pressed graph is further processed until it cannot be com-
pressed any more, or some user-defined stopping condi-
tion is reached (e.g., the maximum number of produc-
tions). In consecutive iterations the best substructure can
have one or more nonterminal labels. It allows us to create
a hierarchy of grammar productions. The input parame-
ter Beam specifies the width of the beam search, i.e., the
length of ). Algorithm 1 shows the pseudocode.

Recursive productions are identified during the pre-
viously described search process by allowing instances
to grow and overlap. Any two instances are allowed to
overlap by only one vertex. The recursive substructure
is evaluated along with nonrecursive substructures and is
competing with nonrecursive substructures for placement
on (). Connection instructions are created by determin-
ing which nodes overlapped across instances. Figure 3
shows an example of a substructure that is the right side
of a recursive rule, along with its connection instructions
(Kukluk et al., 2006).

The edge replacement algorithm operates on a data
structure called a substructure (similarly to the algorithm
for node replacement grammar inference). A substructure
consists of a graph definition of the repetitive subgraph
and its instances. We illustrate it in Fig. 4. We grow sub-
structures similarly as in the algorithm for node replace-
ment graph grammar inference, and then we examine in-
stances for overlap. If nodes v; and v2 in G belong to two
different instances (two overlapping instances), we pro-
pose a recursive grammar rule. We determine the type of
nonterminal edge. If v; and vy are adjacent by an edge,
it is a real edge, and we determine its label which we use
to specify the terminating production. If v; and vs are not
adjacent, then the nonterminal edge is virtual. In Fig. 4
we illustrate how we determine connection instructions.

One advantage of our algorithm is its modular de-
sign in which the evaluation of candidate grammar rules
is done separately from the generation of these candidates.

The result is that any evaluation metric can be used to
drive the search. Different evaluation metrics are part of
the system and can be specified as arguments. We have
had great success with the minimum description length
(MDL) principle on a wide range of domains. MDL is an
information theoretic approach (Rissanen, 1989). The de-
scription length of the substructure S given the input graph
G is calculated as DL(S,G) = DL(S) + DL(G|S),
where DL(S) is the description length of the subgraph,
and DL(G|S) is the description length of the input graph
compressed by the subgraph (Cook and Holder, 1994,
2000). An alternative measure is the size heuristic which
is computed as

size (G)
size (S) + size (G|S)’

where G is the input graph, S is a substructure and G|S
is the graph derived from G by compressing each instance
of S into a single node. Here size(t) can be computed
simply by summing the numbers of nodes and edges:
size(t) = vertices(t) + edges(t). The third measure is
called ‘setcover’, which is used for concept learning tasks
employing sets of disconnected graphs. This measure
maximizes the number of positive examples in which the
grammar production is found while minimizing the num-
ber of such negative examples.

substructure
graph definitior Instance 1 Instance 2 Instance 3
o 1 1[3] 11 1[4]
3 X 3 X 5 X M
| 1 28]
| | O
I I
I I
I I
I I

414] /3[9] 4110

Fig. 3. Substructure and its instances while determin-
ing connection instructions (continuation of the
example from Fig. 2).
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Algorithm 1 Graph grammar discovery
1: procedure INFER_GRAMMAR(graph G, integer
Beam, integer Limit)
grammar «— {}
repeat
Q@ < {v]vis anode in G having a unique label }
bestSub « first substructure in )
repeat
new@ — {}
for each substructure S € ) do
newSubs «— extend S in all possible
ways by a single edge and a node
10: recursiveSub «—
RECURSIFY_SUBSTRUCTUREC(S)
11: new® <« new@ U newSubs U
recursiveSub
12: Limit <+ Limit — 1
13: evaluate substructures in new(), main-
tain length(new@) < Beam eliminating substruc-
ture with the lowest value if necessary

14: end for

15: if best substructure in new(@ is better than
bestSub then

16: bestSub < best substructure in new@

17: Q +— new@

18: end if

19: until @ is empty or Limit <0

20: grammar «— grammar U bestSub

21: G «— G compressed by bestSub

22: until bestSub cannot compress the graph G

23: end procedure

Substructure
graph definitior

5 )

RRA
(1-1,2-2), label b

Fig. 4. Input graph (a), substructure graph definition
(b) and four overlapping instances of the repet-
itive subgraph (c).

Our algorithms make use of the substructure dis-
covery algorithm described in Cook and Holder (2000).
This algorithm uses a heuristic search whose complexity
is polynomial in the size of the input graph. The overlap
test is the main computationally expensive addition of our
grammar discovery algorithm and it does not change its
complexity. The number of nodes of an instance graph is
no larger than V, where V' is the number of nodes in the
input graph. Checking two instances for overlap will not
take more than O(V'?) time. The number of pairs of in-
stances is no more than V2, so the entire overlap test will
not take more than O (V') time.

