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The computational methods for solving the generalized eigenvalue problems of real symmetric matrices are crucial in fields
such as structural dynamics analysis. As the scale of the problems to be solved increases, higher efficiency in solving
eigenvalue problems is demanded. The LOBPCG (locally optimal block preconditioned conjugate gradient) method is
a promising iterative algorithm suitable for solving large-scale eigenvalue problems, capable of quickly solving multiple
extreme eigenpairs. In the LOBPCG, the preconditioner can be executed by calling the truncated PCG to approximately
solve the ‘inner’ linear system. However, the convergence rate of the LOBPCG is highly sensitive to the quality of its
preconditioner. Only when paired with an appropriate preconditioner, the LOBPCG is notably efficient in minimizing
the iterations needed for convergence. This paper proposed a projection strategy which can enhance the quality of the
preconditioner, thus improving the overall efficiency and stability of the LOBPCG. The projection strategy first utilizes
intermediate vectors from the PCG iterations to construct search subspaces and constraint subspaces for oblique projection,
and then executes the oblique projection in truncated PCG when solving inner linear system. This oblique projection
technique can find a more accurate approximate solution which minimizes the 2-norm residuals in the search subspace
without significantly increasing computational cost, thereby improving the quality of the preconditioner, thus accelerating
convergence of the LOBPCG. Numerical experiments show that the projection strategy can improve the LOBPCG algorithm
significantly in terms of efficiency and stability.

Keywords: LOBPCG, preconditioner, preconditioned conjugate gradient (PCG), projection method.

1. Introduction
Eigenvalue problems, which involve determining the
eigenvalues and corresponding eigenvectors of matrices,
play a fundamental role in fields such as structural
dynamics analysis. Consider a generalized symmetric
definite eigenvalue problem

Ax = λBx, (1)

where λ and x are the eigenvalues and the corresponding
eigenvectors, and A,B ∈ R

n×n are symmetric positive
definite matrices.

For solving eigenvalues of sparse symmetric
matrices in the field of structural dynamics, there are
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already many efficient and stable methods, such as the
subspace iteration method(Bathe and Wilson, 1973), the
Lanczos method (Lanczos, 1950; Guarracino et al., 2006),
or the WYD method (Yuan et al., 1989), etc. However,
these methods necessitate employing direct linear system
solvers to repeatedly solve the linear system during
the solving process. With an increase in the problem
scale, the computational burden of using direct linear
system solvers escalates to impractical levels. Some
methods employ a divide-and-conquer approach. For
instance, AMLS (automated multi-level substructuring)
(Bennighof and Lehoucq, 2004; Yin et al., 2013) is a
technique which operates by decomposing large systems
into smaller, more manageable substructures and then
solving these substructures at different levels.
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Alternatively, to overcome the challenges inherent
in direct methods for linear systems, several algorithms
employ truncated iterative methods for linear systems.
These iterative methods approximate the solution
of linear systems, presenting a viable alternative to
direct methods under computational constraints. The
Jacobi-Davidson (JD) method (Sleijpen and Van der
Vorst, 2000; Fan et al., 2014) and the LOBPCG
(locally optimal block preconditioned conjugate
gradient) method (Knyazev, 2001) are representative
algorithms that utilize this strategy. Grounded in
the conjugate gradient (CG) method (Collignon and
Gijzen, 2010; Sulaiman et al., 2024) and coupled with
local optimization strategies, the LOBPCG offers a
robust solution for solving multiple extreme eigenpairs.
By adopting a block-wise computational approach as
described in (Knyazev et al., 2007) and integrating
preconditioning techniques, the LOBPCG algorithm can
simultaneously compute multiple eigenvalue-eigenvector
pairs. Currently, several well-established libraries
have implemented these methods, such as PRIMME
(PReconditioned Iterative MultiMethod Eigensolver)
(Stathopoulos and McCombs, 2010; Wu et al., 2017)
and SLEPc (Scalable Library for Eigenvalue Problem
Computations) (Roman et al., 2016) which bring
state-of-the-art methods from ‘bleeding edge’ to
production.

