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Space development is more relevant than ever with the increasing number of satellite launches for various applications. The
amount of space data collected daily is growing exponentially and many customers are interested in continuously monitoring
different regions of the Earth. It often requires stitching together many images from other providers to cover an Area of
Interest (AOI), resulting in a mosaic. Each satellite image has various parameters, such as cost, download time, cloud
coverage, and resolution. The main question is how to optimally select the subset of available images to fully cover the AOI
while minimizing total cost and cloud coverage. The problem is known as satellite image mosaic selection (SIMS). Manual
selection of promising images is often impossible, especially when dealing with large AOIs or many photos. To solve the
problem, we propose several new exact algorithms using different techniques, such as branch-and-bound or mixed-integer
linear programming. These algorithms show quality and efficiency compared with existing approaches and are expected to
benefit various industrial applications.
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1. Introduction
Satellite images have been used for over 50 years to
monitor Earth’s ecosystems, including species diversity
(Hall et al., 2012), populations (Sánchez-Azofeifa et al.,
2011), carbon stocks and emissions (Asner et al., 2010),
and changes in land cover (Hansen et al., 2008). However,
their practical application depends on specific factors
such as price, security regulations, cloud cover, spatial
resolution, and geographic/temporal coverage (Goetz,
2007). Furthermore, high-resolution data are not available
for all areas of the world.

In recent years, there has been a continuous increase
in satellite launches dedicated to earth observation
(Rovetto, 2017). The commercial satellite image market
collects petabytes of data annually.

Satellite image mosaicking is essential for various
applications, such as environmental monitoring and
surveying (Verpoorter et al., 2014; Flood et al., 2019),
urban development analysis (Henderson et al., 2012;
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Jean et al., 2016; Wang et al., 2020), socioeconomic
dynamics monitoring (Bennett and Smith, 2017; Yeh
et al., 2020), promoting sustainable development (Burke
et al., 2021), automated construction of digital elevation
models (Shean et al., 2016), and crop classification (Tian
et al., 2020; Felegari et al., 2021) or conversely, plant
invasion monitoring (Müllerová et al., 2017).

In this work, we address the satellite image mosaic
selection (SIMS) problem (Combarro Simón et al., 2023).
The primary objective is to create a mosaic using selected
images that meet specific criteria. First, we introduce
key concepts to describe the model and algorithms under
consideration accurately. Then, we explore commonly
used objectives and cost functions in the problem. We
convert the representation of the problem from geometric
to graph-based, a technique widely used in the design
of highly efficient optimization algorithms (Lopez-Loces
et al., 2016; Zok et al., 2020). We propose six novel
algorithms that differ in the optimization techniques
applied: (a) three algorithms employing enumeration,
(b) two approaches integrating the branch-and-bound
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Fig. 1. An exemplary p-polygon pol with four holes
h1, h2, h3, h4. Note that holes can have common
points but not an intersection with a positive area.

concept, and (c) one method uses mixed integer linear
programming. We perform comprehensive computational
experiments to assess the performance of algorithms
compared with state-of-the-art methods, using datasets
obtained from (Combarro Simón et al., 2023). We discuss
the advantages and limitations of the proposed approaches
to enable users to select the most suitable one for their
requirements. Finally, we briefly outline the roadmap for
the further development of the proposed solutions.

2. Background
2.1. Basic notions and definitions. Unless stated
otherwise, all notions will be considered (when
applicable) in a two-dimensional space R2.

A p-polygon (see Fig. 1) is defined as a simple
polygon T with holes, where each hole (hi) is also
a simple polygon, and the interiors of the hole polygons
do not intersect. In other words, a p-polygon can be
represented as a pair pol = (T,H), where T is a simple
polygon and H = {h1, . . . , ht} is a set of interior-disjoint
simple polygons contained within polygon T , that is

∀
hi,hj∈H

i�=j

area(hi ∩ hj) = 0,

where area(X) denotes the area of polygon X . We can
use standard operations such as union, intersection, and
a set difference on p-polygons. For example, the area of
a p-polygon pol = (T,H) is defined as

area(pol) = area(T )−
∑

hi∈H

area(hi)

We also denote by union(Q) the union of all p-
polygons (poli) in a given set Q = {pol1, . . . , polt} =
{(T1, H1), . . . , (Tt, Ht)} as

union(Q) =
⋃

poli∈Q

(
poli \

⋃

h∈Hi

h

)
.

We will also use the standard notation 2Q for all subsets
of a given set Q.

2.2. Definition of the satellite image mosaic selection
problem. Let A be a p-polygon referred to as the area of
interest (AOI) which is divided into m unique p-polygons.
Let P = {p1, p2, . . . , pn} be a set of p-polygons referred
to as photos or images. Each photo pi is associated with
a cost denoted as ci. The objective is to identify a subset
S ⊆ P that collectively covers the AOI while minimizing
the total cost.

To formulate this problem, we introduce the binary
decision variable xi, where xi = 1 if photo pi is selected
to cover the AOI, and xi = 0 otherwise. Additionally, we
define the binary parameter aij , which equals 1 if photo
pi covers the j-th subpart of polygon A, and 0 otherwise.
This parameter allows us to define the coverage constraint,
ensuring that each part of polygon A is covered at least
once: Minimize

n∑

i=1

cixi, (1)

subject to

xi ∈ {0, 1}, i = 1, . . . , n,
n∑

i=1

aijxi ≥ 1, j = 1, . . . ,m.

This is a general formulation of the problem.
In practical applications, variations often arise. For
instance, a satellite photo provider might offer discounts
on bulk purchases, or the end user might be satisfied
with achieving, say, 90% coverage of the AOI at a
significantly lower total cost. Hence, we introduce
a generalized formulation involving a scoring function
score(A,S), which assigns a score to any given subset
S, and a cost function cost(S), which computes the
total price for the selected photos. The objective of
this reformulated problem is to find the subset S that
minimizes score(A,S).

In the subsequent section, we will discuss various
approaches to defining both score(A,S) and cost(S) for
real-world scenarios.

2.3. Example scoring and cost functions. Let us
consider the following examples of score functions:

1. To cover the entire AOI using images while
minimizing the total cost of selected images, the
scoring function may look like this:

score(A,S) =

{
C(S) if A ⊂ union(S),

∞ otherwise.
(2)

Here, C : 2P → R is a cost function, for example,
with C(S) =

∑
pi∈S c(pi), and c : P → R being
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a function with non-negative values. This setup could
apply, for example, when purchasing images, where
buying the image pi costs c(pi). The cost function
C could be more complex, such as when purchasing
images from different sellers with potential discounts
for buying multiple photos from the same seller.

2. In a scenario where the requirement is to cover
a fraction of the AOI, rather than the entire area, we
may define the score function as

score(A,S) =

⎧
⎪⎨

⎪⎩

C(S) if area(A ∩ union(S)) ≥
α · area(A),

∞ otherwise.