5. Experiments

5.1. Methodology. Having our algorithm imple-
mented, we are faced with the challenge of evaluating its
performance. There are an infinite number of grammars as
well as graphs generated from these grammars. We seek to
understand the relationship between graph grammar infer-
ence and grammar complexity, and so need a measure of
grammar complexity. One such measure is the minimum
description length (MDL) of a graph, which is the mini-
mum number of bits necessary to completely describe the
graph.

In our experiments we measure an error based on the
structural difference. Another approach to measuring the
accuracy of the inferred grammar would be based on a
graph grammar parser. We would consider accurate the
inferred grammars that can parse the input graph. A graph
grammar parser would require a subgraph isomorphism
test which is computationally expensive and much more
difficult in implementation than the error measure we are
using. For these reasons we did not pursue the implemen-
tation of a graph grammar parser.

We would like our error to be a value between 0
and 1. Therefore, we normalize the error by having in the
denominator the sum of the size of the graph used in the
original grammar and the number of nonterminals. We do
not allow an error to be larger than 1. Therefore, we take
the minimum of 1 and our measure as a final value. The re-
striction that the error is no larger than 1 prohibits unnec-
essary influence on the average error taken from several
values by the inferred graph structure significantly larger
than the graph used in the original grammar. We have

Error

. matchCost(g1, g2)+ | #CI — #NT |
=min | 1, . )
size(q1) + #NT

where matchCost(g;, g2) is the minimal number of oper-
ations required to transform g; to a graph isomorphic to
g2, Or g5 to a graph isomorphic to g;. The operations are:
the insertion of an edge or node, the deletion of a node or
an edge, or the substitution of a node or edge label. More-
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over, #C1 is the number of inferred connection instruc-
tions, # N1 is the number of nonterminals in the original
grammar, and size(g;) is the sum of the number of nodes
and edges in the graph used in the grammar production.

5.2. Error as a function of noise and complexity
of a graph grammar. We used twenty nine graphs
from Fig. 6 in grammar productions. We assigned dif-
ferent labels to nodes and edges of these graphs except
three nodes used for nonterminals. As noise we added
nodes and edges to the generated graph structure. We
compute the number of added nodes from the formula
(noise/(1 — noise)) x number_of _nodes. A similar
formula is employed for edges. We generated graphs with
noise from 0 to 0.9 in 0.1 increments. For each value
of noise and MDL we generated thirty graphs from the
known grammar and inferred the grammar from the gen-
erated graph. We computed the inference error and aver-
aged it over thirty examples. We generated 8700 graphs to
plot each of the three graphs in Fig. 5. The first plot shows
the results for grammars with one nonterminal. The sec-
ond and third plots show the results for grammars with
two and three nonterminals.

We averaged the value of an error over ten values of
noise, which gave us the value we could associate with
the graph structure. It allowed us to order graph structures
used in the grammar productions based on the average in-
ference error. In Fig. 6 we show all twenty nine connected
simple graphs with three, four and five nodes used in pro-
ductions ordered in nondecreasing MDL values of a graph
structure.

Fig. 5. Error as a function of noise and MDL where the
graph structure was not corrupted (one, two and
three nonterminals, respectively).

5.3. Error as a function of the number of labels. We
would like to evaluate how the error depends on the num-
ber of different labels used in a grammar. We restricted
graph structures used in productions to graphs with five
nodes. Every graph structure was labeled with 1,2, 3,4,5
or 6 different labels. For each value of MDL and the num-
ber of labels we generated 30 different graphs from the
grammar and computed average errors between them and
the learned grammars. The generated graphs were without
noise. We show the results for one, two, and three nonter-
minals in Fig. 7. For clarity, below the three-dimensional
plots, we give two-dimensional plots with triangles repre-
senting the errors. The larger and lighter the triangle, the

larger the error. We see that the error increases as the num-
ber of different labels decreases. On the two-dimensional
plots we see the shift in the error towards graphs with
higher MDL when the number of nonterminals increases.

5.4. Learning curves. We wanted to examine the
learning process on a graph grammar with several pro-
ductions. Since there are an infinite number of different
graph grammars, we decided to select one example with
several different graph structures used in the grammar pro-
ductions. We show this example in Fig. 8, where we see
the graph grammar used to generate graphs. There are five
productions. The last production with only one node is a
terminating production. Each graph in the first four pro-
ductions had two nonterminal nodes. The first four pro-
ductions are chosen with probability 0.1 in the generation
process. The terminating production is chosen with prob-
ability 0.6.

50

45

40 Error
Time

35
30 \

25

Time [sec]

20

Error,

10 20 30 40 50 60 70 80 9 100
Number of graphs in the training set

Fig. 9. Error and time as a function of the number of
graphs in the training set.

