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This paper deals with one partly unconscious property of the model-based diagnosis. It discusses occasional contradictions
between diagnoses that are logically correct but, in fact, are not consistent with the physical state of the system being di-
agnosed. This property is studied and discussed based on the analysis of diagnoses generated by four selected approaches
using binary and trivalent diagnostic signals. The authors attribute the reasons for this inconsistency to the effect of com-
pensation of fault impacts. The analysis and simulation studies carried out confirmed this assumption. To address this
problem, new definitions of diagnoses have been proposed that reflect the different degrees to which diagnoses relate to
the actual physical state of the system being diagnosed. In this context, several new metrics for assessing the quality of
diagnoses have also been proposed. It is pointed out that, from the utilitarian point of view, only those diagnoses that are
logically consistent and have the attribute of physicality are valuable. The problem of misdiagnosis was illustrated on an
example of a two-tank system.
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1. Introduction

The implementation of diagnostic inference, which
will at least reduce the number of diagnoses that are
inconsistent with the physical state of the system being
diagnosed, is of great practical importance. For example,
inconsistent diagnoses may lead to erroneous decisions
by process operators. In the process industry, a properly
designed diagnostic system can prevent critical failures
that threaten the health and life of humans, technological
installations, and the environment (Song and Jiang, 2022;
Xia and Fu, 2024). This implies the need to generate
correct diagnoses, as rational safety measures can only be
taken if the causes of observed anomalies are correctly
identified (Blanke et al., 2015). This also places high
demands on the accuracy and reliability of diagnostics
generated by advisory diagnostic systems.

In this paper, we will discuss the problem to what
extent logically correct diagnoses are really consistent
with the physical state of the system being diagnosed.
This problem was hinted at some time ago in an article
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by Struss and Dressier (1989), although to the best of
our knowledge it has not been discussed further. This
paper points out that even formally correct diagnoses are
not necessarily true in terms of their conformity with the
physical state of the diagnosed system.

Most of the model-based diagnostic systems in use
infer about faults based on binary evaluated residuals. The
values of the binary residuals evaluated hereafter will be
referred to as binary diagnostic signals. Diagnosis with
binary diagnostic signals usually results in the generation
of a large number of potential diagnoses. Potential
diagnoses indicate alternative causes for the observed
diagnostic signals. However, a significant number of
potential diagnoses indicate physically impossible states
of the system being diagnosed. In such cases, the risk of
inappropriate operator reaction increases. Unfortunately,
there is a lack of awareness of these risks. The
problem will be illustrated in this paper by an example
of the diagnosis of a set of serially interconnected tanks
introduced by Kościelny and Bartyś (2023).

An additional motivation for this work is the
observation that the effect of compensation of fault
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impacts on residuals is one of the important and still
unsolved diagnostic problems. We will show that this
effect has a significant impact on the outcome and
credibility of the diagnoses.

Hypothesis. Fault isolation methods based on binary di-
agnostic signals or binary observations, although logi-
cally correct, can generate diagnoses that indicate physi-
cally impossible states of the system being diagnosed.

Hence, the primary motivation for this paper is to
provide a new perspective and revise the views on the
problem of consistency of correct logical diagnostics with
the physical state of the diagnosed system. In particular,
in this paper we:

1. demonstrate that generating potential diagnoses of
physically impossible states is an immanent feature
of model-based fault isolation approaches, where
fault isolation is based on binary valued residuals,

2. demonstrate that even the absence of modelling
errors, disturbances, and measurement noise does
not preclude the possibility of generating formally
correct potential diagnoses that nevertheless point to
impossible physical states,

3. demonstrate that consistency-based approaches
based on Reiter’s theory can generate potential
diagnoses of physically impossible states by a fault
compensation effect.

4. indicate that it is advisable to diagnose based on
trinary diagnostic signals.

The structure of this paper is as follows. The
motivation, novelty, and contribution to the field of
diagnostics are presented in the Section 1. A brief
characterization of the state-of-the-art in the fault isolation
research area is given in Section 2. Section 3 defines
the basic concepts and presents the adopted research
methodology. Section 4 describes a phenomenological
model of a set of two interconnected tanks; further,
this model is used for the simulations reported in
Section 5. A detailed description of the diagnostic
approaches discussed in this paper is given in Section 6.
Section 7 discusses the genesis of diagnoses of
physically impossible states, while Section 8 provides a
breakdown of the diagnosis results based on the fault
distinguishability metrics defined in Appendix A. The
comments and perspectives of other works given in
Section 9 conclude the paper.

2. Review of diagnostic methods
Model-based approaches to Fault Detection and
Diagnosis (FDD) can be divided into two classes, which

fundamentally differ in the way in which knowledge of
the relationship between faults and diagnostic signals is
obtained.

The first class consists of approaches that are based
on learning (most recently deep learning) from data.
Data used for learning purposes are acquired from
normal (nominal) states and states with faults in the
diagnosed system, and then used for fault classification
(Song and Jiang, 2022; Zheng and Zhao, 2022; Liu
et al., 2023; Kunpeng et al., 2023; Eskandari et al.,
2024). However, for many industrial installations,
especially critical facilities such as nuclear power plants
or chemical reactors, the above class of approaches
has significant application limitations, as it is very
difficult and often impossible to acquire data representing
emergency conditions in the installations.

The second class of FDD includes approaches
that are mainly knowledge-based. They make use of
the relationship between faults and diagnostic signals
allowing for diagnostic inference in real-time. The
approaches in which this relationship is defined based on
expert knowledge are of fundamental practical importance
in this case. This class is the subject of this paper.

Here, the models that represent the fault-free state of
the diagnosed system are used for fault detection. Fault
isolation is most often performed on the basis of the
fault-binary-valued diagnostic signal relationship. To this
class belong:

• works and approaches derived from control theory,
referred to as Fault Detection and Isolation (FDI)
(Frank, 1990; Gertler, 1998; Chen and Patton, 1999;
Su and Chen, 2019; Jia et al., 2023; Tatara and
Kowalczuk, 2024) in which a binary relationship
between faults and diagnostic signals is defined as
the fault signature matrix (FSM) (Cordier et al.,
2004; Travè-Massuyès, 2014) or structure of residual
sets (Gertler, 1998), the Boolean decision table
(Chen and Patton, 1999), the coding set (Gertler,
1991), or the binary diagnostic matrix (BDM)
(Kościelny, 1995; Korbicz et al., 2004) is used to
isolate the faults;

• key approaches based on formal logic and artificial
intelligence known as consistency based reasoning
(CBR) (Struss and Dressier, 1989; Reiter, 1987;
de Kleer and Williams, 1987; de Kleer et al., 1992;
de Kleer and Kurien, 2003);

• approaches derived from a structural analysis (SA)
(Blanke et al., 2015; Düstegör et al., 2006;
Krysander et al., 2007; Armengol et al., 2009;
Bregón et al., 2013; Bregón et al., 2014; Pulido and
González, 2004), which are used for solving sensor
placement problems as well as used for the design
and analysis of structures of models intended for
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fault detection and isolation as well as for solving
sensor placement problems. The SA analysis can be
used in both the FDI and CBR approaches;

• other approaches of diagnosing based on binary
diagnostic signals (Kościelny, 1995; Bartyś, 2013).