Here, α ∈ [0, 1] is a real-valued parameter. Any
subsets of images that do not cover a fractionα of the
area of A will be considered invalid, with the score
value set to ∞.

3. The third approach combines elements of the
previous two. To allow a solution S of an arbitrary
coverage ratio area(A∩union(S))

area(A) while favoring
higher coverage ratios, an additional function
g : [0, 1] → [0, 1] can be introduced to penalize
low-coverage solutions. This function, for example,
could be piecewise linear:

g(x) =

{
ε if x < α,
β−1
α−1 · x+ α−β

α−1 otherwise.

Here, α, β ∈ [0, 1] are fixed parameters, and ε is a
small constant (such that the value ε−1 can be treated
in practice in the same way as ∞). The parameter
α dictates the minimum value of x (representing the
coverage of the Area of Interest) that is considered
meaningful. Specifically, for x < α, the function
g(x) is set to ε. Conversely, the parameter β
determines the value of g(x) for x ∈ [α, 1] such that
g(α) = β. Thereafter, the function increases linearly,
reaching g(1) = 1. The score function then takes the
form

score(A,S) =
C(S)

g
(

area(A∩union(S))
area(A)

) .

In this setup, solutions with low coverage will have
their score multiplicatively penalized by the value of
g(x)−1, where x = area(A∩union(S))

area(A) .

In the proposed scoring functions, we use the cost
function C : 2P → R. This cost function significantly
influences the optimization algorithms required to
produce a valid and high-quality solution. Let us now
consider a few examples of possible cost functions.

1. C(S) =
∑

pi∈S

c(pi)

The cost function C(S) is given by the sum of costs
of individual images in subset S. When all costs
c(pi) are set to 1 for all images pi ∈ P , the SIMS
optimization problem becomes equivalent to the set
cover problem. This involves finding the smallest
subset S ⊆ F , for a given universe U and a family
of sets F = {P1, . . . , Pn : Pi ⊆ U} such that each
element in the given universe U is covered by at least
one set in Pi ∈ S.

When non-uniform image costs are considered, the
weighted variant of the set cover problem arises,
where the goal is to minimize the sum of costs, rather
than the size of the subset. One common scenario is
when costs are proportional to the area of polygons,
i.e., c(pi) = area(pi).

2. Additionally, the cost function can be designed to
penalize solutions in which regions in A are covered
by a high number of images from set P . For example,
a penalizing function can be expressed as

C(S) =
∑

pi∈S

c(pi) ·
(
1 +

area(Z)

area(A)

)
.

Here, Z represents points in A covered by at least
two elements in S. A more rigorous penalizing
function can be defined as:

C(S) =
∑

pi∈S

c(pi) ·

⎛

⎜⎜⎝1 +
∑

pi,pj∈S
i�=j

area(pi ∩ pj)

⎞

⎟⎟⎠ .

3. In real life, sellers offer discounts depending on the
items purchased. For example, a seller can provide
a 30% discount for the least expensive product from
the purchased items. To consider such situations in
considered models, the cost function C must also
consider sellers from which items are bought.

When solving optimization problems, selecting the
appropriate objective function scoring and cost functions
C and c are essential.

2.4. Problem transformation. In the SIMS problem,
we are given an AOI A and a set of images P . To
apply optimization techniques and find a subset S ⊆ 2P

for which the value score(A,S) is as tiny as possible,
we need to transform the geometric representation of
the problem into a more manageable form. A natural
approach is to convert the geometric representation to
a graph-theoretic approach and then apply optimization
algorithms that operate purely on the graph, eliminating
the cumbersome geometry. In this context, we propose
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Fig. 2. An example of a plane division created for a set T and
an empty set A = ∅. Set T contains three polygons
p1, p2, p3 without holes (polygons marked by different
hatching styles). Set divA(T ) contains 12 polygons
qi, i ∈ [1, 12].

transforming the SIMS problem into a variation of the
hitting-set problem, which is natural since the set cover
and hitting-set problems are dual.

Let us introduce a few notions. A plane division
concerning AOI A and set T = {t1, . . . , tk} of p-polygons
is a minimum-size set of p-polygons

divA(T ) = {q1, . . . , qm : area(qi ∩ qj) = 0 for i 
= j}
such that each p-polygon in T ∪ A has a unique
representation as a union of elements from divA(T ) (see
Fig. 2).

For a set divA(T ), we create an undirected bipartite
graph G = (AG, BG, EG), called the hitting-set graph,
where

AG = {a1, a2, . . . , a|T |},
BG = {b1, b2, . . . , b|divA(T )|},
EG = {{ai, bj} : ai ∈ A, bj ∈ B, qj ⊂ ti}.

In other words, there is an edge between node a,
representing a p-polygon from T , and node b, representing
a polygon from plane division divA(T ) if and only if the
second one is contained in the first one.

Figure 3 shows a bipartite graph structure created for
a plane division from Fig. 2.

For the SIMS problem (A,P ), we can create
a bipartite graph G for the plane division divA(P ). Since
we are interested in covering only the nodes representing
the AOI, we prune the graph of vertices in BG that do
not represent p-polygons from the AOI. The problem can

�� ����
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Fig. 3. Structure of the bipartite graph created for plane division
from Fig. 2. Nodes ai represent the photos under con-
sideration, while nodes bj represent unique fragments of
the area of interest (AOI). The objective is to identify a
subset of nodes ai that ensures connectivity to all nodes
bj while minimizing the associated cost of the selected
subset.

then be restated as a graph-theoretic concept: find a subset
S ⊂ AG that minimizes a given objective score(A,S).
In this context, the scoring functions are formulated for
the graph nodes, and the cost functions C and c are
associated with the weights assigned to the nodes from
AG. For example, using the objective (2) with a constant
cost function c(pi) = 1, the problem becomes finding the
smallest subset S ⊆ A that covers all elements from BG.
This problem is known as the hitting-set problem. It can
be shown that with such score and c functions and without
additional constraints on the shape of polygons, the SIMS
and hitting set problems are equivalent.

It is well known that the hitting set problem is
NP-complete and W [2]-hard when parameterized by the
solution size (Cygan et al., 2015). This suggests that
it is unlikely to devise a theoretically efficient algorithm
to solve the SIMS problem, even though the size of
optimal solutions is relatively tiny in real-world data (see
Section 5.2).

