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The pseudoknot is a specific motif of the RNA structure that highly influences the overall shape and stability of a molecule.
It occurs when nucleotides of two disjoint single-stranded fragments of the same chain, separated by a helical fragment,
interact with each other and form base pairs. Pseudoknots are characterized by great topological diversity, and their sys-
tematic description is still a challenge. In our previous work, we have introduced the pseudoknot order: a new coefficient
representing the topological complexity of the pseudoknotted RNA structure. It is defined as the minimum number of
base pair set decompositions, aimed to obtain the unknotted RNA structure. We have suggested how it can be useful in
the interpretation and understanding of a hierarchy of RNA folding. However, it is not trivial to unambiguously identify
pseudoknots and determine their orders in an RNA structure. Therefore, since the introduction of this coefficient, we have
worked on the method to reliably assign pseudoknot orders in correspondence to the mechanisms that control the biological
process leading to their formation in the molecule. Here, we introduce a novel graph coloring-based model for the prob-
lem of pseudoknot order assignment. We show a specialized heuristic operating on the proposed model and an alternative
integer programming algorithm. The performance of both approaches is compared with that of state-of-the-art algorithms
which so far have been most efficient in solving the problem in question. We summarize the results of computational ex-
periments that evaluate our new methods in terms of classification quality on a representative data set originating from the
non-redundant RNA 3D structure repository.
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1. Introduction

Recent decades have seen close intermingling of
computational and life sciences. Their collaboration
has contributed to solving many problems related to
various aspects of life at the molecular level, as
well as the development of algorithms inspired by
natural phenomena. It has also led to the evolution
of new specialized research areas, such as structural
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bioinformatics, in which a key issue of this paper is
anchored.

Primary research problems in the field of structural
bioinformatics include (i) determining the 3D structure
of molecules (Adamiak et al., 2004; Blazewicz et al.,
2005; Slabinski et al., 2007), (ii) 3D structure prediction
(Kuang et al., 2004; Seetin and Mathews, 2011; Leontis
and Westhof, 2012; Antczak et al., 2016), (iii) quality
assessment of 3D structures (Zemla, 2003; Kuang et al.,
2004; Parisien et al., 2009; Lukasiak et al., 2015;
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Wiedemann and Milostan, 2017; Magnus et al., 2020),
(iv) clustering molecules in order to identify common
properties at various structural levels (Cheng et al., 2013;
Zok et al., 2015), (v) discovering a relationship between
the 3D fold and its biological function (Saenger, 1984;
Blazewicz et al., 2011; Szostak et al., 2014; Rebis et al.,
2015), (vi) analysing conformation changes and their
influence on biological processes (Leontis and Westhof,
2012; Morimura et al., 2013; Adrjanowicz et al., 2016),
(vii) performing molecular dynamics (Sarzynska and
Kulinski, 2005; Popenda et al., 2009), (viii) searching for
common structural characteristics (Pugalenthi et al., 2007;
Wiedemann et al., 2017; Miskiewicz and Szachniuk,
2018; Popenda et al., 2020). All of these problems
require solutions that involve sophisticated, theoretical
models and efficient computational methods dedicated to
a specific molecule: DNA, RNA or protein.

Biological molecule structures are analyzed at
various levels of detail, taking into account selected
topological characteristics (Kuppusamy and Mahendran,
2016). For example, structural motifs can be searched
for in a sequence (i.e., a primary structure), in an
intramolecular interaction network (i.e., a secondary
structure), or in a full-atom 3D model (i.e., a tertiary
structure). Their reliable identification and analysis
often bring significant insight into the understanding
of biological processes (Rybarczyk et al., 2017).
Structural motifs play various important biological roles,
e.g., serving as binding sites in molecular complexes,
indicating cleavage sites in the biogenesis of specialized
molecules, blocking or initiating some cellular processes,
etc. Despite intensive studies of molecular motifs carried
so far, many questions have remained unanswered. Some
of them concern pseudoknots, which are specific RNA
motifs that play crucial roles in various types of biological
processes (Miao and Westhof, 2017).