We generate sets of graphs with 10, 20, 30, and up to
100 graphs generated from the grammar of Fig. 8. Every
graph in the set has 30 to 40 nodes. We compare the first
four grammar productions found by our algorithm to the
original grammar of Fig. 8. As a measure of the error, we
use the minimal match cost of a transformation from one
graph structure to the other, as described in Section 5.1
where we discuss the measure of the error. We calculate
the match cost of the structure of the graph from the first
inferred grammar production to the four structures of the
original productions and choose the smallest value. Then,
we calculate the match cost of the structure from the sec-
ond inferred production to the three structures from the
original grammar not selected before and select the small-
est value. Similarly, we find the smallest match cost be-
tween the structure of the third inferred production and
the two structures left. We compare the last inferred pro-
duction with the remaining production from the original
grammar. The inference error was computed as a sum of
the four errors we just introduced. We repeat generation
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Fig. 6. Twenty nine simple connected graphs ordered according to nondecreasing MDL values.
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Fig. 7. Error as a function of MDL and the number of different labels used in a grammar
definition (one, two and three nonterminals, respectively).

0.6

Fig. 8. Graph grammar used for graph generation.
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and error determination thirty times and compute the av-
erage value of the error. In Fig. 9 we show the grammar
inference error and time as a function of the number of
graphs in the input set. We see that time in the range 10 to
100 graphs increases almost linearly. The error decreases
sharply as we increase the set of graphs from 10 to 30. The
error does not reach zero. The input graph has now four
patterns. We often infer productions which contain two of
the patterns or a portion of two patterns which causes the
error.

5.5. Biological networks. The biological networks
used in our experiments were from the Kyoto Encyclo-
pedia of Genes and Genomes. (KEGG) (Kanehisa et al.,
2006). We use a graph representation which has labels on
vertices and edges. The graphs represent processes like
metabolism, membrane transport, and biosynthesis. We
group the graphs into sets which allow us to search for
common recursive patterns that can help to understand
the basic building blocks and hierarchical organization
of processes. The label entry represents a molecule, a
molecule group or a pathway. A node labeled entry can
be connected to a node labeled type. The type can be
a value of the set: enzyme, ortholog, gene, group, com-
pound, or map. A reaction is a process where a material
is changed to another material catalyzed by an enzyme.
For example, a reaction can have one or more enzyme en-
tries, and one or more compounds. Labels on edges show
relationships between entities. The meanings are as fol-
lows: Rct_to_P : reaction to product , S_to_Rct : sub-
strate to reaction, I/_to_Rct : enzyme (gene) to reaction,
FE_to_Rel: enzyme to relation, Rel_to_FE : relation to en-
zyme. Nodes labeled ECrel indicate an enzyme—enzyme
relation meaning that two enzymes catalyze successive re-
actions.

In our experiments we use ten species. The abbrevi-
ated names of the species and their meanings are as fol-
lows: bsu — Bacillus subtilis, sty — Salmonella enterica
serovar Typhi CT18, zcc — Xanthomonas campestris pv.
campestris ATCC 33913, pto — Picrophilus torridus, mka
— Methanopyrus kandleri, pho — Pyrococcus horikoshii,
sfr — Shigella flexneri 2457T (serotype 2a), e fa — Ente-
rococcus faecalis, bar — Bacillus anthracis Ames 0581.

The species were selected randomly from the
database. The number of networks was different for each
species. We wanted to see how our algorithm performs
when we increase the sample size of graphs supplied to
our inference algorithm. For this purpose, we divided all
the networks into 11 sets such that the last set (11-th) has
all the species. Set 10 excludes the 11-th portion of all net-
works. Set 9 excludes 2/11 of all networks and Set 1 has
1/11 of all networks. If all networks in the species do not
divide by 11 evenly, we distribute the remaining networks
randomly to the eleven sets.
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Fig. 10. Change in the inferred grammar measured in
reference to the biggest set in networks of ten
species.

We would like to compare our inferred grammar
from sets of different sizes to the original, true, ideal
grammar which represents the species. However, such a
graph grammar is not known. In the first experiment, as an
original grammar we adopted the grammar inferred from
the last set. From each set we infer four grammar pro-
ductions which score the highest in the evaluation. We
compute the error (distance) of an inferred grammar to
the grammar inferred from the set with all networks. The
computation of an error is the same as that described in
Section 5.4. The error is the minimal number of edges,
vertices, and labels required to be changed or removed
to transform the structure of graph productions from one
grammar to another. In figures we refer to it as #transfor-
mations. In Fig. 10 we show the results of the experiment.
Each value in Fig. 10 is an average from three runs. In
every run we randomly shuffle the networks over 11 sets
such that sets are different in every run. In Fig. 11 we
show the graph grammar inferred from a set of thirty and
a set of one hundred and ten graphs of Picrophilus torridus
(pto).