The aforementioned approaches differ, among others, in
the formal description of the diagnosed system, diagnostic
reasoning, adopted assumptions, and models. The
exhaustive analysis and comparison of the approaches
FDI and CBR was carried out in (Cordier et al., 2004;
Travè-Massuyès, 2014).

In addition to binary, evaluated trivalent residuals
are also used for fault isolation. The trivalent residuals
(crispy and fuzzy) have been deliberated, among others, in
(Kościelny and Bartyś, 2023; Bregón et al., 2013; Biswas
et al., 1997; Kościelny, 1999; Puig et al., 2005; Kościelny
et al., 2006; Daigle et al., 2009; Bartyś, 2014).

A generalization of binary and trinary evaluated
residuals are multivalued residuals. The relationship
between faults and multivalued residuals is used in
the fault isolation system (FIS) (Korbicz et al., 2004;
Kościelny et al., 2006). In fact, the FIS is an adaptation of
the information system introduced by Pawlak (1991).

Inference based on the analysis of fault signatures
is commonly used for FDI, while rather row-based fault
inference is typical for CBR approaches. In all the
aforementioned approaches, it is assumed that by the
absence of false values of diagnostic signals arising from
multivalued residuals or conflicts in CBR, the generated
diagnoses are formally correct and true in the sense of
their relationship to reality. In this paper, we challenge
the validity of such an assumption.

3. Methodology
We assume that the diagnosis, regardless of the inference
approach used, is made up of possible diagnoses. Each
potential diagnosis is an alternative hypothesis consistent
with the observations of the diagnosed system. Thus,
a potential diagnosis indicates a possible state of a
system that is being diagnosed by determining a subset
of the faults existing in that state (FDI) or a subset of
components (CBR) suspected of being faulty.

The primary goal of fault isolation is to
obtain a high-precision diagnosis. Generally, fault
distinguishability and precision of diagnosis are in a
direct mutual relation, i.e., with an increase of fault
distinguishability, the precision of diagnosis increases.
The definitions of distinguishability and precision
of diagnoses have been discussed, among others, in
(Kościelny et al., 2019; Kościelny et al., 2016).

In this paper, we assume that the analyzed
fault isolation approaches are formally correct. We
understand the formal correctness of diagnostic inference

as complying with the adopted principles of logical
calculus (the principles of propositional calculus and the
principles of quantifier calculus). However, a fundamental
question arises whether a formally correct diagnosis
reflects the existing state of the diagnosed system.

For the sake of further analysis, we will introduce a
few definitions.

Definition 1. A diagnosis is correct if there exists
a potential diagnosis indicating the physical state of the
system being diagnosed.

Definition 2. A diagnosis is incorrect if there is no
possible diagnosis indicating the actual physical condition
of the system being diagnosed.

Definition 3. A diagnosis is inclusive if all faults that
actually occurred are in the union of subsets of faults
indicated in all potential diagnoses.

Definition 4. A diagnosis is non-inclusive if not all real
faults that really occurred are in the union of the subsets
of faults indicated in all potential diagnoses.

Definitions 1 and 3 show the reversibility of the
correctness and inclusiveness of the diagnoses. Every
correct diagnosis is inclusive, but not every diagnosis that
is inclusive is correct.

Example 1. Let us assume that there is a real state
with faults {f4 ∧ f9}. According to Definitions 1–4, the
diagnosis

Δa = {f4 ∧ f9, f7 ∧ f12} is correct and inclusive,

Δb = {f4 ∧ f7, f9 ∧ f12} is incorrect but inclusive,

Δc = {f4 ∧ f7, f8 ∧ f12} is incorrect and non-inclusive.
�

Definition 5. The diagnosis of a physically possible
state is a potential diagnosis that indicates the state of
the system which is physically possible with the observed
values of diagnostic signals.

Definition 6. The diagnosis of a physically impossi-
ble state is a potential diagnosis that indicates the state of
the system which is not physically possible with observed
values of diagnostic signals.

The following assumptions have been adopted in this
paper in order to analyze the correctness and inclusiveness
of diagnoses:

(i) the accurate analytical partial models will be applied
for fault detection, and

(ii) the effects of disturbances and measurement noise on
the models will be neglected.
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Clearly, with these assumptions, the uncertainties of
diagnostic signals as well as the uncertainties of decisions
regarding conflicts may not be considered. Such idealistic
assumptions were made to show that even under such
conditions misdiagnoses can occur.

The simulation research of a faulty system will be
performed with a nonlinear phenomenological model of
a system composed of two interconnected buffer tanks,
as described in Section 4. This model reflects the
impact of faults on residuals. The model generates
continuous residual values as well as their discrete bi-
and three-valued representatives (diagnostic signals). The
four approaches that will be explored in this article will be
based on the following:

• binary signatures of faults (BSR) (Gertler, 1998;
Cordier et al., 2004),

• consistency-based approach (CBR) (Reiter, 1987),
• trinary signatures of faults (TSR) (Korbicz et al.,

2004; Kościelny, Bartyś and Grudziak, 2021),
• conflicts and trinary residuals (HIS) (Kościelny and

Bartyś, 2023).

The above approaches make use of diagnostic signals
and ignore the knowledge of the symptom sequences.
However, it should be noted that this knowledge is useful
in increasing the distinguishability of faults (Puig et al.,
2005; Kościelny, Syfert and Wnuk, 2021).

The states of the system being diagnosed are defined
by all faults that exist in this state. In addition, we will
discuss only the fault-free state and the states with single
and double faults. We will also consider all physically
possible combinations of the diagnostic signal values in
these states. However, for brevity, in this study we
will limit our consideration of the impact of the fault
compensation effect to double faults only, without losing
the generality of conclusions.

The signatures of states with double faults will be
derived from the signatures of single faults. Each binary
signature will be created as a Boolean alternative of
all binary signatures of faults that exist in that state.
This approach is commonly adopted in (Gertler, 1998;
Kościelny et al., 2012; Bartyś, 2013) with full awareness
of its unreliability in cases in which a fault compensation
effect occurs.

As a result of the trivalent evaluation of a residual,
a trivalent diagnostic signal is generated. Thus, the set
v of values for each diagnostic signal is a subset of
{−1, 0,+1}. The zero value of the diagnostic signal is
interpreted as the insensitivity of the residuum to a fault.
The remaining values of diagnostic signals are interpreted
as symptoms of faults.

