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RAPID GENERATION OF THE SHORTEST GENERALIZED DUBINS PATH
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This paper investigates the problem of rapid shortest path generation during an aircraft’s forced landing, where the heading
angle of the target point is variable. To address the minimum turning radius constraint of the aircraft, the shortest path is
determined using Dubins curves. Additionally, the shortest generalized Dubins path is selected when the heading angle of
the target point is not fixed. Specifically, the paper focuses on four generalized Dubins curves which are relevant to forced
landings. By comparing the lengths of these curves, the shortest curve is identified for different positional relationships
between the forced landing starting and ending points, with theoretical justifications provided. Additionally, distance
calculation methods for these curves are presented to determine the distance of the shortest generalized Dubins path. The
effectiveness of the proposed method is confirmed through numerical simulations.
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1. Introduction
Forced landing refers to a scenario where an aircraft is
compelled to land at a nearby designated landing site
due to an interruption in its normal flight operations,
such as the loss of engine thrust. The planning of flight
paths is a critical aspect of forced landing investigations,
with numerous studies dedicated to addressing this issue
as documented in references (Kim et al., 2020; Váňa
et al., 2018; Izuta and Takahashi, 2017; Haghighi et al.,
2022; Guo et al., 2021; Eng, 2011; Liu et al., 2022).
In the case of a fixed-wing aircraft that is restricted to
forward movement and has a minimum turning radius,
the flight paths must adhere to curvature constraints.
Dubins (1957) introduced a technique for determining the
shortest curvature-constrained path between two points
with a fixed heading angle, making the Dubins path
the predominant method for path planning in fixed-wing
aircraft operations.
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Research conducted by Dubins (1957) demonstrates
that the shortest path between two points, while
maintaining a specified heading angle, consists of a
combination of arcs and straight line segments. These
components are designated as arcs (C) and straight line
segments (S), resulting in two possible configurations
for the shortest path: CSC or CCC. Moreover, when
considering right-turning arcs (R) and left-turning arcs
(L), the shortest path can be classified into six distinct
combinations: RSL, RSR, LSR, LSL, RLR, and
LRL. This shortest path, comprising the aforementioned
combinations, is commonly known as the shortest Dubins
path.

Following the above conclusion, there has been
extensive research conducted on determining the shortest
Dubins paths in various scenarios. One notable
scenario of study is the Dubins traveling salesman
problem (DTSP), which is concerned with identifying the
shortest path for visiting multiple locations. Numerous
investigations have delved into this scenario (Parlangeli,
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2019a; Váňa and Faigl, 2022; Chen and Shima, 2019a;
Parlangeli, 2019b; Chen and Shima, 2019b; Drchal et al.,
2020; Manyam and Rathinam, 2018). Additionally,
a significant body of research has been dedicated to
analyzing the shortest path between an initial position
with a specified heading angle and a target circle (Chen,
2020; Manyam et al., 2019b; Gupta Manyam et al., 2022;
Manyam et al., 2019a).

The papers mentioned above examined the issue in
scenarios where the position and heading angle of the
target point were either fixed or unfixed. This study
focuses on analyzing the shortest Dubins path in another
significant scenario, where the target point’s position is
fixed but the heading angle is variable. The rationale
behind this study is that for forced landings of fixed-wing
aircraft, the heading angle of the target point does not
necessarily have to be fixed. Typically, the landing site
for fixed-wing aircraft during forced landing is a suitable
location near the aircraft, such as a lake or sandy area,
making the heading angle of the aircraft insignificant
when approaching the forced landing site. In this specific
scenario, it is validated that the shortest Dubins path
comprises only two segments, either CS type or CC type.
Additionally, the shortest path is one of four potential
combinations: RS, LS, RL, and LR. These Dubins curves
are known as generalized Dubins curves in this scenario.

Several papers (Gao et al., 2013; Ismail et al., 2018)
have investigated the shortest generalized Dubins path
from a fixed heading angle starting point to an unfixed
heading angle ending point. To be specific, Gao et al.
(2013) proposed a solution method using the theory of
Dubins curves and an analytical approach to the shortest
generalized Dubins path problem. However, it is not
applicable when the distance between the two points
is short. Ismail et al. (2018) examined the shortest
generalized Dubins path for any distance between the
starting and ending points. However, the approach in
Ismail et al. (2018) only considers paths involving RS and
LS curves, neglecting RL and LR combinations, which
may not always represent the actual shortest path between
the two points.

No research has been reported yet on a direct
method for determining the shortest curve among the four
curves RS, LS, RL, and LR, given arbitrary positional
relationships between their starting and ending points.
Current engineering practices involve calculating the
lengths of these curves and comparing them to identify
the shortest one, which entails a complex algorithm and
significant computational time. In scenarios such as
forced landing, where the ending point’s position is fixed
but the heading angle is variable, the shortest generalized
Dubins path is typically chosen as the optimal path. In
the event of an emergency forced landing, it is imperative
to quickly determine an optimal path for the aircraft.
Furthermore, real-time calculations of the optimal path

distance between the current aircraft position and the
designated forced landing site are essential to ensure the
safety and success of the landing procedure. Therefore,
there is a necessity to seek a fast method to generate the
shortest generalized Dubins path in real-time.