The first recollection of a pseudoknot motif in
the RNA structure comes from the work of Rietveld
et al. (1982). Since then, motifs of this type have
been studied with various intensity and from different
perspectives (Staple and Butcher, 2005; Pasquali et al.,
2005; Aalberts, 2005; Pillsbury et al., 2005; Rødland,
2006; Reidys et al., 2011; Bon et al., 2012; Vernizzi
et al., 2016). Among others, significant efforts have
been made to predict pseudoknotted RNA 3D structures,
visualize pseudoknots in various representations of an
RNA secondary structure, and to investigate and describe
their topology. Within the latter issue, three leading
approaches were developed. Kucharı́k et al. (2016)
distinguished four specific pseudoknot topologies; H-type
(interaction between a loop and a non-looped single
strand), K-type (loop-loop interaction), L-type and
M-type (more complex pseudoknot topologies), according
to type and vicinity of fragments participating in the
motif’s formation. Bon et al. (2008) as well as Chiu and

Chen (2012) introduced a genus concept that was applied
to categorize entangled structure topologies. Finally, the
pseudoknot order has been defined to quantify structural
complexity of pseudoknotted RNA structures (Antczak
et al., 2014).

Here, we describe the pseudoknot order assignment
problem (abbreviated as POA). We present two novel
algorithmic approaches solving this problem. The
first one, named MIS (maximum independent set-based
algorithm), applies an optimization algorithm built
on a new graph model of POA. An alternative
solution, abbreviated as MILP, is a mixed-integer
linear programming-based model solved using CPLEX.
Computational experiments show that both the proposed
approaches provide better results than state-of-the-art
algorithms, especially for large, pseudoknotted RNA
structures.

2. Pseudoknot order assignment problem

In this work, we focus on the RNA secondary structure,
which is represented as a network of interactions
occurring within an RNA molecule. A single interaction
results in the formation of a pair of bounded bases.
Therefore, the most common representation of a
secondary structure is a list of base pairs. Every base is
represented by a unique, serial number that corresponds
to its position in an RNA chain. Thus, a base pair is
represented as a pair of numbers.

Let us consider two base pairs (i, j) and (k, l) that
belong to RNA structure M , where i < j, k < l, i < k.
They are found in one of the following relationships:

1. i < k < l < j: base pair (k, l) is nested in (i, j),

2. i < j < k < l: base pairs are disjoint,

3. i < k < j < l: base pairs interlace and form a
pseudoknot.

The pseudoknot is thus composed of at least two base
pairs that interlace. Additionally, this motif may contain
any number of nested and disjoint base pairs. At least one
base pair interlaces with the remaining ones.

The pseudoknot order (psorder) has been introduced
to assess the topological complexity of motifs of this
kind. According to Antczak et al. (2014), it is calculated
as the minimum number of decompositions of the entire
base pair set, which lead to obtaining the unknotted
structure (i.e., a set including only nested and disjoint
pairs). Further analysis by Antczak et al. (2018) has
shown that this coefficient can be useful in interpretation
and understanding of the RNA folding hierarchy. We
assume that at the preliminary step of RNA folding only
nested (cf. Fig. 1(a)) and disjoint (cf. Fig. 1(b)) base pairs
are formed. Their psorder = 0. Next, topologically
simple pseudoknots (with psorder = 1) are formed.
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Fig. 1. Arc diagrams that represent nested base pairs (a), dis-
joint base pairs (b), a pseudoknot of order 1 (c), a pseu-
doknot of order 2 (d).