2.5. Some obstacles and how to overcome them:
sampling points approach. When solving hitting-set
instances using algorithms such as MILP formulations, a
challenge arises in creating the bipartite graph G. The
primary issue relies on the efficient creation of the plane
division divA(T ). There are several problems, one of
the most significant being the potential size of divA(T ),
which can be of the order of O(N2), where N is the
total number of sides of polygons (including holes) in the
set A ∪ T . Furthermore, each p-polygon representing an
image may contain O(N2) elements of divA(T ), leading
to a potential number of edges in the graph G of order
O(n · N2). This presents a formidable time and memory
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Fig. 4. Example featuring four images displaying various pat-
terns (lines or waves) and a rectangular AOI with sam-
pling points arranged in a 9× 5 grid.

complexity barrier when using algorithms, especially
for large problem instances where optimal solutions are
sought.

Fortunately, we do not need to find optimal solutions.
Therefore, we will now consider an alternative way of
creating a bipartite graph for the given SIMS problem.
We call this approach a sampling points approach. This
approach is much simpler than the plane division concept.
Still, it does not guarantee that the optimal solution to the
hitting-set problem will correspond to the optimal solution
of the considered SIMS problem.

By BA we denote the bounding rectangle
{(x, y), (x + dx, y), (x + dx, y + dy), (x, y + dy)}
of p-polygon A. Let us now consider points spaced
equidistantly within p-polygon BA. These points form
a grid X × Y :
{
(x+

i

X − 1
· dx, y + j

Y − 1
· dy) : i ∈ NX , j ∈ NY

}

where Nn denotes the set of natural numbers less than n.
In the following, we will refer to the points on

the grid as “sampling points.” Let us define D as the
set of points on the grid that are also in A, written as
D = {d ∈ Grid : d ∈ A} = {d1, d2, . . . , d|D|}.

Consider the SIMS problem (A,P ), where
P = {p1, . . . , pn}. For each p-polygon p ∈ P and
each point d ∈ Grid, we check if d belongs to p. Then,
we construct a hitting-set graph G = (AG, BG, EG),
similarly to the approach used for plane division:

AG = {a1, a2, . . . , an},
BG = {b1, b2, . . . , bD},
EG = {{(ai, bj} : ai ∈ A, bj ∈ B, dj ∈ pi}.

It is essential to sample points in the set D that
correspond to plane points belonging to p-polygons of the
set divA(T ). The denser the points are within A, the more
accurate the model we should obtain. Figure 4 illustrates

an example instance with sampling points. However, this
is not always true for the “small” values of X and Y , as
shown in Section 5.

To put it more formally, what we mean is that for any
ε > 0, there exist values X and Y such that for any two
p-polygons pi and pj ∈ divA(T ), we obtain the inequality

∣∣∣
area(pi)

area(pj)
− rpi

rpj

∣∣∣ < ε,

where rpi and rpj denote the number of points from
D (created for given values X and Y ) that belong to
polygons pi and pj , respectively.

The sampling points approach offers several
advantages. One key benefit is that there is no need to
create plane divisions. All we have to do is check if
a point d is in the set P for each p-polygon pi ∈ P and
each point d ∈ D. Therefore, the algorithm is relatively
simple to implement.

The process of checking for a p-polygon pi ∈ P
with a total of ni points (including holes) can be
easily accomplished in O(ni) time using the ray-shooting
algorithm. First, we check whether d belongs to any
holes in pi. If it does, then d does not belong
to pi. Otherwise, we check whether d belongs to
a simple polygon that forms the boundary of pi. As
a result, we obtain a complexity of O(ni · |D|) for
point pi ∈ P , and the complexity of creating the bipartite
graph using the sampling points approach is O(N · |D|),
where N =

∑
pi∈P ni. This can also be expressed as

O(n · nmax · |D|), where nmax = maxpi∈P {ni}.
Additionally, the size of the created graph is at most

of the order of O(n · |D|).
Creating a bipartite graph using the sampling-points

approach can be approached differently. We can use
a faster method to check if a point d ∈ D belongs
to the p-polygon pi. For example, a point location
algorithm could answer such point-belonging queries in
O(log ni) time but requires O(ni · logni) preprocessing
time. Therefore, we can develop an algorithm to create G
that runs in total time O(N · log nmax+n · |D| · log nmax)
or a simpler O(N logN + n · |D| · logN). It is important
to note that the point location algorithm is much faster, but
only if the considered polygons are large enough. In our
application, where most polygons represent images and
have a small number of edges (usually less than 10), those
algorithms are slower as they incur extra constant-factor
overhead to the running time.

Table 1 summarizes the advantages and
disadvantages of the plane division and sampling
point approaches.

At the end, it is also worth noting that the sampling
points approach might be considered a variation of the
patch cover problem, where the goal is to cover pixels
of a plane or an image with pixels originating from other
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images. Operating on a pixel scale, however, would
result in a significant increase in the problem size and
seriously affect the performance of the algorithms used
to find solutions. The sampling points approach allows us
to easily control the problem size and is invulnerable to
issues related to the properties of the images used (e.g.,
images differing in format or resolution).

3. Algorithms
Specifying the objective function when designing
algorithms to solve the SIMS problem is necessary.
We will focus on solving the weighted hitting set
problem from this point forward. This problem involves
finding a subset S of vertices from a bipartite graph
G = (A,B,E), where A and B are two disjoint sets
of vertices and E represents the edges between them.
Additionally, there is a function c, which assigns
a non-negative actual number to each vertex in the set A.
The goal is to find a subset S ⊆ A with the minimum
possible cost C(S) while satisfying the condition that
every vertex in the set B is covered by the vertices in S.
The cost function C(S) is calculated by adding the costs
of the vertices in S, C(S) =

∑
v∈S c(v) (see Section 2).

We consider two different functions: c(v) = 1
and c(v) = deg(v)/|B|. Minimizing the objective
C(S) using the first function helps us find a hitting set
with the minimum number of vertices, while the second
function operates on the relative area of each image
represented by a vertex v and enables us to find a subset
of images with a minimal coverage overhead, provided
that a sufficient number of sampling points were used to
create the graph. The coverage overhead is calculated
by subtracting the cost of the subset of vertices which
correspond to sampling points covered by the area of
interest (represented by the polygon AAOI) from the sum
of the costs of the vertices corresponding to sampling
points covered by the images in the set P . By the
definition of c, this translates to the difference of the areas
of all the images in the set P and the area of the AOI:

∑

pi∈P

area(pi)− area(AAOI).