Taking inspiration from the above considerations,
this paper introduces a viable approach for quickly
generating the shortest generalized Dubins path
connecting the starting point with a fixed heading angle
and the ending point with an unfixed heading angle, while
accommodating any arbitrary positional configuration
between these two points. Specifically, the research in
this paper involves the comparison and validation of the
length disparities among the four generalized Dubins
curves, culminating in the determination of the shortest
generalized Dubins path. Additionally, the paper outlines
the methodology for calculating the shortest generalized
Dubins path under the conditions of a known starting
point position and heading angle, as well as the ending
point position.

The main contributions of this work are twofold.

(i) A method is proposed for quickly generating the
shortest generalized Dubins path in forced landing.
With this method, the optimal path is derived directly
without computation and comparison of the lengths
of four curves, which ensures a fast engineering
solution.

(ii) The methodology for calculating the length of
shortest generalized Dubins curve is provided, with
which the distance of the optimal path is analytically
obtained in forced landing.

The subsequent sections of this paper are organized
as follows. Section 2 presents a formal statement
of the shortest generalized Dubins path problem being
examined. Section 3 establishes and proves the length
relationship among four generalized Dubins curves
and determines the shortest generalized Dubins path.
Section 4 outlines the distance calculation techniques for
the four generalized Dubins curves and presents numerical
simulation results to verify the correctness of the proposed
methods. Finally, Section 5 demonstrates the main
conclusions of this paper.

2. Preliminaries and problem statement
In the context of forced landing scenarios, the
mathematical formulation of the shortest path problem
can be conceptualized as follows. Consider a starting
point with a specified direction and an ending point
without a designated direction in the two-dimensional
plane, and these points are linked through of a generalized
Dubins curve. The objective of this paper is to determine
the shortest generalized Dubins curve connecting the two
points.
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Assume that vectors p and q are situated within
the two-dimensional plane, and θ represents the angular
measurement of the starting direction. The concept of
“type” refers to a form of generalized Dubins curve, which
is taken from RS, LS, RL, or LR. Ltype represents the
distance operation utilized for determining the generalized
Dubins curve of a specific type between p and q.
L (p, θ,q) denotes the shortest generalized Dubins curve
distance from p to q.

The solution ofL (p, θ,q) is dependent on the spatial
relationship between p and q. Let crs and cls denote
the centers of the right-turning and left-turning circles
respectively, both originating from the starting point p,
and ρ represents the radius of these circles. When
‖q− crs‖ < ρ, the curves RS and RL connecting p and
q do not exist. Similarly, when ‖q− cls‖ < ρ, the curves
LS and LR do not exist. A common solution applied in
the current references for L (p, θ,q) can be concluded as

L (p, θ,q) =

⎧
⎨

⎩

min {LRS, LLS, LRL, LLR} , Case 1,
min {LLS, LLR} , Case 2,
min {LRS, LRL} , Case 3,

(1)
where Case 1 is ‖q− crs‖ ≥ ρ ∩ ‖q− cls‖ ≥ ρ, Case 2
is ‖q− crs‖ < ρ, Case 3 is ‖q− cls‖ < ρ.

The aim of this paper is to find out an exact solution
for (1), and provide distance calculation methodologies
for four generalized Dubins curves, specifically focusing
on solving Ltype.

For the sake of clarity, it is necessary to introduce
some definitions:

Definition 1. For s, c ∈ R
2, ρ ∈ R

+, define S (c, ρ) =
{s | ‖s− c‖ < ρ}.

Definition 2. For p, r,x ∈ R
2, λ ∈ R, let

r be the direction vector of p. Define line (p, r) =
{x |x = p+ λr}.

Definition 3. For r ∈ R
2, let r be a direction vector,

and r = (x, y)
�. Define χ (r) = atan2 (y, x), χ (r) ∈

[−π, π]. Here,

atan2 (y, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

arctan
(
y
x

)
, x > 0

arctan
(
y
x

)
+ π, y ≥ 0, x < 0

arctan
(
y
x

)− π, y < 0, x < 0
π
2 , y > 0, x = 0
−π

2 , y < 0, x = 0
undefined. x = y = 0

Definition 4. For a,b ∈ R
2, let a and b be direction

vectors. Define θR (a,b) = mod(χ (b)− χ (a) , 2π),
θL (a,b) = mod (χ (a)− χ (b) , 2π).

3. The shortest generalized Dubins path
In this section, we present the methodologies for
determining the shortest generalized Dubins curve based

on various positional configurations between the forced
landing starting and ending points. We first establish the
main results of this paper. The solution of (1) can be
specified as

L (p, θ,q) =

⎧
⎪⎪⎨

⎪⎪⎩

LLR, Case 1,
LRL, Case 2,
LRS, Case 3,
LLS, Case 4,

(2)

where Case 1 is ‖q− crs‖ < ρ, Case 2 is ‖q− cls‖ < ρ,
Case 3 is ‖q− crs‖ ≥ ρ∩‖q− crs‖ ≤ ‖q− cls‖, Case 4
is ‖q− cls‖ ≥ ρ ∩ ‖q− cls‖ < ‖q− crs‖.