They are induced by base pairs that interlace with any
of previously formed pairs (cf. Fig. 1(c)). Further, base
pairs that interlace with simple pseudoknots form more
topologically complex motif with psorder = 2 (cf.
Fig. 1(d)), etc. Concluding, the pseudoknot of the n-th
order contains at least one base pair that interlaces with
n previously formed base pairs having pseudoknot orders
n − 1, n − 2, . . . , 0. In the problem of pseudoknot order
assignment, having the input RNA secondary structure,
we trace back the RNA folding process designating orders
for all base pairs involved in pseudoknot formation. If two
base pairs interlace, we need to assign psorder = n to one
of them, and psorder = n− 1 to the other (n ≥ 1).

Let us define the pseudoknot order assignment
problem in the following way. Having a set of base pairs
B =

⋃
k≥1(ik, jk), assign psorder ≥ 0 to every base

pair in B according to a bilevel optimization procedure
(Antczak et al., 2018) considering the following phases:
(i) first, maximize the number of base pairs with
psorder = 0 (they form a core of RNA structure); (ii)
next, minimize the sum of values of positive (psorder ≥
1) pseudoknot orders assigned to all other base pairs.

3. Criterion function

Solving the POA problem requires the use of a criterion
function that evaluates the quality of feasible solutions.
Here, we apply the function fscore from the work of
Antczak et al. (2018). It operates on a compressed
representation of an RNA secondary structure in which
series of neighboring base pairs are treated as units called
regions.

As mentioned in Section 2, the pseudoknot is
often formed by double-stranded fragments (consisting
of nested base pairs) that intertwine within the structure.
Thus, we can represent the secondary structure by
enumerating its double-stranded fragments (regions)
instead of single base pairs. A region is represented by
its outermost base pair and the number of pairs nested in

it, uninterrupted by any unpaired base. The latter value
denotes the region length. Thus, the RNA secondary
structure can be encoded as a set R of triples r = (i, j, l),
where i and j represent bases of the outermost pair of
region r, and l is the length of region r. Having such a
representation of the structure, we solve the POA problem
by assigning pseudoknot orders to regions in R.

We state that fscore is represented by a pair of
integers (fcore, fpk). The first component denotes the
size of a core structure and is computed according to

fcore =
∑

rk∈R

(1 − xk) · l(rk), (1)

where l(rk) denotes the length of region rk and xk is a
decision variable:

xk =

{
0 if psorder(rk) = 0,

1 otherwise.
(2)

The second component is a sum of regions’ lengths
weighted by their psorder and is calculated according to

fpk = −1 ·
∑

rk∈R

psorder(rk) · l(rk). (3)

We use the following domination rule (Antczak et al.,
2018) to decide which feasible solution is better:

fscorei > fscorej

≡
fcorei > fcorej ∨ (fcorei = fcorej ∧ fpki > fpkj).

(4)
Thus, the first component fcore takes precedence

when looking for the maximum value of fscore. Only
if two feasible solutions have the same fcore values is
fpk used. For example, fscore of (5,−2) is better than
(4,−3) (cf. Fig. 2(a)) because the former one includes
a higher number of base pairs in the core structure.
Moreover, (5,−4) is better than (5,−5) (cf. Fig. 2(b))
because we first minimize the psorder for the whole
structure and, next, we maximize the number of base pairs
with the lower psorder.

4. Graph-based solution

Graph theory has proved its effectiveness in modeling a
large number of problems derived from life sciences (Gan
et al., 2003; Giuliani et al., 2008; Blazewicz et al., 2013;
2018; Szachniuk et al., 2014; 2015; Wojciechowski et
al., 2016; Radom et al., 2017). Graph-based models
are often applied, e.g., to show a discrete view of
biomolecular architecture, including an RNA secondary
structure (Simon, 2005; Lai et al., 2012; Schlick, 2018).
In our proposal, we have developed a new graph model
for the POA problem.
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Fig. 2. Criterion function interpretation examples.

Fig. 3. Example RNA secondary structure represented as a set
of base pairs (a), an arc diagram (b), a set of triples (re-
gions) (c), a conflict graph with weighted vertices (d).