Therefore, the values of diagnostic signals for system
states with single faults can take values belonging to the
subsets {0}, {−1}, {+1}, or {−1,+1}.

Table 1. Principles of determining three-valued signatures of
double faults.

vj/vk 0 −1 +1 −1,+1
0 0 −1 +1 −1,+1
−1 −1 −1 −1, 0,+1 −1, 0,+1
+1 +1 −1, 0,+1 +1 −1, 0,+1

−1,+1 +1,−1 −1, 0,+1 −1, 0,+1 −1, 0,+1
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Fig. 1. Diagram of the set of two buffer tanks.

The principles for determining the values of double
fault signatures vjk based on the values of diagnostic
signals of single faults vj and vk are shown in Table 1.
These principles boil down to what is called alternative
fault signatures. A generalization of the arithmetic of
alternative signatures can be found in (Bartyś, 2013). In
the case where the diagnostic signals for single faults are
mutually contrary, the diagnostic signal for double fault
beyond the values of {−1} and {+1} may take a value of
{0}. This provides an opportunity to consider the effect of
fault compensation in the process of diagnostic inference
and thus gives a chance to increase fault distinguishability.
This aspect will be discussed in more detail in Section 7.

4. Phenomenological model of the set of two
buffer tanks

Consider the configuration of two serially interconnected
buffer tanks, shown schematically in Fig. 1. Two types of
fault are assumed for both tanks: liquid leaks f1 and f3
and obliteration of pipelines f2 and f4. The fault entries
are indicated in Fig. 1. Here, we are dealing with the
following:

• holes in tanks with cross-section areas of S1l, S2l

located at heights of L1l, L2l relative to the axes of
the outlet pipes of both tanks, respectively;

• pipeline obliterations narrowing cross-section
pipeline areas S1, S2 to S1o, S2o, respectively.

In the following analysis, we assume infallible
measurements and ignore leaks in the pipeline connecting
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the tanks and leaks in the outlet pipeline. These
assumptions allow us to build simple partial models that
will be used to make the hypothesis presented in Section 1
plausible.

We assume knowledge of:

• the cross-sectional area A1 of Tank 1,
• the cross-sectional area A2 of Tank 2,
• the nominal diameter S1 of the pipeline connecting

both tanks,
• the nominal diameter S2 of the outlet pipeline,
• the outflow coefficient α1 from Tank 1,
• the outflow coefficient α2 from Tank 2,
• the liquid levels L1 and L2 in both tanks,
• the flow rate F of liquid entering Tank 1.

4.1. Reference models of the two tank set. Let
us define a set of idealized phenomenological reference
partial models of the system of two tanks without faults.
The fluid mechanics laws of continuous and inviscid flows
will be used to describe the flow rate of the liquid. The
reference partial models of the volumetric flows for both
tanks and for the set of both tanks are

A1
dL1

dt
− F + α1 · S1

√
2g(L1 − L2) = 0, (1)

A2
dL2

dt
− α1 · S1

√
2g(L1 − L2)

+ α2 · S2

√
2g · L2 = 0, (2)

A1
dL1

dt
+A2

dL2

dt
− F + α2 · S2

√
2g · L2 = 0 . (3)

Equations (1–3) are useful for the qualitative analysis of
the impacts of the faults. However, they are not useful
for quantitative analysis. Therefore, we will rewrite these
equations in the so-called internal form explicitly showing
the impact of the faults on residuals.

4.2. Model of two tank system in an internal form.
We will begin construction of the model in internal form
(Gertler, 1998) with the definition of normalized faults
that are easy to interpret and convenient for simulation
studies. We will define the faults as follows:

• relative leakage from Tank 1

f1 =
S1l

S1
,

• relative obliteration of the inter tank pipeline

f2 = 1− S1o

S1
,

• relative leakage from Tank 2

f3 =
S2l

S2
,

• relative obliteration of the outlet pipeline

f4 = 1− S2o

S2
.

Now we will perform a transformation of
Eqns. (1)–(3) to the set of residual equations

r1 = A1
dL1

dt
− F + α1 · S1

√
2g(L1 − L2)

+ f1 · α1l · S1

√
2g(L1 − L1l)

− f2 · α1 · S1

√
2g(L1 − L2), (4)

r2 = A2
dL2

dt
− α1 · S1

√
2g(L1 − L2)

+ α2 · S2

√
2g · L2

− f2 · α1 · S1

√
2g(L1 − L2)

+ f3 · α2l · S2

√
2g(L2 − L2l)

− f4 · α2 · S2

√
2g · L2, (5)

r3 = A1
dL1

dt
+A2

dL2

dt

− F + α2 · S2

√
2g · L2

+ f1 · α1l · S1

√
2g(L1 − L1l)

+ f3 · α2l · S2

√
2g(L2 − L2l)

− f4 · α2 · S2

√
2g · L2. (6)

In these equations, it is assumed that the liquid inflow
rate F is balanced by the outflow rate, the change in the
accumulation of liquid in both tanks and the sum of leaks
from both tanks.

4.3. Effect of compensation of fault impact on resid-
uals. The conditions for the compensation of the impact
of the fault on the residuals can be obtained directly
from (4)–(6) by assigning zero values to the residuals.
Each of these equations meets the necessary condition
for compensation if the impacts of faults on residuals are
opposite. The necessary conditions for the compensation
effect for individual residuals are

r1 = f1 · α1l · S1

√
2g(L1 − L1l)

− f2 · α1 · S1

√
2g(L1 − L2) = 0, (7)

r2 = −f2 · α1 · S1

√
2g(L1 − L2)

+ f3 · α2l · S2

√
2g(L2 − L2l)

− f4 · α2 · S2

√
2g · L2 = 0, (8)

r3 = f1 · α1l · S1

√
2g(L1 − L1l)

+ f3 · α2l · S2

√
2g(L2 − L2l)

− f4 · α2 · S2

√
2g · L2 = 0. (9)

A fault compensation effect is expected when the
value of at least one residuum is zero, despite the existence
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of fault(s) to which this residuum is sensitive. The fault
compensation conditions for double faults apply to

{f1 ∧ f2} if r1 = 0,

{f2 ∧ f3} if r2 = 0 ∩ f4 = 0,

{f1 ∧ f4} if r3 = 0 ∩ f3 = 0,

{f3 ∧ f4} if r2 = 0 ∩ f2 = 0 ∪ r3 = 0 ∩ f1 = 0.

In addition, Eqns. (7)–(9) show that fault compensation it
is not possible for double faults it {f1 ∧ f3}, {f2 ∧ f3},
although is possible for triple faults

{f2 ∧ f3 ∧ f4} if r2 = 0,

{f1 ∧ f3 ∧ f4} if r3 = 0,

and for quadruple fault

{f1 ∧ f2 ∧ f3 ∧ f4}
if r1 = 0 ∩ r2 = 0 ∪ r2 = 0 ∩ r3 = 0.