In order to draw the conclusion in (2), we only need
to prove that
⎧
⎪⎪⎨

⎪⎪⎩

LLR < LLS, Case 1,
LRL < LRS, Case 2,
min {LRS, LLS, LRL, LLR} = LRS, Case 3,
min {LRS, LLS, LRL, LLR} = LLS. Case 4.

In the following, we provide theoretical proofs for
the correctness of these methodologies.

3.1. The ending point outside the turning circles of
the starting point. In this subsection, for ‖q− crs‖ ≥
ρ ∩ ‖q− cls‖ ≥ ρ, we prove that

L (p, θ,q) =

{
LRS, ‖q− crs‖ ≤ ‖q− cls‖ ,
LLS, ‖q− cls‖ < ‖q− crs‖ ,

which implies that with the common tangent of circle crs
and circle cls as the boundary, the shortest generalized
Dubins curve distance is LRS when q is on the common
tangent or on the side of crs, and the shortest distance is
LLS when q is on the side of cls.

Assume that rp is the direction of p, i = [1, 0]
�, the

rotation matrix is

R (ϕ) =

[
cosϕ − sinϕ
sinϕ cosϕ

]

,

so we have rp = R(θ) · i.
With the help of the above definitions, we get

crs = p+ ρ ·R
(
χ (rp) +

π

2

)
· i, (3)

cls = p+ ρ ·R
(
χ (rp)− π

2

)
· i. (4)

Next, we present the methodologies for determining
the shortest generalized Dubins curve in cases where q is
situated either on or outside the turning circles of p by
Lemma 1 and Theorem 1.

Lemma 1. Suppose q /∈ S (crs, ρ) ∪ S (cls, ρ). Then
⎧
⎨

⎩

LRS < LLS, ‖q− crs‖ < ‖q− cls‖,
LRS = LLS, ‖q− crs‖ = ‖q− cls‖,
LRS > LLS. ‖q− crs‖ > ‖q− cls‖.
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Fig. 1. The ending point is outside the two turning circles of the starting point and closer to the right-turning circle.

Proof. The lemma regards three distinct cases

(i) It is required to prove that LRS < LLS when
‖q− crs‖ < ‖q− cls‖.

(ii) It is required to prove that LRS = LLS when
‖q− crs‖ = ‖q− cls‖.

(iii) It is required to prove that LRS > LLS when
‖q− crs‖ > ‖q− cls‖.

Case (i) is shown in Fig. 1. For curves LLS and
LRS, it is clear that line (q, a− q) is tangent to the circle
cls at a, line (q,b− q) is tangent to the circle crs at b,
q1 = line (q, a− q)∩line (p, rp), and line (q1, a1 − q1)
is tangent to the circle crs at a1. Then

LRS = ρθR (p− crs,b− crs) + ‖q− b‖ .

Based on the principle of symmetry, it can be inferred that

LLS = ρθL (p− cls, a− cls) + ‖q− a‖
= ρθR (p− crs, a1 − crs) + ‖q1 − a1‖
+ ‖q− q1‖ .

In Fig. 1, o is defined as

o = p+ ρ ·R (χ (rp) + π) · i.

The shadowed region in Fig. 1 is

D =
{
q ∈ R

2 | ‖q− crs‖ < ‖q− cls‖ , ‖q− crs‖ ≥ ρ,

‖q− o‖ < ρ, (p− o) (q− o) > 0
}
.

For q /∈ D, as illustrated in Figs. 1(a) and 1(b), we
have that

ΔL = LLS − LRS

= ρθR (b− crs, a1 − crs)

+ ‖q1 − a1‖+ ‖q− q1‖ − ‖q− b‖ > 0,

which indicates that

LLS > LRS.

For q ∈ D, as illustrated in Fig. 1(c), we have that

ΔL = LLS − LRS

= ‖q1 − a1‖+ ‖q− q1‖
− (ρθR (a1 − crs,b− crs) + ‖q− b‖) .

In Fig. 1(d), x is defined as

x= line (q,b− q) ∩ line (a1,q1 − a1) .

Then

‖q1 − x‖+ ‖q− q1‖ > ‖q− b‖+ ‖b− x‖ . (5)

It is a well-established fact that

θR (x− crs, a1 − crs) ∈ (0, π/2)

and
θR (x− crs,b− crs) ∈ (0, π/2) .

Therefore,

tan θR (a1 − crs,x− crs) > θR (a1 − crs,x− crs)
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and

tan θR (x− crs,b− crs) > θR (x− crs,b− crs) ,

so we conclude that

‖x− a1‖+ ‖b− x‖ > ρθR (a1 − crs,b− crs) . (6)

By utilizing (5) and (6), we get

‖q1 − a1‖+ ‖q− q1‖ > ρθR (a1 − crs,b− crs)

+ ‖q− b‖ .
Hence

LLS > LRS.