Several versions of the LOBPCG have been
implemented, with these implementations primarily
focusing on refining its orthogonalization process. For
example, Hetmaniuk and Lehoucq (2006) suggested
an additional B-orthogonalization of the approximate
eigenvectors, and Duersch et al. (2018) developed a
number of techniques to enhance the Hetmaniuk–Lehoucq
(HL) orthogonalization strategy. However, research on the
LOBPCG preconditioner is insufficient. Kressner et al.
(2023) propose mixed precision LOBPCG algorithms that
use a (sparse) Cholesky factorization of A computed in
lower precision as preconditioner.

In this paper, we focus on the preconditioner
executed by calling a truncated PCG solver to solve the
inner linear system AW = Q approximately (where
Q is the block of residuals), which means that an
accurate solution is not needed, and the PCG solver
just needs to iterate for a specific number of steps
(Knyazev et al., 2007). When paired with an appropriate
preconditioner, the LOBPCG has been proven to be highly
effective in reducing the number of iterations required
for convergence. Nevertheless, the LOBPCG is highly
sensitive to the preconditioner. It only exhibits a high
convergence rate when the preconditioner is sufficiently
effective. An inappropriate preconditioner can slow down
convergence or even lead to divergence. Consequently,
to achieve higher efficiency, the performance of the
preconditioner for the LOBPCG must be improved, and

the projection method mentioned below has the potential
to enhance the preconditioner.

The projection method is an important technique,
particularly effective in the iterative method for solving
linear systems. It restricts the search space for the
solution to a smaller, more relevant subspace, thereby
accelerating the convergence. Most of the existing
practical iterative techniques for solving large linear
systems utilize a projection process in one way or
another (Saad, 2003; Yuan et al., 2021). In fact,
projection methods can also be used to enhance the
effectiveness of the preconditioner. Recently, Geng and
Sun (2023) applied a projection-improved strategy to the
preconditioner for (F)GMRES, significantly accelerating
the algorithm’s convergence. Inspired by this, we
improve the preconditioner for the LOBPCG based on the
projection method, aiming to enhance both its stability
and efficiency, thereby boost the convergence of the
LOBPCG algorithm.

The proposed projection strategy begins by using
intermediate vectors from the truncated PCG iterations
to construct the search and constraint subspaces for
oblique projection. It then applies an oblique
projection within the truncated PCG for accelerating the
convergence of the inner linear system AW = Q.
This oblique projection can achieve a more accurate
approximation that minimizes the 2-norm residuals within
the search subspace, without significantly raising the
computational expense. Our projection strategy enhances
the effectiveness of the preconditioner, leading to an
improved overall efficiency of the LOBPCG. In the future,
the proposed projection strategy could be integrated
into eigenvalue solvers, such as PRIMME and SLEPc.
By incorporating our projection technique, libraries
like PRIMME and SLEPc may benefit from improved
performance and robustness in solving large-scale
eigenvalue computations.

The subsequent sections of the paper are organized
as follows. In Section 2, we provide an overview of the
LOBPCG algorithm and the oblique projection method.
Section 3 introduces the projection strategy for the
preconditioner in LOBPCG as well as the discussion of
the strategy. In Section 4, we present the numerical results
followed by a brief analysis. Finally, Section 5 provides
conclusions and the outlook for the future research.

2. LOBPCG algorithm and oblique
projection method

2.1. LOBPCG algorithm. The LOBPCG can be
seen as an extension of the (preconditioned) conjugate
gradient algorithm for eigenvalue problems (Feng and
Owen, 1996). Consider computing only the smallest
eigenpair, i.e., the block size of bs = 1. In the PCG
algorithm for eigenvalue problems, the parameter δk is
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determined to minimize the Rayleigh quotient:

ρ (xk+1) = ρ (xk + δkpk) , (2)

where pk is the search direction, and the parameter αk is
determined to make search directions

pk = −gk + αkpk−1 (3)

conjugate, where gk is the gradient of the Rayleigh
quotient ρ.

Knyazev (2001) proposed to rewrite the Rayleigh
quotient as

ρ (xk+1) = ρ (xk + τkpk + γkgk) (4)

and he suggested that these two parameters τk and γk
should be selected to minimize the Rayleigh quotient
ρ (xk+1) using the Rayleigh-Ritz procedure, which he
referred to as a ‘locally optimal.’ Clearly, this result is
smaller than before,

min
τk,γk

ρ (xk + τkpk + γkgk)

≤ min
δk

(xk − δk (gk − αkpk−1)) . (5)

A block version of the LOBPCG for finding bs > 1
smallest eigenpairs performs the Rayleigh-Ritz procedure
on a 3bs-dimensional trial subspace span {S} (S =
[X,P,W ], where X is the block of approximate
eigenvectors, P is the block of ‘directions’ of the
LOBPCG and W is the block of preconditioned residuals.