We have designed and implemented several
algorithms to solve this problem. Now, let us briefly
describe these algorithms. First, for convenience, set
n = |A| and M = |B|.
brute This algorithm is based on enumerating all possible

subsets S ⊆ 2A. For each subset S, it needs to be
checked if N(S) = B. A straightforward approach
is to check each subset S independently, resulting
in time complexity of O(n · M · 2n). Since the
number of subsets to check is usually very large
(exponential in |A|), it is essential to reduce the time

required to process each set as much as possible.
To achieve this, we enumerate all subsets S ⊆ 2A

using Gray codes so that two consecutively visited
subsets differ by exactly one element. This allows
us to iterate over neighbors u ∈ N(v) for only one
node v ∈ S for each set S. By keeping cumulative
values of the number of nodes covering elements in
B, the complexity improves from O(n · M · 2n)
to O(M · 2n). In our implementation, we applied
an additional trick to improve performance further.
By noting that the i-th element from set A will be
considered 2n−i times as the changed element during
transitions between subsets of 2A, we can reduce
the number of performed operations by remapping
nodes a1, . . . , an ∈ A, so that their degrees deg(ai)
form a non-decreasing sequence. Although this
improvement significantly decreases the number of
performed operations in practice, the theoretical
complexity of the algorithm remains unchanged.

minimal_subsets_one_sided (MS1) The main idea
behind this algorithm is to enumerate only subsets of
A that are inclusion-minimal solutions to the SIMS
problem. The enumeration of those subsets is done
recursively, and most non-minimal subsets are not
visited at all. We start with an empty set S and
iteratively add elements to S. An element u ∈ A
is a candidate node and can only be added to S if
N(u) \ N(S) 
= ∅. If an element can be added, we
consider two cases: adding or not adding the node
to S, and recursively find solutions for both cases.
By keeping track of the number of nodes in A that
cover elements of B, it is enough to check only
nodes u ∈ N(v) for the added node v to determine
if the current set S is a valid solution. Hence, the
algorithm’s complexity is O(R ·M), where R is the
number of visited elements of 2A, and the required
additional memory is of order O(n + M). Please
note that even though we can expand set S by a node
for which the set N(u) \ N(S) is not empty, this
does not guarantee that all subsets visited by the
algorithm will be minimal. Indeed, in some future
recursive call, there might be an added node u to S
for which there will exist a node v ∈ S such that
N(v) ⊆ N((S ∪ {u}) \ v).

minimal_subsets_two_sided (MS2) This algorithm is an
extension of the previous one, aiming to visit only
minimal subsets. To achieve this, we ensure that set
S will never be expanded by a node u if there exists a
node v ∈ S such that N(v) ⊆ N((S ∪ {u}) \ v). To
efficiently enforce this, we need to keep track of the
number of elements in B that are exclusively reached
by each node a ∈ A. This is done by iterating
over sets N(N(v)) when considering whether to add
node v and dynamically adjusting temporary values
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Table 1. Summary of the advantages and disadvantages of creating graph G using the plane division approach and the sampling points
approach.

Plane division Sampling points

Time complexity at least O(n ·N2)

O(N · |D|)
using ray-shooting algorithm
O(N logN + n · |D| · logN)
using point-location algorithm

Maximum graph size O(n ·N2) O(n · |D|)

Control of graph size NO
YES

|D| = X · Y
values X,Y can be chosen arbitrarily

Exact results guarantee YES NO
Implementation complexity complex relatively easy

as needed. The algorithm’s complexity is therefore
O(Rmin ·M · n), where Rmin is the number of
visited subsets. In this case, we can guarantee that
all visited subsets are minimal, so the set S under
consideration will never be a superset of a valid
solution. However, this comes with the additional
cost of iterating over N(N(v)) instead of just N(v)
when considering node v as a potential candidate to
add to S.

branch_and_bound (b&b) This algorithm is based
on the branching idea applied in the mini-
mal_subsets_one_sided algorithm. In addition, we
apply a simple lower-bound estimate of the solution
cost to trim the search space. The lower bound is
calculated as follows. Let BS = B \ N(S) and let
ra = c(a)

|N(a)\N(S)| for a ∈ A. The lower bound is
then given by |BS | · mina∈A\S′{ra}, where S′ is
a set of all nodes considered earlier as candidates,
regardless of whether they were added to S or not. It
can be observed that this lower bound is valid, as it
represents the minimal cost required to cover a single
unhit element multiplied by the number of such
elements. Selecting a candidate as the branching
node, we choose the vertex v ∈ A \ S′ with the
smallest value of c(v)

|N(v)\N(S)| . To calculate the values
of ra, we need to iterate over the neighborhoods
of all nodes in the set N(A \ S′). This gives
us a complexity of O(R · E). It is worth noting
that in our implementation we do not check the
lower bound at each branching step but rather every
third step. This causes the number of visited states
to increase slightly but significantly reduces the
number of operations needed to find the bound.
We have observed that this enhancement allows
for a roughly 1

3 -factor speedup, although the exact
speedup depends on the characteristics of the input.

branch_and_bound_trace (b&b-T) This is a modified
version of the previous algorithm. Here, we

keep track of values that are necessary to quickly
determine the lower bound value and the best
candidate node. This is done without the need to
recompute them from scratch by iterating over nodes
in N(A \ S′). When a node v is added to set S,
we iterate over all nodes a ∈ N(N(v) \ N(S)) and
modify the corresponding values ra = c(a)

|N(a)\N(S)| ,
which are stored in an auxiliary array. This allows
us to find the lower bound and the best candidate by
simply iterating over nodes in A \ S′, resulting in
a time complexity of O(n) time. Compared with the
branch_and_bound algorithm, this approach enables
us to find the lower bound much faster. However,
it comes at the cost of increased time needed to
keep the necessary values updated, as we need to
iterate over N(N(v) \ N(S)) instead of just N(v).
Although the worst-case complexity is not better
than that of the branch_and_bound algorithm, it is
reasonable to expect this algorithm to be much faster
in practice. The time complexity of this algorithm
can be expressed as O(R · n · Δ), where Δ is the
maximum degree of a node in A. Additionally, if
the node degrees are distributed “uniformly,” it can
be shown that the complexity can be expressed as
O(R · n+R · n · Δ2

M ), which simplifies to O(R · n)
for graphs with Δ  M

1
2 .

milp This algorithm is based on the integer linear
programming approach. The problem can be
formulated as follows: minimize the value∑

a∈A c(a) · xa subject to M given constraints
(created for elements b ∈ B) of the form:∑

a∈N(b) xa ≥ 1, where xa are Boolean variables
(or, alternatively, integers from the set {0, 1}). This
is a standard integer linear program formulation
of the hitting set problem, and it can be solved
using state-of-the-art solvers that apply a variety of
optimization techniques. In our experiments, we
used the HiGHS solver (Huangfu and Hall, 2018),
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which is implemented in the SciPy software
(Virtanen et al., 2020).

In Table 2, we compare the running times and
memory usage of the algorithms we created.

4. Experiments
4.1. Setup. All experiments were carried out on
a computer equipped with an Intel Core i9-9880H
processor, 64 GB of DDR4 RAM (2667 MT/s), and the
Linux Mint 21 “Vera” operating system. To ensure that
processes do not compete for cache memory resources,
each experiment was run sequentially using a single core
and a single thread. However, the milp algorithm was an
exception and was run in its default mode, utilizing the 8
available cores and 16 threads. In the results section, we
demonstrate why this does not invalidate the comparison
of milp with other algorithms. Additionally, CPU scaling
was disabled during the experiments to minimize any
noise in the measured running times.