4.1. Graph-based model of the problem. Let G =
(V,E) be an undirected graph, where V is a set of
weighted vertices and E a set of edges. G is an RNA con-
flict graph if the following conditions are satisfied. Every
vertex vk ∈ V represents region rk ∈ R of RNA molecule
M , where R is a set of triples encoding the secondary
structure of M . Every vertex vk ∈ V is associated with
weight wk = l(rk), where l(rk) is the number of nested
base pairs forming rk (i.e., the length of rk). If two
regions, ri and rj , of RNA structure M interlace (i.e., they
are in conflict), their corresponding vertices, vi, vj ∈ V ,
are connected with an edge e(vi, vj) ∈ E (cf. Fig. 2(d)).

A feasible solution of the POA problem is a
vertex-coloring of a given graph G with nc colors. Colors
are represented by natural numbers following the formula
psorder(ri) = c(vi) − 1, where c(vi) is the color of
vertex vi. Thus, the optimum solution is a coloring
scheme which (i) maximizes the sum of weights of
vertices assigned with color 1 and (ii) minimizes the sum
of products of vertices’ weights and their colors for all
vertices for which c(vi) > 1.

4.2. MIS algorithm. To explain the MIS (maxi-
mum independent set-based) algorithm, we need to recall
several definitions from graph theory. An independent set
in a given graph G = (V,E) is a subset P ⊂ V in which
no nodes are connected by an edge from E. Set P is max-
imal if there is no vertex v ∈ V \ P such that P ∪ {v}
is also an independent set in G. Finally, a maximum inde-
pendent set is a maximal independent set with the biggest
size (counted by the number of vertices included) (Tarjan
and Trojanowski, 1977). Let us note that every maximum
independent set is also maximal. However, the opposite
statement is not always true (cf. Fig. 3).

Graph coloring and independent set determination
problems are closely related because in a feasible
coloring scheme vertices with the same color represent an
independent set. In the POA problem, the objective is to
find a coloring scheme which inherently optimizes color
assignments. In the proposed MIS algorithm the solution
is built by constructing maximal independent sets which
are then translated to colors and indirectly to pseudoknot
orders of underlying RNA base pairs.

The POA problem can be solved by finding partition
P = (P1, P2, . . . , Pnc) of vertices of G = (V,E)
such that, for each i ∈ [1, nc], Pi is an independent
set in G and

⋃nc
i=1 Pi = V . Obviously, if f : V −→

{c1, c2, . . . , cnc} is the coloring scheme of a given graph
G, then Pi = f−1(i).

The complexity of the input graph G determines a
scenario followed during solving the POA problem. Thus,
MIS selects the appropriate processing scheme based on
the number of vertices |V | of a given graphG. If |V | > N
(by default N = 50), the graph is considered complex.
Otherwise, the graph is treated as simple. In the case of
simple graphs, an exhaustive search algorithm identifies
an optimal solution (if it exists) in which all Pi sets
are maximum independent sets of their corresponding
graphs. The heuristic procedure linearly depends on the
sum of vertex and edge numbers in a given graph G.
Otherwise, the best solution maximizing fscore is found.
For complex graphs, the first set P1, representing regions
with psorder = 0, is found by a heuristic approach. Next,
MIS recursively solves the POA problem for a reduced
graph G[V \P1] and incrementally constructs the solution
based on partial results. In this case, the Bron–Kerbosch
algorithm, which is exponential, is used for identification
of all maximal independent sets in a given graph G. So,
in the worst case, the MIS algorithm is also exponential.
However, in practice, its computational efficiency is good
enough (cf. Table 2).