However, the basic LOBPCG can sometimes
encounter serious numerical issues. In the basic LOBPCG
algorithm, vector sets P and W are orthogonalized
separately with respect to the B-metric. While this
ensures B-orthogonality within each set (P and W ),
it does not guarantee B-orthogonality between the
vectors of P and W . This discrepancy may lead
to severe numerical issues. In the software package
BLOPEX (Knyazev et al., 2007), a failure in achieving
B-orthogonality between the vectors of P and W results
in non-B-orthogonality during the Rayleigh-Ritz process.
This, in turn, makes the projection matrix STBS on
the right-hand side indefinite or even rank deficient,
ultimately leading to a breakdown in the algorithm.

To overcome this numerical difficulty, Hetmaniuk
and Lehoucq (2006) proposed a basis selection strategy
which keeps X , W , and P in the subspace span {S}
mutually B-orthogonal. They use a procedure ortho() to
B-orthonormalize W with respect to both P and X at
each iteration. In this paper, we refer to the LOBPCG
with basis selection as the ‘stable version of LOBPCG’
and we will use this version to test our projection strategy
in Section 4. Algorithm 1 provides a pseudocode for
the stable version of the LOBPCG. By doing this, the

Algorithm 1. Stable version of LOBPCG.
Input: Matrices A and B, the maximum number of

iterations MaxIter, initial X
Output: X, λ, the lowest eigenpairs of the eigenvalue

problem
1: Perform a Rayleigh-Ritz analysis:

XTAXY = XTBXΘY
2: X = XY
3: Q = AX −ΘBX
4: P = [ ]
5: for j = 1, . . . ,MaxIter do
6: Apply the preconditioner T to the residuals:

W = TQ
7: Orthonormalize W against X and P
8: S = [X,P,W ]
9: Perform a Rayleigh-Ritz analysis:

STASY = STBSΘY
10: X = SY
11: Q = AX −ΘBX
12: Lock converged eigenvectors, exit if done
13: P = [0, P,W ]Y
14: end for

generalized eigenvalue problem is turned into a standard
eigenvalue problem in the Rayleigh-Ritz procedure.

In the LOBPCG, the performance of the
preconditioner T is crucial for the convergence rate
of the algorithm. The preconditioner T is typically
executed by calling a truncated PCG solver for solving
the inner linear equation AW = Q. Only when paired
with an effective preconditioner, the LOBPCG is notably
efficient in minimizing the time needed for convergence.
An inappropriate preconditioner would slow down
convergence or even lead to divergence. To enhance the
efficiency for the LOBPCG, it is necessary to improve
the quality of its preconditioner. Indeed, there exists
considerable room for such improvement.

2.2. Oblique projection method. The projection
method (Saad, 2003) is widely used for solving linear
systems, effectively searches for approximate solutions
satisfying constraints within a subspace. Consider a linear
system

Ax = b, (6)

where A ∈ R
n×n, and the vector b ∈ R

n is the right-hand
side of the system. The core concept of the projection
method is to find an approximate solution to the problem
from a subspace of R

n, known as the search subspace.
This search subspace, denoted as K, is assumed to be
m-dimensional, thereby necessitating m constraints for
the approximation (where m�n).

A typical way of describing these constraints is
to impose m (independent) orthogonality conditions.
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Specifically, the residual vector b − Ax̃ is constrained
to be orthogonal to m linearly independent vectors where
x̃ is the approximate solution. This requirement defines
another subspace, termed L, of dimension m, referred to
as the subspace of constraints.

Then the approximate problem can be defined as

Find x̃ ∈ K such that b−Ax̃ ⊥ L. (7)

If we intend to leverage the information embedded
in an initial guess x0 towards achieving a solution, it is
obvious that the approximation is sought within the affine
space x0 + K. This necessitates a slight adjustment to
the previously stated formulation (7). The approximate
problem should be redefined as follows:

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L. (8)

If the search subspace and the constraint subspace
satisfy L = AK, this configuration is termed the oblique
projection.