The detailed conditions for the compensation of double
faults impacts on residuals for the system of two tanks are
depicted in Table 2.

4.4. Simulation model. The simulation model of a
set of two tanks was developed in a MATLAB-Simulink
environment. The resulting simulation flowchart is shown
in Fig. 2. The model reflects the physical structure of the
set of buffer tanks shown in Fig. 1. The model consists of
two interconnected universal submodels accompanied by
a diagnostic system block. For the clarity of the model,
the tank parameters and diagnostic inference calculations
are hidden under the masks. Each submodel of the tank
implements two faults: a leakage from the tank and an
obliteration of the outlet pipe. Each submodel provides
the possibility of defining the specific behavior of both
faults. As a result, the simulation model can be freely
extended and used to simulate sets of any number of
serially connected and individually parametrised tanks.

The tank model generates an output vector, which
includes liquid levels in both tanks, liquid outflow rates,

Table 2. Conditions for compensation of double fault impacts
on residuals.

residual faults condition

r1 = 0 {f1 ∧ f2} f1
f2

= α1

α1l

√
L1−L2

L1−L1l

r2 = 0 {f2 ∧ f4} f4
f2

= α1

α2

S1

S2

√
L1−L2

L2

r2 = 0 {f3 ∧ f4} f4
f3

= α2l

α2

√
L2−L2l

L2

r3 = 0 {f3 ∧ f4} f4
f3

= α1l

α2

S1

S2

√
L1−L1l

L2

r3 = 0 {f1 ∧ f4} f4
f1

= α2l

α2

√
L2−L2l

L2

residuals, and diagnostic signals. The change in the
level of liquid in the tank is due to the change in the
accumulation of liquid. The level of liquid in each
tank can therefore be determined by integrating the
dynamic accumulation of the liquid, i.e., by integrating the
difference in the flow rate of liquid entering and leaving
the tank. Let Fini

be a volumetric inflow rate of the liquid,
Fouti be the liquid outflow rate, and Fli be the leakage
flow rate from the i-th tank. Therefore, for a continuous
and inviscid flow,

Li (t) =
1

Ai

∫ t

0

(Fini
− Fouti − Fli) dt. (10)

The volumetric flow rate of the liquid Fout depends,
among others, on its geometry, existing faults, and the
level of liquid in the tank in which it flows. In general,
the higher the liquid level in the succeeding tank, the
smaller the outflow rate Fout of the preceding tank. It was
therefore necessary to consider this coupling effect when
the two submodels of individual tanks were integrated into
one model. The liquid levels are determined from the
transformed Eqn. (10):

Li (t) =
1

Ai

∫ t

0

(Fini − αiSi

√
2g

(
Li − L(i+1)

)

+ f1αliSi
√
2g (Li − Lli)

+ f2αiSi

√
2g

(
Li − L(i+1)

)
) dt.

(11)

In addition, the following bonds (couplings) were
imposed on the set of two tanks:

⎧
⎨

⎩

Fouti = Fin(i+1)
,

Lini = Lin(i+1)
,

Lin(i+2)
= 0.

(12)

A simple residual assessment approach with an arbitrarily
selected nonnegative threshold δ was applied for
the determination of diagnostic signals. The applied
principles for binary and trinary assessments are
respectively, given by

{
s = 0 ↔ |r| < δ,
s = 1 ↔ |r| ≥ δ,

(13)

⎧
⎨

⎩

s = +1 ↔ r > δ,
s = 0 ↔ |r| ≤ δ,
s = −1 ↔ r < −δ.

(14)

5. Characteristics of fault inference
approaches

The diagnostic properties of the set of two tanks presented
in Fig. 1 will be discussed based on diagnoses generated
by four selected fault inference approaches. This section
briefly describes the approaches we are referring to.
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Fig. 2. Simulation diagram of two serially interconnected buffer tanks.

5.1. Diagnosing with binary signatures (BSR). This
approach is specific for the FDI community (Gertler,
1998; Cordier et al., 2004). The fault isolation is
mainly based on a binary FSM. The columns of the FSM
represent the signatures of the system states with faults.
Signatures of multiple faults are Boolean alternatives of
signatures of single faults that are present in this state. The
assumption of the absence of fault compensation effect is
adopted for multiple faults.

Reasoning about faults is based on knowledge
of fault symptoms (diagnostic signal values equal 1)
and the lack of symptoms (zero values of diagnostic
signals). Diagnostic signals having zero values reject
from diagnosis those states for which the corresponding
value of fault-specific diagnostic signal reference values
in fault signatures are equal to 1. This complies with the
ARR-based exoneration assumption (Cordier et al., 2004).

Table 3 shows the binary signatures of the state of
the two-tank system described in Section 4. This table
contains signatures of the fault-free state and states with
single and double faults.

The reasoning regarding the system state is
represented by the following set of rules:

if (s1 = v1i) ∧ · · · ∧ (sJ = vJi) then zi(Φi), (15)

where Φi is a set of faults in a given state zi, and vji ∈
{0, 1} is the binary value of diagnostic signal sj of the

Table 3. Binary signatures of states for the two tank system.

Φ ∅ f1 f2 f3 f4 f1 f1 f1 f2 f2 f3
f2 f3 f4 f3 f4 f4

Z z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10
s1 0 1 1 0 0 1 1 1 1 1 0
s2 0 0 1 1 1 1 1 1 1 1 1
s3 0 1 0 1 1 1 1 1 1 1 1

signature of i-th state. The diagnosis is as follows:

ΔBSR =
{
zi ∈ Z :

J∨

j=1

(sji = vji)
}
. (16)

5.2. Consistency-based diagnostic approach (CBR).
Consistency-based approaches (Reiter, 1987; de Kleer and
Williams, 1987; de Kleer and Kurien, 2003; de Kleer
et al., 1992) belong to diagnostic reasoning methods
based on the theory of diagnosis of the first principles
(Reiter, 1987). The essence of these approaches consists
of searching for the minimal sets of components or fault
types inconsistent with the observations of the diagnosed
system.

The CBR introduces the concept of a conflict set.
The conflict set contains those system components that
explain the inconsistency of the system description and
observations.

If we identify or represent components of the system
by their faults, then the j-th conflict set Cj can be
interpreted as being equivalent to a subset of faults to
which the j-th diagnostic signal is sensitive, i.e., F (sj =
1). We have

Cj = F (sj = 1) = {fk : vkj = 1} . (17)

Therefore, ∀j ∈ {1, . . . , J}, the rules

if (sj = 1) then F (sj = 1) (18)

define conflict sets, each of which contains at least one
fault. Diagnoses are generated as the minimal hitting sets
of all minimal conflict sets that have been observed. The
hitting set for the conflict sets

CS = {Cj : sj = 1 ∧ sj ∈ S} . (19)

is HSi ⊆
⋃
Cj ∈ CS such, that the intersection of this

set with each conflict set is not empty,
∧

ij

HSi ∩ Cj �= ∅. (20)
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The hitting set HSi is minimal if and only if none of its
proper subsets is the hitting set for the set of currently
existing conflicts. Thus, the minimal hitting set contains
the lowest cardinality subsets of faults that explain all
conflicts. This is a potential diagnosis. Further, we will
consider only minimal hitting sets. However, all supersets
of minimal hitting sets are potential diagnoses as well.