CGO: Complex graph-oriented scenario. Although
maximal independent sets for a given graph G are found
in polynomial time (Luby, 1986), it remains difficult
to select the promising one that is also the maximum
independent set. To identify the most promising partial
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Fig. 4. Independent sets in example graph G: all independent
sets (a), maximal independent sets (b), maximum inde-
pendent set (c).

solution, MIS applies the following steps: (i) construct set
S = {S1, S2, . . . , St} of random maximal independent
sets of graph G (Luby, 1986), where t is a positive integer,
(ii) identify intersection K of all sets in S, (iii) assign
psorder = 0 to all regions corresponding to vertices in
K that are treated as solved. Next, the hybrid algorithm
(Antczak et al., 2018) finds the final solution focusing
only on still unsolved regions. Note that if we find
only random maximal independent sets Si in graph G,
we cannot be certain if any of them are the maximum
independent set. However, computational experiments
show that, if t is large enough (e.g., 104), the maximum
independent set is usually found. Furthermore, the size
of K is usually large. Thus, it significantly reduces the
search space of the hybrid algorithm, which next leads to
significant improvement of the solution.

SGO: Simple graph-oriented scenario. In this
scenario, MIS exhaustively searches all partitions P =
(P1, . . . , Pnc), where P1 is the maximal independent
set of a given graph G = (V,E), Pi is the maximal
independent set of G[V \ (⋃i−1

j=1 Pi)] for 2 ≤ i ≤ nc,
and |Pi| is not smaller than the size of the maximum
independent set of the corresponding graph decreased by
1 for i ∈ [1, nc]. This is done as follows: (i) find all
maximal independent sets Z in a given graph G using the
Bron–Kerbosch algorithm (Bron and Kerbosch, 1973), (ii)
for each maximal independent set I ∈ Z satisfying the
size constraint, identify recursively the current solution
for graph G[V \ I] using the hybrid algorithm (Antczak
et al., 2018), (iii) assess the current solution using fscore
and remember it if it is the best one so far.

Note that using this routine to identify all partitions
P = (P1, . . . , Pnc) may not lead to finding the optimum
with respect to fscore. Instead of searching for all
maximal independent sets of G, one can only consider
independent sets satisfying the size constraint. Thus,
larger graphs can be also effectively processed.

5. MILP-based solution

The POA problem can be modeled as a mixed-integer
linear programming (MILP) one. It requires finding an

upper-bound on the pseudoknot order for input RNA
using the first-come-first-served algorithm (Antczak et al.,
2018). Then, the MILP-based model is defined as follows:

1. Goal function
The objective of this problem is to maximize
the pseudoknot classification quality in the POA
problem, concerning the fscore function:

max
∑

rk∈R

y1,rk · l(rk) · Cpsorder

−
nc∑

i=2

∑

rk∈R

yi,rk · l(rk) · psorder(rk),
(5)

where Cpsorder = 10 is a constant value selected to
exceed the psorder that can be assigned to any base
pair in known, experimentally determined RNA 3D
structures.

2. Decision variables

yi,rk =

{
1 if psorder(rk) = i− 1,

0 otherwise.
(6)

3. Constraints
Every region must have exactly one value of the
pseudoknot order assigned:

∀rk ∈ R
∑

i∈[1,nc]

yi,rk = 1. (7)

Two interlacing regions rk, rl ∈ R are assigned
different values of psorder:

∀e(rk, rl) ∈ E ∀i ∈ [1, nc] yi,rk + yi,rl ≤ 1.
(8)

It is well known that MILP is NP-hard. In the worst
case, the algorithm verifies all potential combination
of values for the integral variables and then solves the
resulting LP. Nevertheless, the proposed algorithm is
efficient in practice (cf. Table 2) taking into account
the sizes of known experimentally determined RNA 3D
structures.