Consider V = [v1, . . . ,vm] as an n × m matrix,
where its column vectors vi (i = 1, . . . ,m) form a basis
for K. Similarly, let U = [u1, . . . ,um] be another n×m
matrix, with column vectors ui (i = 1, . . . ,m) forming
a basis for L. Then the approximate solution can be
formulated as follows:

x̃ = x0 + V α, (9)

where α = [α1, α2, . . . , αm]
T is the coefficient vector.

The corresponding residuals can be formulated as

r̃ = b−Ax̃

= b−A (x0 + V α) = r0 −AV α.
(10)

The orthogonality condition yields

UT r̃ = UT (r0 −AV α) = 0. (11)

It follows that
UTAV α = UT r̃. (12)

Then α can be expressed as

α = (UTAV )−1UT r0 (13)

and the approximate solution can be rewritten as

x̃ = x0 + V (UTAV )−1UT r0. (14)

When the oblique projection method (U = AV )
is applied, the method minimizes the residual 2-norm
property in the search subspace K

x̃ = argmin
α

‖r̃‖2
= argmin

α
‖b−Ax0 −AV α‖2

= x0 + V
(
UTU

)−1
UT r0.

(15)

Through the oblique projection method, we have
found an approximate solution in the search subspace with
the smallest residual 2-norm. This approximate solution is
evidently more accurate than the original one.

As an important technique, the projection method
is often used directly in the iterative method for solving
linear system. Recently, Geng and Sun (2023) applied a
projection strategy in the preconditioning process of the
(F)GMRES algorithm, markedly enhancing the stability
and efficiency of the algorithm. This demonstrates
the efficacy of the projection method in enhancing the
preconditioner. Similarly, this paper applies the projection
strategy to the preconditioner T within the LOBPCG
algorithm, aiming to enhance both its stability and overall
efficiency.

3. Projection strategy for LOBPCG
preconditioner

3.1. Projection strategy for enhancing the pre-
conditioner. The preconditioner T in Algorithm 1
can be executed by calling a truncated PCG solver to
approximately solve the ‘inner’ linear system, which
in our algorithm is AW = Q. Designing a
high-performance preconditioner is challenging because
an ideal preconditioner should be inexpensive to obtain
and able to greatly reduce the condition number of the
matrix. These two desired properties often remain in
conflict. Although increasing the number of ‘inner’
iterations of the truncated PCG solver could reduce the
number of ‘outer’ iterations needed for convergence, too
many inner iterations would reduce the overall efficiency.
This is because even when T is equivalent to A−1, the
convergence rate of the LOBPCG method remains linear
(Knyazev et al., 2007). Based on our experiments, it
is revealed that an optimal number of inner iterations
is around 10, both for ILU(1)-PCG and SPAI(1)-PCG,
where ILU(1) and SPAI(1) are the preconditioners of the
truncated PCG solver.

To further improve the efficiency and stability of
the LOBPCG, we propose a projection strategy for the
preconditioner in the LOBPCG. In Algorithm 1, the
truncated PCG solver is repeatedly called to solve the
inner linear systems. The proposed strategy can recycle
the Krylov subspace created in the previous linear system
to accelerate the convergence in solving the subsequent
linear system by executing an additional projection.
This enhances the performance of the preconditioner
without markedly increasing the computational cost, thus
improving the overall efficiency of the LOBPCG.

Suppose that each time T is executed, the truncated
PCG solver iterates m steps. Then m conjugate
directions {g0, g1, . . . , gm−1} in the internal iterations of
the truncated PCG can construct a search subspace. The
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Algorithm 2. Projection improved preconditioner for
LOBPCG.