4.2. Datasets. To replicate the projection of various
real-world tasks, we selected five areas (AOI) from
different parts of the world. The choices were Mexico
City (Mexico), Rio de Janeiro (Brazil), Paris (France),
Lagos (Nigeria), and Tokyo Bay (Japan). For each of the
designated areas, we reviewed the available images using
constellations such as Pléiades (Airbus, 2023a), Pléiades
Neo (Airbus, 2023b), and finally SPOT (Airbus, 2023c).
These constellations were chosen because they provide
a comprehensive set of data and metadata that are crucial
to our analysis. The choice of just these three data sources
was not accidental. The indicated constellations contain
all the metadata used in our computational experiment, so
they represent real market situations in the best possible
way. Other constellations known to us did not include
several necessary parameters, often key ones, such as
the angle of incidence. We carefully selected a specific
time frame to conduct a focused analysis. The analysis
was based on images taken between January 1, 2021,
and January 1, 2023. This period was chosen to ensure
the relevance and accuracy of the data. For the dates
and constellations indicated, we downloaded the available
images.

We aim to provide a comprehensive analysis by
generating seven instances for all defined locations except
Lagos. Each of these instances differs from each other
in the number of images given to cover the AOIs. The
number of images for the instances was 30, 50, 100, 150,
200, 250, and “500”, where “500” denotes that all the
available images were used for a given region and that
there were not necessarily 500 images. The number of
images in the “500” instances is 347 for Mexico City, 349
for Rio de Janeiro, 339 for Paris, and 493 for Tokyo Bay.

For Lagos, the total number of images available for the
specified date range was 145, so the number of images for
Lagos instances was 30, 50, 100, and 145.

In our experiment, we did not consider clouds that
might be present in images and cover some areas. The
cloud detection problem is parallel to ours and does not
affect our algorithms (as they operate on the hitting-set
graph’s structure and abstract from any other context),
though taking into account clouds might increase the time
needed to construct the graph and decrease the size of the
graphs (if built using sampling points approach). It should
be stressed that, though the graph size might decrease if
we consider clouds and use the sampling-points approach,
it need not mean that the instance will be easier to solve.
How it affects the performance of algorithms in practice
remains to be verified experimentally and is a plan for
future research.

To compare implemented algorithms, we created
three instance classes. The first class comprises images of
the instances described earlier. The second class, called
incremental, was created using a greedy heuristic. From
the set of all available images for a given area, we created
a sequence of those images in the following way: we
iteratively selected an image that covered a sampling point
that was already covered by the least number of images
already considered. If there were multiple such sampling
points, then we selected an image that covered the greatest
number of those points (and if there was still a tie, any
of the tied images were selected). For the found order of
images, created instances contain an increasing number of
initial images of the order. In this way, we guarantee that
consecutive instances (with increasing size) are supersets
of all smaller instances. This enables us, e.g., to track
how the solution size or the running time changes with
an increasing instance size. It also creates an opportunity
to analyze the “behavior” of a greedy heuristic used to
create the order of images. The third class, called random
subsets, was created by randomly selecting subsets of all
images available for a given instance. These test cases
were created only for the Lagos area.

5. Results
5.1. Building the hitting-set graph. In this section,
we report the results and analyze the influence of instance
size (number of images) and the number of sampling
points on the running time of the algorithm used to
build the hitting-set graph. For each considered region
and instance size, we build the hitting-set graph using
4096, 8192, 16384, 32768, and 65536 sampling points,
respectively. We conducted the experiment 10 times
for each set of parameters and reported the mean value.
Figure 5 displays the running times for different instance
sizes and the numbers of sampling points for the Rio de
Janeiro instance. We do not provide the results for other
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Table 2. Comparison of algorithms, their running time complexity, and additional memory usage (in addition to storing the hitting-set
graph structure). The values R and Rmin are highly dependent on the input characteristics. The value of R can be significantly
reduced by applied optimization techniques, such as data reduction rules, node remapping, or the application of different
lower-bound methods.

Algorithm Time complexity Additional memory overhead

brute
O(M · 2n)

n∑
i=1

2n−i · deg(ai) O(M)

MS1

O(R ·M)
set R of checked

solutions is a superset
of all minimal solutions

O(n+M)

MS2
O(Rmin ·M · n)
Rmin – number of

all minimal solutions
O(n+M)

b&b
O(R · E)

R – number of
checked solutions

O(n+M)

b&b-T

O(R · E)

O(R · n+R · n · Δ2

M )
for graphs with “uniform”

degree distribution and
degrees bounded by Δ

O(n+M)

milp depending on the ILP solver

depending on the ILP solver
usually an

O(n ·M) overhead
to store constraints

Fig. 5. Mean running times for different instance sizes (number
of images) and sampling points used to create the hitting-
set graph for the Rio de Janeiro area.

instances as they are similar.
As observed, the running time increases in a linear

fashion as the test size or the number of sampling points
increase. This aligns with our expectations, as the
ray-shooting algorithm has a linear-time complexity with
respect to these parameters (when treated independently).

In Fig. 6, we illustrate how the density of the
created hitting-set graph changes with an increase in the
instance size and the number of sampling points. It
can be noticed that the density of the graph does not

Fig. 6. Graph density for different values of instance size and
sampling points for the Mexico City area.

depend (almost) on the number of sampling points used
to create the hitting-set graph. However, it does vary
for different instance sizes. It is important to note that
the density is not dependent on the number of images in
the instance, but rather on the sizes of the images. For
example, in the case of Mexico City, instances with at
least 200 images contain many images with much larger
areas compared with smaller instances, resulting in a
significantly increased graph density.



302 S. Swat et al.

5.2. Size of optimal result. Let us now examine how
the number of sampling points used influences the optimal
result of the problem. It can be observed that for a fixed
instance (e.g., Paris 100, see Fig. 7), the obtained result
only slightly depends on the number of sampling points
used. Intuitively, one might expect the result values to
form a nondecreasing sequence as the number of sampling
points increases and becomes denser in the AOI area.
However, in our experiment, this is not the case, as the
number of sampling points used (ranging from 625 to
40000) is below the point where it can be proved that
the optimal result values for n and n0 are equal. (There
exists n0 ∈ N such that for all n ≥ n0 the values of
optimal results obtained for n and n0 are equal. This is
easily seen if we consider images as a set of pixels: by
taking a sufficiently dense set of sampling points, each
pixel of every image will cover at least one sampling
point, hence covering all vertices representing sampling
points will be equivalent to covering all pixels of the
AOI.) What is most interesting and worth noting is that
the value of the optimal solution found for 15625 and
30625 sampling points is smaller than that for 10000 and
22500, respectively. This implies that the distribution of
sampling points affects the optimal result for the problem
and is more important than just the density of those points
within the area of interest.