Therefore, we prove LRS < LLS when ‖q− crs‖ <
‖q− cls‖.

For (ii), from the symmetry relationship, we have that
LRS = LLS when ‖q− crs‖ = ‖q− cls‖.

For (iii), similarly to the first case, we prove that
LRS > LLS when ‖q− crs‖ > ‖q− cls‖.

Thus, the demonstration of this lemma has been
concluded. �

Theorem 1. Suppose q /∈ S (crs, ρ) ∪ S (cls, ρ). Then

L (p, θ,q) =

{
LRS, ‖q− crs‖ ≤ ‖q− cls‖ ,
LLS. ‖q− cls‖ < ‖q− crs‖ .

Proof. Assume that q /∈ S (crs, ρ) ∪ S (cls, ρ). This
implies the existence of a CS curve that is shorter than
the CC curve. Consequently, the shortest generalized
Dubins curve between p and q is exclusively chosen
in LRS and LLS. According to Lemma 1, LRS is the
shortest curve when ‖q− crs‖ < ‖q− cls‖, LLS is
the shortest curve when ‖q− crs‖ > ‖q− cls‖. For
‖q− crs‖ = ‖q− cls‖, we have that LRS = LLS.
Without loss of correctness, we specify that the order
of selection and comparison of the shortest generalized
Dubins curves between two points is RS, LS, RL, and LR.
Consequently,LRS is identified as the shortest curve when
‖q− crs‖ = ‖q− cls‖.

Hence, the proof of this theorem is completed. �

3.2. The ending point inside the turning circles of the
starting point. In this subsection, for ‖q− crs‖ < ρ or
‖q− cls‖ < ρ, we prove that

L (p, θ,q) =

{
LLR, ‖q− crs‖ < ρ,
LRL, ‖q− cls‖ < ρ,

which implies that the distance of a CC-type curve is
shorter than the distance of a CS-type curve when q is
inside the two turning circles of p.

Remark 1. Suppose that q ∈ S (crs, ρ). It is known that
the LS curve exists and is unique. Regarding the LR curve,
it is observed that there are two distinct LR-type curves
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Fig. 2. The range of the starting arc radian of LR curve.

which are formed by a left-turning arc and a right-turning
arc, depending on the initial arc with different radians.
Since it is not possible for a point inside the circle to
lead to a straight line tangent to that circle, the RS curve
does not exist. Additionally, due to the imposed turning
restriction, the ending point of the RL curve must lie
outside the circle crs, which leads to the non-existence of
the RL curve as well. Therefore, to determine the shortest
generalized Dubins curve, we only need to compare one
LS curve and two LR curves. Similarly, we only need to
compare one RS curve and two RL curves to determine the
shortest generalized Dubins curve when q ∈ S (cls, ρ).

Subsequently, by Lemma 2, Lemma 3, Lemma 4,
Lemma 5, and Theorem 2, we obtain the methods for
selecting the shortest generalized Dubins curve when q
is inside the turning circles of p.

Lemma 2. Suppose that q ∈ S (crs, ρ) ∪ S (cls, ρ) and
θs represents the starting arc angle of the CC-type gen-
eralized Dubins curve connecting p and q. Then θs ∈
(0, π/3) ∪ (5π/3, 2π).

Proof. The lemma regards two distinct cases

(i) q ∈ S (crs, ρ),

(ii) q ∈ S (cls, ρ).

For Case (i), in accordance with Remark 1, the
CC-type generalized Dubins curve exclusively features
the LR curve, with the RL curve being absent. There are
two cases for the position of the LR curve’s right-turning
circle center, which is illustrated in Fig. 2(a). The centers
of these circles are denoted as crc and c

′
rc, with their

respective positions determined by

crc = cls + 2ρ ·R (χ1 − χ2) · i, (7)

c
′
rc = cls + 2ρ ·R (χ1 + χ2) · i, (8)

where

χ1 = χ (q− cls) ,

χ2 = arccos

(
3ρ2 + ‖q− cls‖2
4ρ ‖q− cls‖

)

.
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Fig. 3. The ending point is inside the the right-turning circle of
the starting point.

Here, χ2 is solved by the cosine theorem.
For crc, we have θs = θL (crs − cls, crc − cls) > 0.

θs reaches a maximum value of π/3 when circle crc and
circle crs are tangent to each other, which is illustrated in
Fig. 2(b). Thus θs ∈ (0, π/3).

For c
′
rc, we have θs = θL (crs − cls, c

′
rc − cls) <

2π. θs reaches a minimum value of 5π/3 when circle
c

′
rc and circle crs are tangent to each other, which is

illustrated in Fig. 2(b). Thus θs ∈ (5π/3, 2π).
Therefore, we have proven that θs ∈ (0, π/3) ∪

(5π/3, 2π) when q ∈ S (crs, ρ).
For Case (ii), by employing the aforementioned

methods and steps, similarly, we prove that θs ∈
(0, π/3) ∪ (5π/3, 2π).