Input: matrix A, right-hand side q, initial guess w0

and parameter m
Output: Approximation w̃

1: r0 = q −Aw0

2: z0 = M−1r0, g0 = z0
3: for k = 1, . . . ,m do
4: dk−1 = Agk−1

5: ak−1 =
r�
k−1zk−1

g�
k−1dk−1

6: V [:, k] = gk−1

7: U [:, k] = dk−1

8: wk = wk−1 + ak−1gk−1

9: rk = rk−1 − ak−1dk−1

10: zk = M−1rk

11: bk−1 =
r�
k zk

r�
k−1zk−1

12: gk = zk + bk−1gk−1

13: k = k + 1
14: end for
15: Update the approximation:

w̃ = wm + Vprev
(
UT

prevUprev
)−1

UT
prevrm

16: Update the subspaces:Vprev = V , Uprev = U

matrix form of this search subspace can be represented as

V = [g0, g1, . . . , gm−1]. (16)

Consider using the product of matrix A and
conjugate directions gi (i = 0, . . . ,m − 1) to construct
a constraint subspace. Then the matrix form of this
constraint subspace can be represented as

U = [Ag0,Ag1, . . . ,Agm−1]. (17)

It is important to note that Agk (k = 0, . . . ,m − 1)
can also be directly obtained from the internal iterations of
truncated PCG without the additional sparse matrix-vector
multiplication(SpMV) computations. Clearly, U and V
satisfy the condition of the oblique projection

U = AV . (18)

Hence we can obtain the search subspace and the
constraint subspace without the need for additional SpMV
computations, and only some storage space is needed.
At the end of the truncated PCG iterations, the proposed
strategy executes an additional projection, which takes
Vprev and Uprev as the search subspace and the constraint
subspace, where Vprev and Uprev are created in solving the
previous linear system, and the approximate solution can
be represented as

w̃ = wm + Vprev
(
UT

prevUprev
)−1

UT
prevrm. (19)

This implies that, throughout the entire LOBPCG
algorithm, the first call of the preconditioner T does
not involve the projection. Algorithm 2 provides
a pseudocode of the projection strategy for the
preconditioner of LOBPCG, which corresponds to the
process outlined in Line 6 of Algorithm 1.

3.2. Discussion of the projection strategy. It is
known that the PCG method itself belongs to the category
of subspace-based iterative methods, which aims to
find an optimal solution within the constructed Krylov
subspace. The search subspace span {V } we construct
is equivalent to the Krylov subspace implicitly formed by
the truncated PCG algorithm. Consequently, executing an
additional projection, which takes V and U as the search
subspace and the constraint subspace in truncated PCG
algorithm, would not lead to enhanced efficiency.

In contrast, executing an additional projection using
Vprev and Uprev can be considered as expanding the search
subspace, thereby accelerating the convergence of the
truncated PCG solver.

Erhel and Frédéric (1997) demonstrate the
effectiveness of recycling Krylov subspaces constructed
in solving the previous linear system to accelerate the
convergence in solving the subsequent linear system,
even if the two right-hand sides are unrelated. Geng
and Sun (2023) show that projection strategies can
effectively improve the performance and stability of
the preconditioners. These two works demonstrate the
efficacy of the proposed projection strategy. In our
method, the Krylov subspace constructed in solving
the previous linear system is recycled to accelerate the
convergence of the subsequent linear system through a
single oblique projection.

Through (19), we have found a better approximate
solution with smaller residuals in the augmented affine
subspace to replace the original one, accelerating the
convergence of the truncated PCG solver, thereby
enhancing the performance of the preconditioner.

The projection strategy can find a more accurate
approximate solution, the one that minimizes the 2-norm
residuals in the search subspace.

Alternatively, the projection process can also be
understood through a low-rank system. Equation (19) can
be rewritten as

w̃ = wm

+ Vprev
(
V T

prevA
TAVprev

)−1
V T

prevA
Trm,

= EAT rm,

(20)

where E = Vprev
(
V T

prevA
TAVprev

)−1
V T

prev

When Vprev is full rank, that is, Vprev ∈ R
n×n is a
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square matrix and invertible, then we can obtain

E = VprevV
−1

prev

(
ATA

)−1
V −T

prev V
T

prev

=
(
ATA

)−1
.

(21)

In this case, the solution obtained from (20) is exact.
In practical scenarios, the rank of Vprev is much smaller
than n, under which circumstances E degenerates into a
low-rank approximation (Il’in, 2019) of the inverse matrix
(ATA)−1.

Through the projection step, a better approximation
that minimizes the 2-norm of residuals in the search
subspace is obtained. The oblique projection process
eliminates the component of the residual on the subspace
span {Vprev}. It is obvious that ‖r̃‖2 ≤ ‖rm‖2, indicating
an improvement in the preconditioner T .