6. Computational experiments

The performance of the MIS and MILP algorithms was
assessed in the context of state-of-the-art methods, i.e.,
hybrid (HYB) and dynamic programming (DP)-based
(Antczak et al., 2018). The HYB algorithm uses an
exhaustive search method for small instances and random
walk for larger ones. DP optimally solves the POA
problem restricted to the fcore criterion function only
(i.e., DP does not optimize fpk component of fscore).
The MILP model was solved using the CPLEX solver
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(ver. 12.7). The MIS algorithm was developed in C++
and integrated selected procedures from the HYB method
(Antczak et al., 2018). All algorithms were executed and
assessed in a coherent computational infrastructure.

A repository of complex pseudoknotted RNAs
for computational tests was constructed based on a
non-redundant set of representative RNA 3D structures
(Leontis and Zirbel, 2012) with 491 entries. The set
was processed by 3DNA/DSSR with the helix analysis
option (Lu and Olson, 2008) to get the secondary structure
(the base pair list) for every RNA considered. Next, all
RNAs without pseudoknots were removed. Finally, we
obtained the test set consisting of 240 pseudoknotted RNA
secondary structures.

Every RNA secondary structure from the test set was
processed using all the algorithms considered. In many
cases, the HYB method (Antczak et al., 2018), as well as
both new algorithms, returned the same solution. It was
the case for all small or topologically simple structures.
However, for large and complex pseudoknotted RNAs,
the diversity of generated solutions was high. The latter
examples created a set of 48 structures with pseudoknots
of up to the 7th order, on which we compared the
algorithms’ performance.

In the first experiment, solutions generated by all the
algorithms were evaluated based on the criterion function
fscore, and their all-against-all comparison was made.
The results of this experiment are presented in Table 1.
It shows how many times the algorithm from the first
column won a duel with algorithms listed in columns 2–5.
It also presents the total number of duels and battles won.
For example, we can see that MILP won 20 duels with DP
(i.e., in 20 cases its solution dominated over the solution
found by DP), 13 duels with HYB and 3 duels with MIS.
The number of all duels won by MILP equals 36. In four
cases, it was better than every other algorithm.

In the second experiment, we evaluated the generated
solutions based on the maximum psorder value assigned
by each algorithm for every input structure. Again,
all-against-all comparison was performed and its results
are presented in Table 2. The maximum value of the
psorder of a winner (in the duel) must be lower as
compared to the loser. Let us notice that the results
in Tables 1 and 2 differ. Winning the duel in the first
experiment (Table 1) is easier than in the second one
(Table 2).

The results confirm that the MILP-based method
outperforms all the others. It is the only approach to win
a battle. Considering the total number of duels won, its
dominance over the the MIS algorithm is not so significant
as far as the fscore value is concerned. However,
if the maximum value of psorder is concerned, MILP
dominates the MIS method. Note that MILP algorithm
won four battles, however, only for three of them it
achieved the lowest value of the maximum pseudoknot

order. The MIS approach is ranked the second best. It
can be easily noticed from the analysis of duels that both
proposed approaches stand out among state-of-the-art
algorithms. Moreover, they did not lose a single battle.

Although the proposed algorithms are exponential in
the worst case, their computational efficiency (Table 3)
confirms that they can be successfully applied in practice.

In the third experiment, we performed a single case
test to analyze one large, pseudoknotted RNA structure.
We selected the yeast mitochondrial ribosome structure
(PDBid: 5MRC, chain A) (Desai et al., 2017) to compare
all the algorithms performance. This RNA molecule
contains 1027 base pairs. Among them, 971 pairs were
identified by all the algorithms to form the core structure
(their psorder = 0). All the algorithms also found the
same set of 31 base pairs with psorder = 1. However,
for higher-order pseudoknots we can see the differences
in the generated solutions. The maximum pseudoknot
order assigned by MIS and MILP equals 5, and it is
lower by 1 and 2 than in solutions generated by the HYB
and DP approaches, respectively. Table 4 shows detailed
information about solutions found by all the algorithms
for the analyzed structure. For each algorithm we can
see to how many base pairs it assigned psorder =
0, 1, 2, 3, 4, 5, 6, 7.