Therefore, the proof of this lemma is completed. �

Inspired by Lemma 2, we will discuss the length
relations of the CC and CS-type curves for θs ∈ (0, π/3)
and θs ∈ (5π/3, 2π), respectively, when q ∈ S (crs, ρ) ∪
S (cls, ρ). We first discuss the case of θs ∈ (0, π/3),
where the distance operations of the CC-type generalized
Dubins curve is denoted as LRL and LLR. Then we
compare LRL and LLS when q ∈ S (crs, ρ).

The situation is shown in Fig. 3, where
line (q, a1 − q) is tangent to the circle cls at a1 and
circle cls is tangent to the circle crc at a2. Then

LLS = ρθL (p− cls, a2 − cls)

+ ρθL (a2 − cls, a1 − cls) + ‖q− a1‖ ,
LLR = ρθL (p− cls, a2 − cls)

+ ρθR (a2 − crc,q− crc) .

Consequently, we have

ΔL = LLR − LLS

= ρθR (a2 − crc,q− crc)

− ρθL (a2 − cls, a1 − cls)− ‖q− a1‖ .
(9)

Let θ1 = 2π − θR (a2 − crc,q− crc), θ2 = 2π −
θL (a2 − cls, a1 − cls). According to the cosine theorem,
we have

‖q− cls‖ = ρ ·
√
5− 4 cos θ1,

which yields

‖q− a1‖ =

√

‖q− cls‖2 − ‖a1 − cls‖2

= 2ρ ·
√
1− cos θ1.

(10)

With (9) and (10), ΔL can be rewritten as

ΔL = ρ ·
(
θ2 − θ1 − 2

√
1− cos θ1

)
. (11)

In reference to the LR curve depicted in Fig. 3, since
the circle crc can be regarded as circle crs rotated
counterclockwise around the circle cls by a specific angle,
q lies on the right side of the circle crc when q ∈
S (crs, ρ). Thus we have θ1 ∈ (0, π).

Let
Z = θ2 − θ1 − 2

√
1− cos θ1, (12)

where θ1 ∈ (0, π) and θ2 ∈ (0, π/2]. It is known that
comparing the size relationship between LLR and LLS is
equivalent to comparing the size relationship between Z
and 0.

From (12), we know that the sign of Z depends on
θ1 and θ2. For θ1 and θ2, we derive some conclusions as
follows.

As illustrated in Fig. 3, we have

‖q− a2‖ = 2ρ sin
θ1
2
,

‖a1 − a2‖ = 2ρ sin
θ2
2
,

θR (a2 − a1,q− a1) =
θ2
2
,

θR (a1 − q, a2 − q) = π − θ2 − θ1
2
.

From the sine theorem, it follows that

2ρ sin θ1
2

sin θ2
2

=
2ρ sin θ2

2

sin
(
π − θ2 − θ1

2

) . (13)

Simplify (13) as

cos (θ1 + θ2)− 2 cos θ2 + 1 = 0. (14)

Then we obtain

θ1 = −θ2 + arccos (−1 + 2 cos θ2) ,

0 < θ1 + θ2 ≤ π (15)

and

θ1 = 2π − θ2 − arccos (−1 + 2 cos θ2)

θ1 + θ2 > π. (16)

Next, we give a result to illustrate the size
relationship between Z and 0.
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Lemma 3. Suppose that q ∈ S (crs, ρ). For Z = θ2 −
θ1 − 2

√
1− cos θ1, where θ1 ∈ (0, π) and θ2 ∈ (0, π/2],

we have Z < 0.

Proof. We prove that Z < 0 by analyzing the
derivative dZ/dθ2 and examining the boundary value of
Z in relation to θ2.

According to (12), we get

dZ

dθ2
= 1− dθ1

dθ2
− sin θ1√

1− cos θ1

dθ1
dθ2

, (17)

which needs the solution for dθ1/dθ2.
From (15) and (16), there are two cases of the

relationship between θ1 and θ1. For 0 < θ1 + θ2 ≤ π,
as illustrated in Fig. 3, θ1 = π/2 and θ2 = π/2 must
hold simultaneously. Thus, it is sufficient to examine the
scenario where θ1 = θ2 = π/2, and the case where
θ1 	= π/2, θ2 	= π/2.

Therefore, this lemma will be proved in three cases
as follows.
(i) Case of θ1 = θ2 = π/2.

From (12), we get Z = θ2 − θ1 − 2
√
1− cos θ1 =

−2 < 0.

(ii) Case of θ1 + θ2 > π.
According to (16), we determine the derivative of θ1

with respect to θ2 as

dθ1
dθ2

= −1−
√

1

cos θ2
+ 1. (18)

By combining (17) and (18), we deduce that

dZ

dθ2
= 1+

(
1 +

√
1 + cos θ1

)(

1 +

√
1

cos θ2
+ 1

)

> 0,

which indicates that Z increases monotonically when
θ2 ∈ (0, π/2), so we have Z < Zθ2=π/2 = −2 < 0.