The proposed projection strategy is a promising way
to improve the preconditioner T , and most importantly,
it could achieve better performance with a reduced
computational overhead.

3.3. Computational overhead. Let us now evaluate
the additional computational overhead required by the
proposed algorithm. Equation (19) is computed in the
following manner. First, calculate

l1 = UT
prevr0, (22)

where l1 is an m-dimensional vector. This step requiresm
inner products of n-dimensional vectors. Then, calculate

N1 = UT
prevUprev, (23)

where N1 is an m-dimensional square dense matrix.
Considering the symmetry of UT

prevUprev, this step requires
m(m+ 1)/2 inner products of n-dimensional vectors. In
the subsequent calculation,

l2 = N1
−1l1, (24)

where l2 is an m-dimensional vector, and we should use
a pseudo-inverse method for inversion for the sake of
stability. This part of the calculation is of order m and
can be neglected as m�n. Finally, calculate

w̃ = wm + Vprevl2 (25)

and perform m times n-dimensional vector additions with
coefficients are required.

Based on the above analysis, the additional
computational efforts required by the projection strategy
mainly consist of m(m + 3)/2 inner products of
n-dimensional vectors and m times n-dimensional vector
additions with coefficients. Compared with the extra
computational efforts by increasing the iterations of
the PCG, the advantage of the projection strategy

lies in eliminating the need for SpMV. Although the
theoretical time complexity of SpMV is O(nnz) where
nnz represents the number of non-zero elements of the
matrix, factors like element distribution may lead to
longer computational times. This is one of the reasons
why the projection strategy makes the algorithm more
efficient. Overall, the proposed technique based on the
projection strategy is a promising approach to enhance the
performance of the preconditioner.

4. Numerical test
In this section, the effectiveness of the proposed strategy
is shown through a numerical test. Our projection strategy
on stable version of the LOBPCG is implemented based
on the PETSc (Balay et al., 2001; 2022) and SLEPc
(Hernandez et al., 2005; 2003) library. The convergence
boundaries of all eigenvectors are taken as relative errors,
which satisfy

er =
‖Axi − λiBxi‖

‖Axi‖
≈ ‖Axi − λiBxi‖

λi ‖Bxi‖ < 1× 10−3.

The matrices A and B used in the experiments
are obtained from the SuiteSparse Matrix Collection
(Kolodziej et al., 2019) and those used as A are
all symmetric positive definite matrices, the basic
information of these matrices is shown in Table 1. For
each matrix, n represents the number of unknowns of the
matrix (the dimension of the matrix) and nnz represents
the number of non-zero elements of the matrix. Table 1
includes several stiffness matrices, such as nd24k,
bcsstk17, and bcsstk35. For cases where the
corresponding mass matrix is available, we set B to
the associated mass matrix. For example, in the case
of bcsstk35/bcsstm35, we take A as bcsstk35
and B as bcsstm35. However, for stiffness matrices
without a corresponding mass matrix or matrices from
other domains, for simplicity, we set B = I.

All algorithms solve for the first 15 minimum
eigenvalues of Ax = λBx and their corresponding
eigenvectors, and we take 10 as the block size of the
LOBPCG algorithm. The solution from the previous
LOBPCG iteration (outer iteration) is used as the initial
guess for the inner iteration. Specifically, in Line 6
of Algorithm 1, when solving AW = Q, the initial
value for W is set to the value of W from the previous
iteration. This approach aligns with the implementations
of the LOBPCG in both BLOPEX (Knyazev et al., 2007)
and SLEPc (Roman et al., 2016). The experiment
environment is a personal computer with an AMD Ryzen
5950X CPU, maximum available memory of 128 GB,
Ubuntu 20.04 operating system, PETSc and SLEPc
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Table 1. Source information of the tested matrices.
Matrix Problem nnz n

1138 bus power network 4054 1138

bcsstk38 structural 355460 8032

bcsstm38 structural 10485 8032

bcsstk17 structural 428650 10974

bcsstk37 structural 1140977 25503

bcsstm37 structural 15525 25503

bcsstk35 structural 1450163 30237

bcsstm35 structural 20619 30237

bcsstk39 structural 2060662 46772

bcsstm39 structural 46772 46772

nd24k 2D/3D 28715634 72000

apache1 structural 542184 80800

thermal1 thermal 574458 82654

2cubes sphere electromagnetics 1647264 101492

boneS01 model reduction 6715152 127224

bmwcra 1 Structural 10641602 148770

G2 circuit circuit simulation 726674 150102

apache2 structural 4817870 715176

tmt sym electromagnetics 5080961 726713

ecology2 2D/3D 4995991 999999

thermal2 thermal 8580313 1228045

Serena structural 64531701 1391349

Geo 1438 structural 63156690 1437960

Hook 1498 structural 60917445 1498023

G3 circuit circuit simulation 7660826 1585478

version 3.20.1, and the ‘type’ of matrix in PETSc is
MATAIJ.