Following the criterion function fscore, the lower
the pseudoknot order value, the more reliable the RNA
secondary structure. We believe that the pseudoknot
order represents the number of tiers in the RNA folding
hierarchy (Antczak et al., 2018). Therefore, solutions
found by both MILP and MIS (psorder = 5) are more
convincing than those found by HYB (psorder = 6) and
DP (psorder = 7). From a biological point of view,
the higher the number of base pairs formed during initial
tiers of RNA folding, the better. So, for psorder = 2,
MILP and MIS formed 12 base pairs but HYB and DP
formed only 11 and 10 of them, respectively. Moreover,
this difference is next propagated into base pairs formed
in tiers with a higher value of psorder assigned.

7. Conclusions

Discovering and classifying specific motifs in molecular
structures is an important challenge of many modern
bioinformatics problems. Understanding unique
properties and spatial neighborhood of structural patterns
allows one to realise their impact on the functioning of
biological molecules and can be successfully applied in
the service of biotechnology and biomedicine. One of
the most interesting motifs are pseudoknots, often found
in complex and biologically important RNA molecules.
Their topological characteristics can be described by the
pseudoknot order coefficient, introduced and discussed
in our previous works (Antczak et al., 2014; 2018;
Zok et al., 2018). Here, we presented new algorithmic



New models and algorithms for RNA pseudoknot order assignment 321

Table 1. Number of duels and battles won by each algorithm as compared to the others (concerning the fscore value).
DP HYB MILP MIS # Duels won # Battles won

DP – 9 0 0 9 0
HYB 10 – 0 0 10 0
MILP 20 13 – 3 36 4
MIS 20 13 0 – 33 0
# Duels lost 50 35 0 3 – –
# Battles lost 10 9 0 0 – –

Table 2. Number of duels and battles won by each algorithm as compared to the others (concerning the maximal value of psorder).
DP HYB MILP MIS # Duels won # Battles won

DP – 1 0 0 1 0
HYB 7 – 0 0 7 0
MILP 12 7 – 3 22 3
MIS 9 4 0 – 13 0
# Duels lost 28 12 0 3 – –
# Battles lost 7 1 0 0 – –

Table 3. Comparison of computational efficiency for algorithms
considered: average processing time (standard devia-
tion) in [ms].

DP HYB MILP MIS

1097 (22) 1198 (97) 69 (65) 49833 (75347)

Table 4. Base pair distribution in solutions generated by all the
algorithms for the 5MRC structure.

psorder 0 1 2 3 4 5 6 7

DP 971 31 10 8 3 2 1 1
HYB 971 31 11 7 5 1 1 0
MILP 971 31 12 7 4 2 0 0
MIS 971 31 12 7 4 2 0 0

approaches solving the pseudoknot order assignment
problem in a set of base pairs that represent the secondary
structure of an RNA molecule. They outperform
state-of-the-art algorithms in terms of the classification
quality, especially for large and topologically complex
RNA structures. Therefore, they can better reflect the
biological nature of the problem in question.

We believe that the proposed algorithms will
significantly contribute to further development of
3D RNA structures prediction methods handling
pseudoknots, especially for approaches based on the input
RNA secondary structure (Purzycka et al., 2015; Shi
et al., 2018; Lim and Brown, 2018; Szachniuk, 2019). In
the future, we plan to address the issues common to all
dynamic systems, including RNAs, which is uncertainty
and errors, both in data acquisition and processing
(Kropat et al., 2016). Furthermore, recent developments
indicate that there are conformational switches in the

RNA folding pathway (Sun et al., 2018). This suggests
that pseudoknot order assignment can be analyzed as
a time-dependent problem (Gebert et al., 2006; Weber
et al., 2009; 2011; Kruthika et al., 2017). Appropriate
adaptation of this perspective can lead to more robust
solutions.

8. Code availability

Source codes of the proposed algorithms are available on
request from the corresponding author.
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