(iii) Case of θ1 + θ2 ≤ π, θ1 �= π/2, θ2 �= π/2.
From (15), we have

dθ1
dθ2

= −1 +

√
1

cos θ2
+ 1. (19)

By combining (17) and (19), we obtain

dZ

dθ2
= 1−

(
1 +

√
1 + cos θ1

)

×
(

−1 +

√
1

cos θ2
+ 1

)

.

(20)

Since it is difficult to directly determine the positive
or negative parts of dZ/dθ2 from (20), we enlarge
dZ/dθ2, where we need to compare θ1 and θ2.

According to (15), define

f(θ2) = θ1 − θ2

= −2θ2 + arccos (−1 + 2 cos θ2) ,

where θ2 ∈ (0, π/2). Taking the derivative of f(θ2) with
respect to θ2, we get

df (θ2)

dθ2
= −2 +

√

1 +
1

cos θ2
, θ2 ∈

(
0,

π

2

)
.

It is easy to see that df (θ2)/dθ2 increases monotonically
for θ2 ∈ (0, π/2). Due to

df (θ2)

dθ2

∣
∣
∣
∣
θ2=0

< 0,

df (θ2)

dθ2

∣
∣
∣
∣
θ2=

π
2

> 0,

we know that df (θ2)/dθ2 has only one zero point in
θ2 ∈ (0, π/2), which is arccos (1/3). Therefore, f (θ2)
decreases monotonically when θ2 ∈ (0, arccos (1/3)] and
increases monotonically when θ2 ∈ (arccos (1/3) , π/2).
Since f (0) = f (π/2) = 0, we have f (θ2) < 0 when
θ2 ∈ (0, π/2), which indicates that θ1 < θ2.

Based on the aforementioned conclusion, from (20)
we have

dZ

dθ2
< h (θ2) ,

where

h (θ2) = 1−
(
1 +

√
1 + cos θ2

)

×
(

−1 +

√
1

cos θ2
+ 1

)

.

Let t = cos θ2 ∈ (0, 1). Then

h (θ2) = g (t)

= 1− (1 +√
1 + t

)
(

−1 +

√
1

t
+ 1

)

.

Taking the derivative of g (t) with respect to t, we get

dg (t)

dt
=

1

2
√
1 + t

+
1

2t
√
t (t+ 1)

+
1

2t
√
t
− 1

2
√
t
> 0,

which shows that g (t) increases monotonically when t ∈
(0, 1), so we have g (t) < g (1) = 0. Hence, we get

dZ

dθ2
< h (θ2) = g (t) < 0,

which shows that Z decreases monotonically when θ2 ∈
(0, π/2). From (12), we get

Z < Zθ2=0 = 0.

Thus, the proof of this lemma is completed. �
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Next, we give a conclusion in Lemma 4 based on the
above analysis.

Lemma 4. Suppose that q ∈ S (crs, ρ) ∪ S (cls, ρ) and
θs ∈ (0, π/3) for the CC-type generalized Dubins curve
connecting p and q, where the distance operation of CC-
type curve is denoted as LRL and LLR. We have

{
LLR < LLS, ‖q− crs‖ < ρ,
LRL < LRS, ‖q− cls‖ < ρ.

Proof. The lemma discusses two distinct cases

(i) It is required to prove that LLR < LLS when
‖q− crs‖ < ρ.

(ii) It is required to prove that LRL < LRS when
‖q− cls‖ < ρ.

For Case (i), with (9), (11), (12), and Lemma 3, we
get LLR < LLS when ‖q− crs‖ < ρ.

For Case (ii), similarly, we have that LRL < LRS

when ‖q− cls‖ < ρ.
Therefore, the proof of this lemma is completed. �

Next, we discuss the length relations between CC and
CS-type curves when θs ∈ (5π/3, 2π).

Lemma 5. Suppose that q ∈ S (crs, ρ) ∪ S (cls, ρ)
and θs ∈ (5π/3, 2π) for the CC-type generalized Dubins
curve between p and q. Then if the distance operations of
CC-type generalized Dubins curve denoted are L′

RL and
L′
LR, we have the following relationships:

{
L′

LR > LLS, ‖q− crs‖ < ρ,
L′

RL > LRS, ‖q− cls‖ < ρ.

Proof. The lemma outlines two distinct cases

(i) It is required to prove that L
′
LR > LLS when

‖q− crs‖ < ρ.

(ii) It is required to prove that L
′
RL > LRS when

‖q− cls‖ < ρ.

Case (i) is shown in Fig. 4, where the circle cls is
tangent to the circle c

′
rc at a3. Then

L′
LR = ρθL (p− cls, a3 − cls)

+ ρθR (a3 − c′rc,q− c′rc) .

Consequently, we have

ΔL′ = L′
LR − LLS

= ρθL (a1 − cls, a3 − cls)

+ ρθR (a3 − c′rc,q− c′rc)− ‖q− a1‖ > 0,

which means L′
LR > LLS.

For Case (ii), using the above methods and steps,
similarly, we prove that L′

RL > LRS when ‖q− cls‖ < ρ.
Thus, the proof of this lemma is completed. �

rsc q
rcc

1a
3ap

lsc

Fig. 4. The ending point is inside the right-turning circle of the
starting point.