Tables 2 and 3 display the statistics for the original
LOBPCG and the LOBPCG applying projection strategy,
where the truncated PCG solver employs ILU(1) as the
preconditioner. Here, we set the maximum number
of iterations for the PCG to 10, which is also the
optimal number of iterations for numerical performance
when using ILU(1)-PCG. The first row of each matrix
is the result of the original LOBPCG, the second row
is the results of the LOBPCG with projection strategy,
respectively. In the table, ‘iterations’ is the number of
iterations corresponding to the algorithms. Meanwhile,
‘time’ is the iteration time in seconds.

From Tables 2 and 3, it is revealed that the LOBPCG

applying projection strategy exhibits pronounced higher
solving efficiency compared with the original LOBPCG.
The projection strategy not only improved computational
efficiency but also enabled convergence for some cases
that were originally non-convergent. For instance, the
matrix boneS01, which failed to converge with the
original LOBPCG even after 5000 iterations, it converged
in just 531 steps after applying the projection strategy.

The projection strategy is effective not only when the
ILU is employed as the preconditioner in the truncated
PCG solver. Tables 4 and 5 display the result for the
original LOBPCG and the LOBPCG applying projection
strategy where the truncated PCG solver employs SPAI
as the preconditioner. Clearly, the projection strategy is
also highly effective with the SPAI preconditioner applied
in the truncated PCG solver, significantly enhancing
computational efficiency and robustness. Figures 1 and 2
show the convergence process of the eigenvectors of some
matrices, indicating that the projection strategy could
reduce oscillations in the convergence curve and make
it smoother, greatly decreasing the number of iterations
required for convergence. Since the projection strategy
does not markedly increase the extra computational time
per iteration step, the residual curves depicted in Figs. 1
and 2 can also demonstrate the enhanced time efficiency
achieved by the improved algorithm.

5. Conclusions
We have proposed a projection strategy for improving
the preconditioner T in the LOBPCG. The projection
strategy begins by utilizing intermediate vectors from the
truncated PCG iterations to construct search subspaces
and constraint subspaces for oblique projection. Then it
executes the oblique projection in the truncated PCG when
solving the ‘inner’ linear systems. This oblique projection
technique can find a more accurate approximate solution
which minimizes the 2-norm residuals in the search
subspace without markedly increasing the computational
cost, thereby improving the quality of the preconditioner,
thus accelerating the convergence of the LOBPCG.

The proposed algorithm was implemented and tested
numerically based on PETSc and SLEPc with the
SuiteSparse Matrix Collection, and the matrices originate
from different fields of application. The projection
improved preconditioner was compared with the original
preconditioner, and our results show that for most cases
the original LOBPCG converges slowly or even diverges,
but the projection strategy can significantly accelerate
the iterative process to reach the convergence condition.
The projection improved preconditioner for LOBPCG
demonstrates notable enhancements in both stability and
efficiency.

However, despite all testing results of numerical
experiments reflecting the effectiveness of the projection
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(a) bcsstk17 (b) apache2

(c) thermal2 (d) boneS01

(e) G3 circuit (f) thermal1

(g) Serena (h) tmt sym

Fig. 1. Convergence comparison between the original LOBPCG and the LOBPCG applying projection strategy where the truncated
PCG solver employs ILU(1) as the preconditioner.
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(a) bcsstk17 (b) apache2

(c) thermal2 (d) boneS01

(e) G3 circuit (f) thermal1

(g) Serena (h) tmt sym

Fig. 2. Convergence comparison between the original LOBPCG and the LOBPCG applying projection strategy where the truncated
PCG solver employs SPAI(1) as the preconditioner.
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Table 2. Comparison between the original LOBPCG and the LOBPCG applying the projection strategy, where the PCG solver employs
ILU(1) as the preconditioner in cases taking B = I .