Diagnosis ΔCBR is a set of all potential diagnoses

ΔCBR = {HSi} . (21)

Only conflicts that have appeared are considered in
consistency-based approaches. Information that conflicts
do not appear is not used in making the diagnosis, unlike
in the fault signature-based approaches (BSR and TSR).
The conflict sets derived from Table 3 for the two-tank
system are as follows:

{f1, f2} corresponding to s1 = 1,
{f2, f3, f4} corresponding to s2 = 1,
{f1, f3, f4} corresponding to s3 = 1.

5.3. Diagnosing with trivalent signatures (TSR).
The approach to diagnosing with trivalent signatures was
exhaustively presented in (Korbicz et al., 2004; Kościelny,
Bartyś and Grudziak, 2021). In this study, the trivalent
signatures of single faults will be derived from (4)–(6)
or (7)–(9). They are depicted in the first four columns
in Table 4. Based on these signatures and according to
the truth table (Table 1), we can specify the signatures of
states with double faults.

The diagnostic reasoning is performed according to
the following set of rules

if (s1 = V1i) ∧ · · · ∧ (sj = VJi) then zi(Φi), (22)

where Vji is the subset of the diagnostic signal values sj
in state zi(Φi), and Φi is the subset of faults in state zi.

The diagnosis indicates all states zi for which the
current values of the diagnostic signals match their
signatures,

ΔTSR =
{
zi ∈ Z :

∨

j

sj ∈ Vji

}
, sj ∈ S. (23)

5.4. Hybrid approach (HIS) based on conflicts and
trinary valued signatures. The hybrid approach to
diagnosing (HIS) has been presented by Kościelny and
Bartyś (2023). The strength of this approach is in the
synergy gained from integration of the diagnosing based
on the fault-symptoms representation in the form of FIS
combined with an edge-and node-labelled HS-tree based
inference (Reiter, 1987). The inference of faults is carried
out based on conflicts and the use of the trinary-valued
diagnostic signals. The use of the trinary diagnostic

Table 4. Trivalent signatures of diagnostic states for the two-
tank system. Here v = {−1, 0,+1} .

Φ ∅ f1 f2 f3 f4 f1 f1 f1 f2 f2 f3
f2 f3 f4 f3 f4 f4

Z z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

s1 0 +1 −1 0 0 v +1 +1 −1 −1 0
s2 0 0 +1 +1 −1 +1 +1 −1 +1 v v
s3 0 +1 0 +1 −1 +1 +1 v +1 −1 v

signals yields a twofold increase in the number of conflict
sets compared with the CBR. This is because the signs of
the trivalent residuals can be taken into account. However,
the powers of these sets are not higher than the powers of
the conflict sets in the case of binary diagnostic signals.
Conflicts are indicated by −1 or +1 values of diagnostic
signals. Analogously to (18), we can propose the set of
the following rules:

{
if (sj = −1) then F (sj = −1),
if (sj = +1) then F (sj = +1).

(24)

The diagnosis is generated in the same way as for binary
conflicts, i.e., by determining the minimal hitting sets for
the CS conflicts (19). The diagnosis takes the form of a
set of potential diagnoses (21).

Using the directional impacts of faults on residuals
(residual signs), in the scope of consistency-based
approaches, is qualified as exploiting fault models (Struss
and Dressier, 1989). However, in the case of HIS, these
are qualitative models that do not require quantification of
the impact of faults on the residuals as in (4)–(6). Usually,
it is sufficient to acquire expert knowledge regarding the
impact of faults on residual signs or obtain the residual
equations.

In the example under consideration, instead of three
sets of conflicts generated by the CBR, we obtain as many
as six such sets by the HIS approach:

{f2} if s1 = −1, {f1} if s1 = +1,

{f4} if s2 = −1, {f2, f3} if s2 = +1,

{f4} if s3 = −1, {f1, f3} if s3 = +1.

6. Simulations
This section demonstrates the chosen results of simulation
tests which confirm the hypothesis formulated in
Section 1.

Example 2. (Single fault and potential diagnoses of
physically impossible states generated by the consistency-
based approach) The objective of this example is to
demonstrate that the CBR approach may indicate potential
diagnoses of physically impossible states due to the fault
compensation effect.
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Fig. 3. Example of a simulation of a single fault f2. Notation:
F1 – liquid inflow rate into tank No. 1; F2 – outflow
rate from tank No. 2; L1 –liquid level in tank No. 1;
L2 – liquid level in tank No. 2; f2 – the obliteration of
the pipeline connecting both tanks; residuals: r1, r2, r3;
diagnostic signals: s1, s2, s3.

Consider the single fault condition z2 of the
diagnosed two-tank system. Figure 3 provides the result
of a simulation of a single idealized incipient fault f2
representing a relative reduction in the cross-section of the
pipeline connecting both tanks. This case corresponds to
Diagnosis 3 in Table 5.

In the time interval from 0 to 0.44 · 105 s, all
diagnostic signals take zero values. In the time interval
from 0.44 · 105 to 2.00 · 105 s, the diagnostic signal takes
the value from (s1 = −1, s2 = +1, s3 = 0). Diagnoses
based on the approaches BSR, TSR and HIS are accurate
and indicate fault f2.

In turn, the CBR diagnosis indicates potential
diagnoses z2 = {f2}, z6 = {f1 ∧ f3} and z7 =
{f1 ∧ f4}, of which only the first is physically possible
and the last two are physically impossible.

Potential diagnoses {f1 ∧ f3}, according to (9),
are physically impossible because both faults exhibit a
unidirectional impact on the residual value. Therefore, in
this case, it is also not possible to mutually compensate for
the impacts of both faults. However, fault compensation
is theoretically possible for the state z7 = {f1 ∧ f4}.
The occurrence of this double fault should lead to the
generation of diagnostic signal values (s1 = +1, s2 =
−1), i.e., different from those observed. �

Example 3. (Single fault and potential diagnoses of phys-
ically impossible states generated by the BSR and CBR.)
The objective of this example is to demonstrate that in the
case of a single fault, the BSR and CBR approaches may
produce diagnoses of physically impossible states.