Another important point to emphasize is the size of
the optimal solution obtained for specific instances. In the
case of Paris, the number of images in the optimal solution
varies from 6 (Paris 50) to 9 (Paris 100). Similarly, for
other locations, the optimal result sizes are also relatively
small, not exceeding 10.

5.3. Comparison of algorithms and instance
classes. In this subsection, we compare the algorithms
implemented. For each set of parameters being compared,
we run ten independent instances. The only exception is
the random subsets class, where the algorithms were run
on 25 randomly selected subsets of available images. This
was done to provide more accurate results by increasing
the sample size. Unless otherwise specified, the reported
values are the means of those 10 (or 25) runs. Hitting-set
graphs created for test cases in the random subsets class
were built using 900 sampling points (a grid 30 × 30).
It is also important to note that all algorithms running
in the random subsets class had their subsets of images
selected independently from each other. This means that
each algorithm operated on a different set of 25 test cases
for a given size.

In Table 3 we compare the running time of
algorithms obtained for different sample sizes and
different numbers of sampling points used to create a
hitting-set graph. The comparison is based on the Rio de
Janeiro area and the incremental class instances. What can
be observed is that the algorithms behave similarly and

Fig. 7. The result size and result value of an optimal solution ob-
tained for different sizes and number of sampling points
used in the Paris area. Line styles of plotted markers and
their transparency represent the instance size, shapes of
markers indicate the number of sampling points used.

exhibit almost linear scaling with an increasing number
of sampling points. This aligns with expectations, as the
theoretical complexity of nearly all designed algorithms
depends linearly on the number of sampling points used.
Running times obtained for other areas exhibit the same
linear-scaling characteristics.

Comparing running times, the brute algorithm is
the slowest. This is expected because the algorithm
needs to enumerate all subsets 2n. The MS1 and MS2
algorithms are faster than brute but slower than the proper
branch-and-bound algorithms. It is interesting to note
the difference between the MS1 and MS2 algorithms.
Although the latter checks fewer solutions than the former,
the time overhead caused by the need to keep track of
additional data to make updates makes it considerably
slower. Subsequently, the algorithms b&b and b&bT
follow, with the latter being faster. The speedup obtained
by eliminating the need to iterate over the neighbors of
the nodes in A \ S′ is not negated by the necessity of
iterating over N(N(v)) when v is added to S, and this
fact is clearly visible. An interesting sudden fall in the
number of solutions visited for the incremental class can
be noticed when the instance size increases from 86 to 90.
This is caused by considering new images that affect the
value of the optimal result found. Consequently, due to
the use of power bounding, a decreased total number of
checked solutions is produced.

The milp algorithm is the only one that was able
to efficiently find optimal solutions for all the instances
used, regardless of the size or class of the instance. In our
experiment, it also does not exhibit exponential growth
in running time but seems to scale linearly with the
hitting-set graph size, suggesting that the algorithm does
hardly any branching and most of the work is done by
optimization techniques, such as data reduction rules. The
milp algorithm is not the fastest for instances with fewer
images, especially when considering that it was run in
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Table 3. Integers in the first column denote the number of images, while the three real values in other table cells represent the time
in seconds needed to find an optimal answer for an instance, where the hitting set graph was built for a grid consisting of
30× 30, 40× 40 and 50× 50 points, respectively. A dash indicates that an algorithm has not been run for the given number
of images. Data was obtained for the Rio de Janeiro area.

MS1 MS2 b&b b&b-T brute milp
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0
18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.5 0.0 0.0 0.0
21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.7 1.1 0.0 0.0 0.0
22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.3 2.0 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.6 2.4 0.0 0.0 0.0
24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 3.2 4.9 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
34 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
38 0.0 0.0 0.1 0.1 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
42 0.0 0.1 0.1 0.4 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
46 0.2 0.3 0.5 1.3 2.7 3.2 0.0 0.1 0.1 0.0 0.1 0.1 – 0.0 0.0 0.0
50 0.4 0.9 1.4 2.8 5.4 6.6 0.1 0.1 0.1 0.0 0.1 0.1 – 0.0 0.0 0.0
54 1.5 3.9 5.9 14.3 31.2 31.7 0.2 0.3 0.5 0.1 0.2 0.3 – 0.0 0.0 0.0
58 4.5 12.4 23.0 50.5 90.0 112.8 0.2 0.3 0.5 0.1 0.1 0.2 – 0.0 0.0 0.0
62 – – 0.3 0.6 1.0 0.1 0.2 0.3 – 0.0 0.0 0.0
66 – – 1.1 1.8 3.1 0.2 0.3 0.5 – 0.0 0.0 0.0
70 – – 2.2 3.7 6.7 0.4 0.7 1.1 – 0.0 0.0 0.0
74 – – 3.2 5.6 9.8 0.6 1.1 1.6 – 0.0 0.0 0.0
78 – – 6.4 11.3 18.2 0.8 1.5 2.0 – 0.0 0.0 0.0
82 – – 15.4 23.0 38.5 2.2 3.9 5.7 – 0.0 0.0 0.0
86 – – – 2.9 4.9 7.2 – 0.0 0.0 0.0
90 – – – 1.4 2.1 3.4 – 0.0 0.0 0.0
94 – – – 1.9 2.9 4.4 – 0.0 0.0 0.0
98 – – – 2.4 4.0 5.9 – 0.0 0.0 0.0

the default configuration on 16 threads, not on a single
thread. However, the running times for these instances are
negligible for most application use cases.

We now proceed to the analysis of experiments
performed for the incremental and random subsets classes.
In Table 4, we present the results of analyzing the impact
of the used instance class. Based on the Lagos area, we
compare the performance of the algorithms.

Firstly, we observe that test cases in the random
subsets class are generally much more difficult to solve
optimally (as measured by the time required) compared
to those in the incremental class. The exceptions to this
are the brute and milp algorithms. The brute algorithm
considers all possible subsets of images, and its running
time depends on the sizes of the images (degrees of the
nodes in set A in the hitting-set graph). However, the

images in the incremental class tend to be larger than those
in the random subsets class, as they are chosen based on
a heuristic that prioritizes larger images at the beginning
of the image order. On the other hand, the milp algorithm
does not show this tendency and appears to scale linearly
with the size of the graph (see Table 5).