Next, we give the methods for selecting the shortest
generalized Dubins curve when q is inside the turning
circles of p.

Theorem 2. Suppose that q ∈ S (crs, ρ) ∪ S (cls, ρ).
Then

L (p, θ,q) =

{
LLR, ‖q− crs‖ < ρ,
LRL, ‖q− cls‖ < ρ.

Proof. With Remark 1, Lemma 2, Lemma 4, and
Lemma 5, we get LLR < LLS < L′

LR when ‖q− crs‖ <
ρ and LRL < LRS < L′

RL when ‖q− cls‖ < ρ. Thus,
the proof is completed. �

4. Distance calculation methods and
simulations

In this section, distance calculation methods for four
generalized Dubins curves are presented. By the
presented distance calculation methods, the numerical
simulation results are utilized to verify the correctness of
the proposed method for selecting the shortest generalized
Dubins curve.

4.1. Distance calculation methods of four curves. As
detailed in Section 3, p, rp and q represent the starting
point’s position, starting point’s direction, and ending
point’s position, respectively. Once p, rp and q are given,
we determine the distance calculation methods for the four
generalized Dubins curves as follows.

It is established that the determination of the center
points of the turning circles plays a crucial role in the
computation of the distances associated with generalized
Dubins curves. The center points crs, cls and crc are
obtained from (3), (4) and (7), respectively. The center
of the left-turning circle of RL curve is denoted as clc,
and, in a similar manner as described in (7), we have

clc = crs + 2ρ ·R (χ1 + χ2) · i, (21)

where
χ1 = χ (q− crs) ,
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Fig. 5. The distance calculation of generalized Dubins curves:
the distance calculation of an RS curve (a), the distance
calculation of an LR curve (b).

χ2 = arccos

(
3ρ2 + ‖q− crs‖2
4ρ ‖q− crs‖

)

.

Here, χ2 is solved by the cosine theorem.
As shown in Section 2, “type” refers to a form of

generalized Dubins curve, which is taken from RS, LS,
RL, or LR. Then we introduce θtype to denote the arc
radian of the generalized Dubins curve of a specific type.
The computation of distance for the RS curve is illustrated
in Fig. 5(a). For RS curve, line (q,b− q) is tangent to the
circle crs at b then we have

LRS = ρθRS + ‖q− b‖ , (22)

where
‖q− b‖ =

√

‖q− crs‖2 − ρ2. (23)

Subsequently, we calculate θRS, as illustrated in
Fig. 5(a),

θRS = mod (χ (q− b)− χ (rp) , 2π) ,

where the function ‘mod’ ensures that θRS is
positive. Make a straight line through b parallel to
line (crs,q− crs), then the direction vector of the
straight line is q− crs.

Let

α = arcsin

(
ρ

‖q− crs‖
)

,

which is shown in Fig. 5(a). Therefore, we obtain

χ (q− b) = χ (q− crs) + α.

Subsequently, we have

θRS = mod (χ′, 2π) , (24)

where

χ′ = χ (q− crs) + arcsin

(
ρ

‖q− crs‖
)

− χ (rp) .

With (22), (23), and (24), we get the method for
calculating the distance of the RS curve.

Similarly, we have the distance calculation method
of the LS curve as follows. We have that

LLS = ρθLS +

√

‖q− cls‖2 − ρ2,

where
θLS = mod (χ′, 2π) ,

χ′ = χ (rp)− χ (q− cls) + arcsin

(
ρ

‖q− cls‖
)

.

The computation of the distance for the LR curve is
illustrated in Fig. 5(b), where θs presents the starting arc
angle of the curve and θe presents the ending arc angle of
the curve. Thus we have

LLR = ρθLR = ρ (θs + θe) . (25)

As illustrated in Fig. 5(b), the starting arc of the LR curve
involves a left turn, so that

θs = mod (χ (p− cls)− χ (crc − cls) , 2π) , (26)

where the function ‘mod’ ensures that θs is positive. The
ending arc of the LR curve involves a right turn, so

θe = mod (χ (q− crc)− χ (cls − crc) , 2π) , (27)

where the function ‘mod’ ensures that θe is positive.
With (25), (26), and (27), we get the method for

calculating the distance of LR curve.

Similarly, we have the distance calculation method
of RL curve as follows. We have that

LRL = ρθRL = ρ (θs + θe) ,

where

θs = mod (χ (clc − crs)− χ (p− crs) , 2π) ,

θe = mod (χ (crs − clc)− χ (q− clc) , 2π) .

4.2. Simulations. Numerical simulation results are
presented to validate the correctness of the proposed
method for selecting the shortest generalized Dubins
curve.

In Section 3, for the different position relationships
between the starting and ending points, we provide the
method to determine the shortest curve among RS, LS,
RL, and LR, with accompanying theoretical proofs. Now
we verify the correctness of the proposed method by
numerical simulation.