Consider the single fault state z4 = {f4}. This case
corresponds to Diagnoses No. 5 in Table 5. Figure 4
provides an example of a simulation of a single incipient
fault f4 representing a reduced cross-section of the
outflow pipe of the second tank. For comparison, the slope
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0
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F1
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+1

+1

-1
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[%]

r2

r1

, r3

-1

Fig. 4. Example of a simulation of a single fault f4. The legend
as in Fig. 3.

of f4 is identical to that of fault f2 in Example 2.
In the time interval from 0 to 0.44 · 105s, all

diagnostic signals take zero values. In the time interval
from 0.44 · 105 to 2.00 · 105 s, the values of the diagnostic
signal are (s1 = 0, s2 = −1, s3 = −1). The diagnosis
generated by the approach BSR indicates states z3 =
{f3}, z4 = {f4}, and z10 = {f3 ∧ f4} . The potential
diagnoses generated by the approach CBR are z3 = {f3} ,
z4 = {f4} and z5 = {f1 ∧ f2}. The TSR indicates
potential diagnoses z4 = {f4} and z10 = {f3 ∧ f4}.
In turn, the diagnosis formulated by the HIS precisely
indicates the real state z4. All the above diagnoses are
correct because all indicate fault f4.

On the other hand, the state z3 is physically
impossible. This state was incorrectly indicated by BSR
and CBR.

In addition, the state z5 with the double fault in the
diagnosis CBR is also not physically possible. According
to (7), fault compensation can take place. The occurrence
of this state should lead to the generation of diagnostic
signal values (s2 = +1, s3 = +1), that is, different from
those actually observed.

The state z10 indicated by the BSR and TSR
approaches is physically possible. However, it is not a
minimal hitting set and therefore does not occur in the
diagnosis CBR. It should be emphasized that all potential
diagnoses generated in this example by the TSR and HIS
approaches indicate exclusively physically possible states.

This example confirms that the approaches CBR and
BSR can generate diagnoses of physically impossible
states in the case of single faults. �

Example 4. (Double fault and incorrect diagnosis gen-
erated by the BSR and potential diagnoses of physically
impossible states generated by the CBR and BSR.) The
objective of this example is to demonstrate that in the case
of a double fault, the BSR may fail and the BSR and CBR
approaches can generate potential diagnoses of physically
impossible states.

Consider now double fault state z9 = {f2 ∧ f4} in



244 J.M. Kościelny and M. Bartyś
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Fig. 5. Example of a simulation of a state with a double fault
z9 = {f2 ∧ f4}. The legend as in Fig. 3. The area
marked in grey indicates the time interval for the com-
pensation of impacts of faults f2 and f4 on the resid-
ual r2.

a case of compensation of impacts of faults on residual
r2. Figure 5 depicts the result of a simulation of incipient
faults f2 and f4 representing respectively obliteration
of the pipeline connecting the tanks and the outlet
pipeline from the second tank. This case corresponds to
Diagnoses 14 and 15 in Table 5.

In the time interval from 0 to 0.44 · 105 s, all
diagnostic signals take zero values. In the time interval
from 0.44 to 105 . . . 0.70 · 105 s, the diagnostic signal
values (s1 = −1, s2 = 0, s3 = 0) are pointing to
an unknown state. In the time interval from 0.70 to
105 . . . 1.36 · 105 s, the diagnostic signal values are (s1 =
−1, s2 = 0, s3 = −1). In this time interval, the effect
of compensation of impacts of both simulated faults on
residuum r2 takes place. The diagnosis generated by the
BSR exhibits only one potential diagnosis. It indicates
state z1 = {f1}, and therefore it is a potential diagnosis
of a physically impossible state. Ultimately, the diagnosis
is incorrect and non-inclusive.

In turn, the diagnosis generated by the CBR indicates
potential diagnosis of a possible physical state z9 =
{f2 ∧ f4}, and two potential diagnoses of the physically
impossible states z1 = {f1} and z8 = {f2 ∧ f3}. On the
other hand, the diagnoses generated by the TSR and HIS
are correct.

In the time interval from 1.36 to 105 . . . 2.00 · 105
s, the diagnostic signal values are (s1 = −1, s2 =
+1, s3 = −1). The diagnoses obtained by BSR and CBR
correctly indicate the state z9 with double faults {f2 ∧ f4}
and additionally four potential diagnoses of physically
impossible states with double faults. It should be noted
that the diagnoses generated by the TSR and HIS precisely
indicate the physical states of the system.

Example 4 indicates that diagnosing with the BSR
and CBR may lead to the generation of potential diagnoses
of physically impossible states. �

In summarizing this section, it should be emphasized
that in all the mentioned examples, the CBR diagnosis is
always consistent with the observations. In turn, based on
the analysis of the simulation results, the BSR and CBR
fault isolation approaches do not guarantee the indication
of physically possible states, neither for single nor double
faults.

7. Sources of diagnoses of physically
impossible states

Principally, there are two main reasons for generating
potential diagnoses of physically impossible states in the
case of inferring with binary diagnostic signals:

• resulting from a loss of information by the
transformation of the continuous residuals into
binary diagnostic signals, and

• related to a fault compensation effect.

The binary evaluation of residuals relies on the assigning
of a binary number to a diagnostic signal value according
to the result of the comparison of the absolute value of
residual with a certain nonnegative threshold. Hence, the
evaluation result is independent of whether the residual
is positive or negative. Therefore, it must be determined
whether the loss of information with respect to the sign of
the residual affects the result of the diagnostic inference.

In fact, the fault can manifest itself by a permanently
unidirectional or bidirectional deviation of the residual
value from zero. For example, obliteration of the
pipeline causes a unidirectional change in the residual,
whereas parametric faults of instruments can cause both
an increase and a decrease in the residual value.

Therefore, the binary evaluation of residuals is
informatively lossy in the sense that identical binary
signatures can be attributed to different faults despite the
physical constraints. It is worth noticing that this may not
be the case with three-valued signatures.

Thus, a diagnosis based on binary signatures may
indicate states that are physically impossible. From these
considerations, it we deduce the following:

Conclusion 1. Binary evaluation of residuals may lead to
the generation of potential diagnoses of physically impos-
sible states.

The fault compensation effect applies exclusively to
multiple faults. This effect is usually ignored unjustly in
approaches that use binary signatures to isolate multiple
faults. Clearly, such approaches are structurally not
resistant to fault compensation effects. This problem
can be solved by an appropriate adjustment of the fault
signature matrices. It is possible, for example, to apply the
alternative signature approach proposed in (Bartyś, 2013;
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Bartyś, 2014; Bartyś, 2021), which is immune to the fault
compensation effect.

FDI approaches ignored the fault compensation
effects when developing signatures for states with
multiple faults. In turn, the CBR approaches assume
the possibility of compensation impacts of faults on the
residuals (Cordier et al., 2004).

A necessary but insufficient condition for the fault
compensation effect is the sensitivity of the residual to
at least two faults. In fact, the compensation effect can
occur only if the impact of faults on the residual value is
opposite as shown in Example 4.