We conducted one-sided Wilcoxon signed-rank tests
to compare the performance of various algorithms on the
Lagos dataset, specifically focusing on the incremental
class (Table 4). This statistical test evaluates whether
the running times of one algorithm are significantly
shorter than those of another. The resulting p-values are
illustrated in Fig. 8

Based on a significance threshold of p < 0.05, the
following conclusions can be drawn:
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Table 4. Integers in the first column denote number of images, while the six real values in other table cells represent the time in seconds
required for the algorithms MS1, MS2, b&b, b&b-T , brute and milp, respectively. A dash indicates that algorithms have
not been run for the given number of images. Data obtained for the Lagos area.

incremental random_subsets
15 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.02 0.00 0.00 0.01 0.00
18 0.00 0.00 0.00 0.00 0.05 0.01 0.02 0.03 0.00 0.01 0.01 0.00
19 0.00 0.00 0.00 0.00 0.08 0.01 0.03 0.05 0.00 0.01 0.02 0.00
20 0.00 0.00 0.00 0.00 0.16 0.01 0.06 0.08 0.00 0.01 0.03 0.00
21 0.00 0.00 0.00 0.00 0.20 0.01 0.07 0.10 0.00 0.03 0.07 0.00
22 0.00 0.00 0.00 0.00 0.26 0.01 0.11 0.13 0.01 0.02 0.13 0.01
23 0.00 0.01 0.00 0.00 0.52 0.01 0.16 0.17 0.00 0.03 0.25 0.01
24 0.00 0.02 0.00 0.00 1.02 0.01 0.36 0.22 0.01 0.06 0.52 0.01
25 0.00 0.03 0.00 0.00 2.03 0.01 0.55 0.30 0.01 0.06 0.92 0.01
26 0.00 0.03 0.00 0.00 – 0.01 0.74 0.61 0.01 0.07 – 0.01
27 0.01 0.08 0.00 0.00 – 0.01 1.48 0.94 0.02 0.13 – 0.01
28 0.01 0.11 0.00 0.00 – 0.01 1.53 0.92 0.03 0.19 – 0.01
29 0.02 0.15 0.00 0.01 – 0.01 2.58 1.06 0.04 0.16 – 0.01
30 0.02 0.20 0.00 0.01 – 0.01 4.40 2.31 0.04 0.22 – 0.01
32 0.03 0.25 0.00 0.01 – 0.01 6.85 2.91 0.10 0.43 – 0.01
34 0.10 0.82 0.01 0.02 – 0.01 17.73 6.63 0.23 0.53 – 0.01
36 0.16 1.20 0.01 0.02 – 0.01 33.53 14.12 0.23 0.67 – 0.01
38 0.23 1.64 0.02 0.05 – 0.01 – – 0.40 1.26 – 0.01
40 0.53 3.42 0.02 0.06 – 0.01 – – 0.59 2.31 – 0.01
42 0.66 4.14 0.04 0.09 – 0.01 – – 1.23 4.25 – 0.01
44 1.26 7.71 0.05 0.12 – 0.01 – – 2.82 8.00 – 0.01
46 1.84 11.25 0.09 0.18 – 0.01 – – 3.37 10.59 – 0.01
48 2.42 14.06 0.14 0.27 – 0.01 – – 5.49 9.30 – 0.01
50 5.02 27.16 0.17 0.34 – 0.01 – – 6.50 15.88 – 0.01
52 7.28 38.32 0.23 0.47 – 0.02 – – – – – –
54 12.74 56.96 0.29 0.61 – 0.02 – – – – – –
56 16.49 70.30 0.47 0.83 – 0.02 – – – – – –
58 18.45 77.77 0.59 1.08 – 0.02 – – – – – –
60 35.48 127.57 0.75 1.57 – 0.02 – – – – – –
62 – – 1.10 1.81 – 0.02 – – – – – –
64 – – 1.63 2.67 – 0.02 – – – – – –
66 – – 1.82 3.34 – 0.02 – – – – – –
68 – – 7.11 7.81 – 0.02 – – – – – –
70 – – 2.16 0.35 – 0.02 – – – – – –
72 – – 2.44 0.43 – 0.02 – – – – – –
74 – – 4.45 0.85 – 0.02 – – – – – –
76 – – 8.21 1.50 – 0.02 – – – – – –
78 – – 9.04 1.68 – 0.02 – – – – – –
80 – – 15.35 2.47 – 0.02 – – – – – –
82 – – – 2.97 – 0.02 – – – – – –
84 – – – 4.96 – 0.02 – – – – – –
86 – – – 6.17 – 0.02 – – – – – –
88 – – – 9.17 – 0.02 – – – – – –
90 – – – 11.14 – 0.02 – – – – – –
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Fig. 8. P -values from one-sided Wilcoxon signed-rank tests are
presented in a heatmap format. Each cell contains the p-
value resulting from testing whether the algorithm in the
corresponding row performs significantly faster than the
algorithm in the respective column. P -values less than
0.05, indicating statistical significance, are highlighted
with a black background.

(i) The milp algorithm demonstrates significantly
superior performance compared with all other
algorithms.

(ii) The brute algorithm performs significantly worse
than all other algorithms.

(iii) Algorithm MS1 outperforms MS2.

(iv) Both branch and bound algorithms are superior to
MS1, MS2, and brute.

However, the comparative performance between the
basic branch and bound algorithm b&b and its variant
b&b-T is inconclusive. For instance sizes up to 68, the
simpler b&b algorithm is faster, whereas for instance
sizes of 70 and above, the b&b-T variant outperforms the
basic b&b. Consequently, our data does not allow us to
definitively conclude whether b&b is better than b&b-T
or vice versa. Similar observations can also be done for
results obtained for other areas.

Instances from incremental classes are easier than
random subsets for several reasons, one of which is the
size of the optimal result. Since the images are arranged in
a specific order, the optimal result for smaller-to-medium
instances of the incremental class typically consists of a
very small number of images (see Fig. 9). This means that

Table 5. Running times (in seconds) of the milp algorithm. In-
tegers in the first column denote the number of images,
while the four values in other cells are obtained, re-
spectively, for the Mexico City, Paris, Rio de Janeiro,
and Tokyo Bay areas.

incremental random_subsets
10 0.05 0.04 0.04 0.05 0.02 0.02 0.02 0.02
20 0.09 0.07 0.06 0.08 0.05 0.03 0.03 0.04
30 0.13 0.09 0.07 0.10 0.07 0.05 0.05 0.06
40 0.15 0.11 0.09 0.13 0.08 0.06 0.06 0.07
50 0.18 0.13 0.10 0.15 0.10 0.07 0.07 0.09
60 0.21 0.15 0.11 0.17 0.11 0.08 0.08 0.10
70 0.23 0.16 0.12 0.20 0.13 0.10 0.10 0.12
80 0.25 0.17 0.13 0.22 0.15 0.11 0.12 0.14
90 0.27 0.18 0.14 0.25 0.16 0.13 0.13 0.15