matrix iter/time (original) iter/time (improved)
1138 bus 22 / 1.28 21 / 1.24
bcsstk17 442 / 4.49 111 / 1.30
nd24k 50001/3162.88 50001/ 3181.40
apache1 81 / 6.81 39 / 3.83
thermal1 171 / 17.14 92 / 12.46
2cubes sphere 91 / 11.22 70 / 6.02
boneS01 50001/ 762.33 531 / 91.58
bmwcra 1 4091 / 2007.53 2549 / 1259.29
G2 circuit 320 / 59.24 123 / 30.10
apache2 478 / 456.59 139 / 159.90
tmt sym 1618 / 1790.88 928 / 1092.77
ecology2 1073 / 1913.70 319 / 651.49
thermal2 1394 / 4097.97 417 / 1308.33
Serena 104 / 530.59 72 / 378.61
Geo 1438 212 / 749.69 83 / 429.7
Hook 1498 1465 / 8024.54 773 / 4710.73
G3 circuit 3016 / 9846.06 867 / 4242.39
1 The solver did not converge within a limited number of iterations.

Table 3. Comparison between the original LOBPCG and the LOBPCG applying the projection strategy, where the PCG solver employs
ILU(1) as the preconditioner in cases taking B as the corresponding mass matrices.

matrix iter/time (original) iter/time (improved)
bcsstk38/bcsstm38 200001/ 134.78 200001/ 144.05
bcsstk37/bcsstm37 200001/ 302.22 200001/ 321.13
bcsstk35/bcsstm35 200001/ 318.24 200001/ 331.23
bcsstk39/bcsstm39 19337 / 477.53 8588 / 332.05

1 The solver did not converge within a limited number of iterations.

Table 4. Comparison between the original LOBPCG and the LOBPCG applying the projection strategy, where the PCG solver employs
SPAI(1) as the preconditioner in cases taking B = I .

matrix iter/time (original) iter/time (improved)
1138 bus 36 / 0.8 32 / 0.79
bcsstk17 578 / 9.39 96 / 2.46
nd24k 934 / 802.06 280 / 264.31
apache1 50001/ 192.27 68 / 3.35
thermal1 82 / 3.94336 76 / 3.75
2cubes sphere 90 / 4.34 90 / 4.74
boneS01 213 / 51.87 121 / 36.55
bmwcra 1 50001/ 4727.52 50001/ 5477.05
G2 circuit 138 / 17.11 93 / 14.21
apache2 437 / 275.59 152 / 118.28
tmt sym 339 / 284.71 285 / 251.75
ecology2 396 / 483.39 356 / 339.45
thermal2 618 / 1098.42 402 / 845.15
Serena 85 / 385.25 51 / 256.82
Geo 1438 50001/ 20872.31 818 / 3592.38
Hook 1498 560 / 1905.44 446 / 1655.55
G3 circuit 1357 / 2736.69 785 / 1712.91

1 The solver did not converge within a limited number of iterations.
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Table 5. Comparison between the original LOBPCG and the LOBPCG applying the projection strategy, where the PCG solver employs
SPAI(1) as the preconditioner in the cases taking B as the corresponding mass matrices.

matrix iter/time (original) iter/time (improved)
bcsstk38/bcsstm38 200001/ 165.67 1667 / 15.55
bcsstk37/bcsstm37 462 / 13.42 428 / 11.55
bcsstk35/bcsstm35 1443 / 41.98 1270 / 34.88
bcsstk39/bcsstm39 736 / 19.58 524 / 13.88

1 The solver did not converge within a limited number of iterations.

strategy, a rigorous theoretical proof to support it is still
missing. We can only claim that the projection strategy,
by reducing the 2-norm of the residuals of the linear
system, improves the performance of the preconditioner
T , thereby accelerating convergence. In addition to
using traditional methods, approaches based on machine
learning can also be combined to further accelerate the
eigenvalue solving algorithms, such as in (Li et al.,
2023), where a GNN network was used to improve the
preconditioner and the initial solution of the linear system.
An algorithm for determining eigenvalues could also
be integrated with this approach to further enhance the
adaptability and robustness of the projection strategy in
the future.
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