Therefore, the property of complete immunity to the
effect of fault compensation is not confirmed in the case
of their unidirectional impact on the residuals. It is a case
where potential diagnoses of physically impossible states
may be generated.

Conclusion 2. The complete immunity to the effect of fault
compensation attributed to the CBR approach is not justi-
fied.

8. Comparative study
The comparative study of the characteristics of diagnostic
approaches that are in the area of interest of this paper
will be carried out on the example of the diagnosis of
a two-buffer tank system set shown in Fig. 1. The four
diagnostic approaches, i.e., BSR, CBR, TSR, and HIS,
introduced in Section 5 will be considered. The models
(1)–(3) will be used for diagnosis.

The study will be carried out according to the
methodology presented in Section 3. The fault-free
and all physically possible states of the diagnosed
system with single and double faults were examined
for all combinations of diagnostic signal values that are
physically possible in these states. Table 5 provides a
breakdown of the diagnoses generated.

Incorrect diagnoses are shaded grey in Tab. 5, while
all potential diagnoses of impossible physical system
states are highlighted in bold. The zero values of
diagnostic signals resulting from the fault compensation
effect are in bold and are in bold. According to the note in
Tab. 4, it was assumed that a fault diagnosis is generated
only if at least one diagnostic signal value deviates from
zero. Therefore, Diagnoses 1 and 17 in Table 5 indicate a
fault-free state.

The summary of the incorrect diagnoses obtained
is shown in Table 6. The number of diagnoses in this
table corresponds to the number of diagnoses in Table 5.
Table 6 lists the following:

• incorrect diagnoses,

• incorrect but inclusive diagnoses,

• potential diagnoses of the impossible physical states,

Table 5. List of diagnoses of the two-tank system.

Z s1, s2, s3 s1, s2, s3 BSR CBR TSR HIS No
trinary binary

z0 0, 0, 0 0, 0, 0 z0 z0 z0 z0 1
z1 +1, 0,+1 1, 0, 1 z1 z1 z1 z1 2

z8
z9

z2 −1,+1, 0 1, 1, 0 z2 z2 z2 z2 3
z6
z7

z3 0,+1,+1 0, 1, 1 z3 z3 z3 z3 4
z4 z4 z5 z5
z10 z5 z10

z4 0,−1,−1 0, 1, 1 z4 z4 z4 z4 5
z3 z3 z10
z10 z5

z5 0,+1,+1 0, 1, 1 z3 z5 z5 z5 6
z4 z3 z3 z3
z10 z4 z10

+1,+1+ 1 1, 1, 1 z5 z5 z5 z5 7
z6 z6 z6 z6
z7 z7
z8 z8
z9 z9

−1,+1,+1 1, 1, 1 z5 z5 z5 z5 8
z6 z6 z8 z8
z7 z7
z8 z8
z9 z9

z6 +1,+1,+1 1, 1, 1 z6 z6 z6 z6 9
z5 z5 z5 z5
z7 z7
z8 z8
z9 z9

z7 +1,−1, 0 1, 1, 0 z2 z7 z7 z7 10
z2
z6

+1,−1,+1 1, 1, 1 z7 z7 z7 z7 11
z5 z5
z6 z6
z8 z8
z9 z9

+1,−1,−1 1, 1, 1 z7 z7 z7 z7 12
z5 z5
z6 z6
z8 z8
z9 z9

z8 −1,+1,+1 1, 1, 1 z8 z8 z8 z8 13
z5 z5 z5 z5
z6 z6
z7 z7
z9 z9

z9 −1, 0,−1 1, 0, 1 z1 z9 z9 z9 14
z1
z8

−1,+1,−1 1, 1, 1 z9 z9 z9 z9 15
z5 z5
z6 z6
z7 z7
z8 z8

−1,−1,−1 1, 1, 1 z9 z9 z9 z9 16
z5 z5
z6 z6
z7 z7
z8 z8

z10 0, 0, 0 0, 0, 0 z0 z0 z10 z0 17
z0

0,+1,+1 0, 1, 1 z10 z3 z10 z3 18
z3 z4 z3 z5
z4 z5 z5

0,−1,−1 0, 1, 1 z10 z3 z10 z4 19
z3 z4 z4
z4 z5
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for all diagnostic fault isolation approaches being studied.
In Table 5, for the state z10, that is, {f3 ∧ f4},

only three combinations of diagnostic signal values that
may actually occur are specified. Other combinations are
physically impossible due to the unidirectional impact of
the faults f3 and f4 on the residuals r2 and r3, as can be
seen in (5)–(6).

Table 5 allows for the determination of the values of
the diagnosis quality indices defined in Appendix A. The
calculated values are summarized in Table 7.

As can be seen in Table 7, the index Θ expressing
the average share of potential diagnoses of impossible
physical states in the total number of diagnoses is different
from zero if diagnosing with BSR. This also applies to the
CBR approach which is based on binary observations. By
contrast, potential diagnoses of impossible physical states
are not recorded for the approaches TSR and HIS.

It was also shown that the CBR approach may
generate potential logically correct diagnoses of
physically impossible states in the case of the fault
compensation effect. Table 6 also shows that the
application of the TSR and HIS approaches based on
trivalent diagnostic signals does not show potential
diagnoses of physically impossible states. The index of
incorrect diagnoses Ψ expresses the share of diagnoses
that do not indicate the real physical state. From Table 5,
it follows that the BSR and CBR approaches generate
logically correct diagnoses, however of physically
impossible states as shown in Table 6. In all these cases,
an effect of compensation for the impact of faults on
residuals was observed.

The percentage of incorrect diagnoses generated in
fault compensation cases (index χ) exhibits the complete
lack of robustness in this range demonstrated by the
approach BSR. The other approaches proved to be robust
in some way in this aspect. In the case study under
review, only the TSR approach ensures the full veracity
of diagnoses.

The measure of fault distinguishability is the index
of theoretical accuracy of diagnosis D. Any diagnosis
of a physically impossible state results in a reduction
in the value of this index. This is the case of BSR
and CBR. This also explains the values of the indicator
D in Table 7 for binary approaches compared to their
trinary counterparts TSR and HIS. This is in line with the
results of previous studies (Bregón et al., 2013; Kościelny
et al., 2016; Kościelny et al., 2019).

Surprisingly, however, is the higher value of index
D obtained by the HIS in comparison with the TSR
approach. It was rather expected that the introduction of
the exoneration assumption in the TSR would increase,
not decrease, the fault distinguishability.

The explanation is as follows. If the potential
diagnoses are minimal hitting sets and if in the real world
there is a subset of faults that is a superset of the minimal

hitting set, then none of the potential diagnoses will
indicate the actual state. This is illustrated in Example 5.