We specify that each simulation combination
consists of a starting point, the direction vector of the
starting point, and an ending point. Then we give
some simulation combinations that have different position
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Fig. 6. The positions of the ending point: the ending point is on or outside the turning circles of the starting point and closer to the
left-turning circle (a), the ending point is inside the left-turning circle of the starting point (b).

relationships between starting point and ending point.
For the simulation combinations where the ending point
is on or outside the turning circle of the starting point,
we calculate their RS and RL curves, and then present
the results to compare the lengths of curves. For the
simulation combinations where the ending point is inside
the turning circle of the starting point, we calculate their
RS and RL curves, or LS and LR curves, and then present
the results to compare the lengths of curves.

Certain conditions and parameters utilized in the
simulation include the position of starting point denoted as
p = [0, 0]

�, the direction vector of starting point denoted
as rp = [1, 0]

�, and the radius of turning circles denoted
as ρ = 1000.

Example 1. The first simulation is conducted to verify the
correctness of proposed shortest generalized Dubins curve
selection method in cases where the ending point is on or
outside the turning circles of the starting point.

The position and direction of the starting point for the
simulation have been previously specified, and now the
position of the ending point for the simulation, denoted
by q, is provided. Write q = [qx, qy]

�, and let
{
qx =

(
2000 · sin nπ

100 + 10m
) · cos nπ

100 ,

qy = − (2000 · sin nπ
100 + 10m

) · sin nπ
100 ,

where m,n ∈ Z, 0 ≤ m ≤ 100, 1 ≤ n ≤ 99, which
indicates that q lies on or outside the turning circles of p
and is closer to the left-turning circle. The positions of q
are illustrated in Fig. 6(a).

With the distance calculation method of RS and LS
curves presented in Section 4.1, we get the results as

shown in Figs. 7(a) and (b), which show that the LS curve
is consistently shorter than the RS curve in this case.

Next, do not change the value of qx, but let

qy =
(
2000 · sin nπ

100
+ 10m

)
· sin nπ

100
,

where m,n ∈ Z, 0 ≤ m ≤ 100, 1 ≤ n ≤ 99, which
indicates that q is closer to the right-turning circle.

Similarly, we get the results shown in Figs. 7(c) and
7(d), which show that the RS curve is consistently shorter
than the LS curve in this case. �

Example 2. In contrast to Example 1, this simulation
verifies the correctness of proposed method where the
ending point is inside the turning circles of the starting
point.

Therefore, we write q = [qx, qy]
�, and let

qx = 0, qy = −1000,

or {
qx = 10m · cos nπ

50 ,

qy = −1000 + 10m · sin nπ
50 ,

where m,n ∈ Z, 1 ≤ m ≤ 99, 0 ≤ n ≤ 99, which
indicates that q lies inside the left-turning circle of p. The
positions of q are illustrated in Fig. 6(b).

With the distance calculation method of RS and RL
curves presented in Section 4.1, we get the results shown
in Figs. 8(a) and (b), which show that the RL curve is
consistently shorter than the RS curve when q is inside
the left-turning circle of p.

Then we do not change the value of qx, but let

qy = 1000,
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Fig. 7. The distance of the RS and LS curves when the ending point is on or outside the turning circles of the starting point: The
distance of the RS and LS curves when the ending point is closer to the left-turning circle (a), the enlargement of (a) (b), the
distance of the RS and LS curves when the ending point is closer to the right-turning circle (c), the enlargement of (c) (d).

or
qy = 1000 + 10m · sin nπ

50
,

where m,n ∈ Z, 1 ≤ m ≤ 99, 0 ≤ n ≤ 99, which
indicates that q lies inside the right-turning circle of p.

Similarly, we get the results shown in Figs. 8(c)
and (d), which show that the LR curve is consistently
shorter than the LS curve when q is inside the
right-turning circle of p. �

5. Conclusions
This paper examines the problem of quickly generating
the shortest generalized Dubins path during the forced
landing of aircraft. Through theoretical analysis and
numerical simulations, the paper determines the shortest
path among the four possible generalized Dubins curves
RS, LS, RL, and LR based on the relative positions of the
forced landing starting and ending points.

Specifically, when the ending point is located on or
outside the turning circles of the starting point, the RS
curve is identified as the shortest path if the ending point
is closer to the right-turning circle, while the LS curve
is the shortest when the ending point is closer to the
left-turning circle. Moreover, the RL curve is determined
to be the shortest when the ending point is situated inside
the left-turning circle, and the LR curve is found to be the
shortest when the ending point is within the right-turning
circle.

According to the aforementioned conclusions, we
proceed with a direct computation of the shortest distance
from the aircraft’s present location to the designated
landing site in the event of a forced landing. It eliminates
the need to determine the lengths of the four generalized
Dubins curves and subsequently compare them to identify
the shortest path. This streamlined method simplifies the
path generation algorithm for forced landings, facilitating
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Fig. 8. The distance of the four curves when the ending point is inside the turning circles of the starting point: The distance of the RS
and RL curves when the ending point is inside the left-turning circle(a), the enlargement of (a) (b), the distance of the LS and
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real-time distance calculations.
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