100 0.29 0.19 0.15 0.27 0.19 0.14 0.15 0.16
110 0.32 0.21 0.17 0.30 0.20 0.15 0.16 0.18
120 0.33 0.22 0.18 0.32 0.23 0.17 0.17 0.20
130 0.36 0.23 0.19 0.34 0.24 0.18 0.19 0.22
140 0.38 0.24 0.21 0.35 0.28 0.21 0.20 0.23
150 0.40 0.26 0.22 0.38 0.29 0.22 0.22 0.26
160 0.42 0.27 0.24 0.39 0.32 0.24 0.24 0.28
170 0.43 0.28 0.26 0.41 0.33 0.27 0.25 0.30
180 0.45 0.30 0.27 0.43 0.36 0.28 0.27 0.32
190 0.49 0.31 0.30 0.44 0.38 0.30 0.29 0.34
200 0.50 0.33 0.32 0.46 0.41 0.32 0.31 0.37
210 0.52 0.35 0.34 0.49 0.44 0.33 0.33 0.39
220 0.57 0.36 0.35 0.51 0.46 0.37 0.35 0.40
230 0.57 0.38 0.37 0.53 0.49 0.37 0.37 0.42
240 0.58 0.41 0.39 0.55 0.51 0.41 0.39 0.44
250 0.59 0.42 0.41 0.57 0.54 0.42 0.40 0.46
260 0.60 0.43 0.43 0.56 0.56 0.45 0.42 0.49
270 0.61 0.44 0.44 0.58 0.59 0.47 0.44 0.51
280 0.63 0.45 0.46 0.60 0.61 0.49 0.46 0.53
290 0.66 0.46 0.48 0.61 0.63 0.47 0.47 0.55
300 0.67 0.48 0.50 0.63 0.65 0.51 0.49 0.58

there are large images in the datasets that can alone cover
a significant portion, if not all, of the AOI.

We now juxtapose the quality of results obtained for
the incremental and random subsets classes for a varied
number of images. Measurements were obtained for
instance sizes ranging from 10 to 300 with a step of 10.
Let us now consider Fig. 10. The dark solid line with
triangular markers represents the optimal result value for
the incremental class. The dotted line represents the mean
result value for 25 independent random subsets; triangular
markers represent the median of those runs; the range of
vertical lines represents the standard deviation, and the
filled area ranges from the minimum to the maximum of
the results obtained. It can be noticed for the incremental
class that the results form a non-increasing sequence, as
larger instances are supersets of smaller ones. The optimal
result value diminishes as new images are considered. For
the Paris area, we can see three such turning points at
sizes 20, 70, and 160. The last value is worth attention
because it means that selecting the 150 best images with
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Fig. 9. The sizes of the optimal results found for instances in the
incremental class. The hitting-set graph was constructed
using 1600 sampling points. The number of images in
the optimal solution increases as the instance size grows.

a greedy heuristic is not enough to guarantee that the
optimal solution will be formed by some subset of those
images. This shows, in some sense, how far the simple
greedy heuristic can be from optimum.

On the other hand, the optimum result for the subset
of 20 best images selected by the heuristic was no worse
by no more than 50% than the optimum for the whole
set. An interesting fact is that the best (minimum value)
results for random subsets class on small (≤ 30 images)
instances are equally good or even smaller than for subsets
of images chosen by the greedy heuristic. A sizeable gap
can be noticed for the Tokyo Bay area (Fig. 10), where the
best of the solutions found for randomly selected subsets
(or even the mean, starting from the size of 60) is much
better than in the incremental case for sizes not exceeding
150. This is not the case for the Paris area, where the
results for the incremental class are comparable to the
best results obtained for random subsets of the same size.
The distribution of results obtained for the random subsets
class has been additionally depicted in more detail on
Fig. 11. The result characteristics for other areas are
comparable to those in either of the two.

6. Discussion
The use of satellite imagery has gained popularity for
monitoring and responding to changes in different regions
of the Earth. However, constructing a mosaic of
high-resolution images to cover the flexible Area of
Interest often requires retrieving images from multiple
providers with varying costs and cloud coverage. The
main objective of this study is to achieve the optimal
multi-objective selection for the SIMS problem.

The SIMS problem exhibits parallels with the
challenges encountered in aerial photo analysis,
particularly regarding the optimal coverage of an Area
of Interest (AOI) using a subset of images. However,
several distinct nuances differentiate these two contexts.

Fig. 10. Optimal results for incremental and random subsets
class for the Paris area (top) and Tokyo Bay area (bot-
tom).

Fig. 11. Distribution of results for random subsets class for the
Paris area (top) and Tokyo Bay area (bottom).

In aerial photography, images are typically captured
using Unmanned Aerial Vehicles (UAVs) following
optimized flight paths to ensure optimal overlap (Chen
et al., 2024). Conversely, in the SIMS context, the overlap
is predetermined and cannot be optimized. Additionally,
aerial photos are taken from lower altitudes, necessitating
specific corrections for tilt angles, which are negligible
in satellite imaging (James and Robson, 2014). Despite
these differences, both satellite and aerial imaging
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technologies share fundamental similarities but are
tailored to different applications, each presenting unique
challenges.

At first glance, the Internet Shopping Optimization
Problem (Błazewicz et al., 2010), in which one must
make an optimal selection of products from online stores,
has some similarities (at a higher level of abstraction)
with the challenging problem described in the present
paper. However, digging deeper into the topic reveals
too many differences to make simple model or algorithm
transformations. Therefore, we developed new models
and implemented innovative algorithms to address this
problem. We then performed a comprehensive evaluation
to confirm their high quality and competitive efficiency
compared to existing state-of-the-art methods.

By using the sampling-point-based method, we
were able to easily and efficiently create the necessary
data structure for building the hitting-set graph. Our
experiments also indicate that a relatively small number
of sampling points is sufficient to obtain an optimal or
near-optimal result for the corresponding graph, compared
to a more complex approach involving plane division.

All designed and implemented algorithms produce
optimal results to the problem (and the same one, if it is
unique). From a practical point of view, selection of the
best algorithm can be based purely on computational time
and resource requirements. The algorithm milp, based on
the ILP formulation, outperforms others by a significant
margin in terms of efficiency. However, it should be noted
that the other approaches can be easily adapted to a more
general and challenging problem model, where not all
elements of the set B need to be covered, but rather a fixed
fraction of them. In such cases, the number of variables
used in the ILP formulation increases significantly (from
O(n) to O(n2) in general). It would be interesting to see
how the milp approach handles this challenge and how
the presented algorithms compare with each other. This is
a plan for future work, along with conducting additional
experiments to compare the sampling point method with
the plane-divide approach. Finally, we intend to examine
the impact of cloud coverage on the performance of the
designed algorithms and focus on heuristic approaches,
which will likely be necessary to find in acceptable time
solutions to the more complex variations of the SIMS
problem. We believe that these proposed algorithms will
drive further development in the space data market.
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