The experiments on the biological network domain
give us insight into the performance of the algorithm and
to the biological networks. Examining Fig. 10 we notice
that some species, like dme, have a very regular set of bi-
ological networks. Increasing the size of the set does not
change the inferred grammar. Whereas in other species,
like zcc, the set of biological networks is very diverse re-
sulting in significant changes in the curve. Several curves,
pto, pho, efa, gradually decrease with the last values be-
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Fig. 11. Graph grammar inferred from a set of thirty (a), one hundred and ten (b) graphs of Picrophilus torridus (pto).

ing zero. This shows us that our algorithm performed
well, and with an increasing number of graphs in the in-
put set we find a grammar which does not change more
with increased number of graphs, which indicates that the
grammar found represents the input set well. The very
bottom chart in Fig. 10 shows the average change. We see
that with an increasing number of graphs in the input sets
the curve declines to zero, which says that with an increas-
ing number of graphs we infer a more accurate grammar.

6. Conclusions and future work

We have studied an algorithm for inferring node and edge
replacement graph grammars. The algorithm starts from
all nodes with the same label and grows them by adding to
them one edge or a node and an edge at a time. We devel-
oped a substructure which consists of the definition of a
graph and all subgraphs appearing in the input graph that
are isomorphic to this graph definition (i.e., instances).
The overlap of instances proposes a recursive graph gram-
mar production which expresses the concepts of ‘one or
more’ of the same substructures. The input graph to our
algorithm is an arbitrary directed or undirected graph with
labels on nodes and edges.

The node replacement recursive graph grammar in-
ference algorithm limits productions to one single node on
the left-hand side. The algorithm infers either recursive or
nonrecursive productions depending on whether frequent
subgraphs in the input graphs overlap or not. A smaller in-
ference error occurs when the inferred pattern has a higher
MDL value, i.e., it is more complex.

We proposed the inference of edge replacement re-
cursive graph grammars as an extension to the algorithm

for node replacement inference. We allowed for overlap
by two nodes and we inferred grammars with a real or
virtual edge. With this approach we can infer the gram-
mar generating chains of squares overlapping on one edge,
which was not possible with node replacement grammars.
Patterns often overlap on two nodes in chemical struc-
tures. Therefore, we have an approach which can find and
represent important patterns in the chemical domain.

Experiments with biological networks showed that
our algorithm performed well. As the number of input
graphs increases, the inferred grammar does not change,
which indicates that the grammar found represents the in-
put set well. We can use inferred grammar productions
not only to provide an abstraction of recognized metabolic
pathways for better understanding, but also to construct
unknown metabolic pathways based on molecular-level
experimental data.

Grammars inferred by the approach developed by
Jonyer et al. (2004) were limited to chains of isomor-
phic subgraphs which must be connected by a single edge.
Since the connecting edge can be included in the produc-
tion subgraph, and isomorphic subgraphs will overlap by
one vertex, our approach can infer Jonyer’s class of gram-
mars.

We would like to indicate general future directions in
graph grammar inference research. They are as follows:

e Develop algorithms which allow for learning larger
classes of graph grammars. We extended classes
of presently learnable graph grammars. It is pos-
sible to extend it even further into context sensitive
graph grammars where we could still replace nodes
and edges, but whether or not this replacement takes
place depends on the neighborhood of the replaced
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node or edge. In order to regenerate structures, we
would need a more sophisticated generation mecha-
nism with a context sensitive embedding mechanism.
This mechanism, inferred during induction, would
indicate nodes to merge during the generation pro-
cess. We can explore other techniques like the de-
composition of graphs in searching for the best gram-
mar which describes the data.

e Investigate learnable properties of graphs from the
perspective of graph grammars.

e Identify experimental areas and show the signifi-
cance of graph grammar inference in these domains.
One of the new domains we approach (Ates et al.,
2006) are visual languages, where graph grammar in-
ference from a sample of a language can give a gram-
mar to be used to check newly written programs.

e Use graph grammar inference to identify building
blocks, modularity and motifs in biology, software,
social networks, and electronics circuits. We did ex-
periments in biology and XML domains (Kukluk et
al., 2007). Biological and chemical structures are
still very promising areas of the application of re-
cursive graph grammars. Social networks, VLSI cir-
cuits, and the Internet are domains with relational
data whose hierarchy and recursive properties can be
explored with graph grammars.

e Expand graph grammar inference to learning
stochastic graph grammars. This extension would re-
quire assigning a probability to each production. We
can evaluate this probability based on the portion of
the input graph covered by the inferred production
(Oates, Doshi, and Huang, 2003).
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