Example 5. Suppose simultaneous faults a and b and
two conflict sets {a, b, c} and {a, b, d}. The minimal
hitting sets that constitute potential diagnoses are {a},
{b}, {c, d}. The set {a, b} is not a minimal hitting set
as it is a superset of the minimal hitting sets. �

The set of faults {f3, f4} of the state z10 is a superset
of the sets {f3} , {f4}, and the empty set of the state z0.
Therefore, it is not in the diagnoses of CBR and HIS.

Example 6. Consequences of a false and non-inclusive
diagnosis. Suppose that Fig. 1 shows a simplified diagram
of a configuration of aviation fuel tanks. Assume that
and emergency condition occurred with two faults: a
leakage from Tank 1 and the clogging of the outlet
pipe from Tank 2. Diagnoses are generated by the
binary signature approach BS. As a result of the opposite
effect of these faults on the value of residual 3 in (6),
a false and non-inclusive diagnosis is obtained. This
diagnosis indicates a clogging of the channel between
tanks (Table 6, Diagnosis 10). The suggested safety
precaution is to cut off the fuel supply when the upper
alarm limit is exceeded in Tank 1. In fact, there is
a leak that threatens to ignite and cause a fire with
the consequences similar to the accident in Buncefield,
England, in December 2005. �

In general, it can be stated that in BSR and TSR
all combinations of faults limited only by assumed
multiplicity are considered. Only some of these
combinations are used in consistency-based methods,
despite the unlimited multiplicity of faults they assume.

On the one hand, the difference in the inference
method leads to obtaining more precise diagnoses in the
case of HIS compared to with TSR (without an indication
of the state z10). On the other hand, incorrect diagnoses
(17)–(19) are generated for the HIS approach when the
state is z10. These reflect increased values of the Ψ and Φ
indices for HIS.

Non-zero values of share χ of incorrect diagnoses
due to the fault compensation effect indicate that the BSR
approach is not robust to this effect. The robustness of the
CBR and HIS approaches is definitely better. The TSR
approach exhibited total robustness in this case study.

Based on the performed discussion, the following
conclusions can be drawn:

(a) diagnoses of physically impossible states may result
in incorrect and non-inclusive diagnoses by BSR and
CBR approaches;

(b) by CBR and HIS approaches, the incorrect diagnoses
may occur only if in reality, there exist faults that are
not in the minimal hitting set;
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Table 6. Summary of diagnoses obtained for the two-tank system.

Diagnosis BSR CBR TSR HIS

incorrect 6, 10, 14, 17, 18, 19 − 17, 18, 19
17 −

incorrect and − 18, 19 − −
inclusive
diagnoses 4, 5, 6, 1, 2, 3, 4, − −

of physically 7, 8, 9, 5, 6, 7, 8,
impossible 10, 11, 12, 9, 10, 11,

states 13, 14, 15, 12, 13, 14,
16, 18, 19 15, 16, 18, 19

Table 7. Diagnosis quality indices.

Index BSR CBR TSR HIS

Θ 0.487 0.540 0.000 0.000

Ψ 0.211 0.158 0.000 0.158

χ 1.00 0.250 0.000 0.250

D 0.487 0.347 0.684 0.816

Φ 0.211 0.053 0.000 0.158

(c) in the studied case, the usage of trivalent diagnostic
signals rejects the potential diagnoses of impossible
physical states;

(d) the fault distinguishability obtained by inferring
based on rows need not be less than that obtained by
signature-based diagnosing;

(e) HIS approach with trivalent diagnostic signals does
not guarantee exclusively correct diagnoses.

The research carried out does not cover all the
aspects that should be taken into account when evaluating
diagnostic approaches. For example, they do not capture
the impact of false diagnostic signals on diagnoses.
However, this is beyond the scope of this paper.

9. Summary
The paper discusses the consistency of the diagnoses
obtained using selected model-based diagnostic
approaches with the real state of the system being
diagnosed.

The contribution of this work is a new look and
revision of views on the problem of the generation of
diagnoses that are formally correct but not true, i.e.,
inconsistent with the physically existing state.

The results reported in this paper contribute to the
growth of knowledge regarding the identification of the
root causes of the generation of misdiagnoses. They
may be useful in assessing the robustness of diagnostic
approaches against the generation of incorrect diagnoses.

As a result of the study, it was found that
approaches based on binary diagnostic signals or
observations generate diagnoses of potential physically
impossible states, despite the absence of modeling errors,
disturbances, and measurement noise. These are the
result of binary residual evaluation and/or the effect of
compensation of fault impacts on residual values.

In the example studied, it was discovered that
diagnosis based on trivalent residuals (TSR and HIS)
does not indicate any physically impossible condition
and, consequently, does not lead to the generation of
misdiagnoses.

The reduction in the number of physically impossible
potential diagnoses achieved by applying trivalent
residuals affects not only the indices characterizing the
share of incorrect diagnoses, but also the increased
distinguishability of faults. High distinguishability is, of
course, critical for maintaining the safety of the diagnosed
processes.

Based on the results obtained in this work, the
following working hypotheses can be formulated:

(i) Diagnostic inference based on fault signatures
and trivalent residual evaluation rejects incorrect
diagnoses.

(ii) Diagnostic approaches based on rows and the
HS tree demonstrate higher fault distinguishability
compared with diagnosis based on fault signatures
and trivalent residual evaluation.

However, both hypotheses require further theoretical and
experimental studies.
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Kościelny, J.M., Bartyś, M. and Syfert, M. (2012). Methods of
multiple fault isolation in large scale systems, IEEE Trans-
actions On Control Systems Technology 20(5): 1302–1310.
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Appendix

Metrics of diagnostic quality

In this appendix, several indices for assessing the quality
of diagnosis are defined for our comparative studies.

1. The mean share of potential diagnoses of the impossible
physical states

Θ =
1

N

N∑

i=1

npi
ni

, (A1)

where ni is the number of potential diagnoses in the i-th
diagnosis, npi is the number of potential diagnoses of
physically impossible states in the i-th diagnosis, N is
the total number of all combinations of diagnostic signal
values in all the considered states.

N =
∑

i:zi∈Z
ni. (A2)

2. Index of the theoretical accuracy of a diagnosis
The theoretical accuracy of a single diagnosis is defined
as the reciprocal of the number of di states indicated in
the diagnosis. The index of theoretical precision of a
diagnosis D is defined as the mean value of the diagnostic
precision for all diagnoses N ,

D =
1

N

N∑

i=1

1

di
. (A3)

We define the theoretical accuracy of a diagnosis, because
we do not consider here modelling errors, disturbances,
measurement noise, uncertainties, etc.
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3. The share of incorrect diagnoses
The share of incorrect diagnoses Ψ is the ratio of the
number of incorrect diagnoses nψ to the number of all
possible diagnoses N ,

Ψ =
nψ
N

. (A4)
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