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In industrial control systems, practical interest is driven by the fact that today’s processes need to be operated under tighter
performance specifications. Often these demands can only be met when process nonlinearities are explicitly considered in
the controller. Nonlinear predictive control, the extension of well-established linear predictive control to nonlinear systems,
appears to be a well-suited approach for this kind of problems. In this paper, an optimal nonlinear predictive control
structure, which provides asymptotic tracking of smooth reference trajectories, is presented. The controller is based on a
finite–horizon continuous time minimization of nonlinear predicted tracking errors. A key feature of the control law is that
its implementation does not need to perform on-line optimization, and asymptotic tracking of smooth reference signal is
guaranteed. An integral action is used to increase the robustness of the closed-loop system with respect to uncertainties and
parameters variations. The proposed control scheme is first applied to planning motions problem of a mobile robot and,
afterwards, to the trajectory tracking problem of a rigid link manipulator. Simulation results are performed to validate the
tracking performance of the proposed controller.
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1. Introduction

Linear model predictive control (LMPC), or receding-
horizon control of linear systems, has become an attrac-
tive feedback strategy (Boucher et al., 1996). General-
ized predictive control (GPC) of constrained multivari-
able systems has found successful applications, especially
in process industries, due to its robustness to parameter
uncertainties and to the fact that the constraints are in-
corporated directly into the associated open-loop optimal-
control problem (Clarke et al., 1987a; 1987b). Many sys-
tems are, however, inherently nonlinear and the LMPC
is inadequate for highly nonlinear processes which have
large operating regimes. This shortcoming coupled with
increasingly stringent demands on product quality have
spurred the development of nonlinear model predictive
control (NMPC) (Henson, 1998). Thus, much effort has
been made to extend LMPC to nonlinear systems where
more accurate nonlinear models are used for process pre-
diction and optimization. However, in nonlinear model
predictive control a nonlinear optimization problem must
be solved online, with high computational complexity

(Henson et al., 1997) at each sampling period to gener-
ate the control signal to be applied to the nonlinear pro-
cess. This significant computation effort requires an ap-
propriate (not too short) sampling time. Therefore, this
kind of control scheme can be applied only to systems
with slow dynamics (chemical processes). Three practical
problems arise and are summarized as follows (Henson,
1998; Morari et al., 1999):

• The optimization problem is generally nonconvex
because the model equations are nonlinear. Conse-
quently, the problem of the existence of an on-line
solution of the nonlinear program is a crucial one.

• Nominal stability is insured only when the prediction
horizon is infinite or a terminal constraint is imposed.
However, these conditions are not suitable for practi-
cal implementation.

• Although NMPC has some degree of robustness to
modelling errors, there is no rigorous theory that
would allow the robustness of the closed loop system
to be analyzed.
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To avoid these problems, several nonlinear predic-
tive laws have been developed (Ping, 1995; Singh et al.,
1995; Souroukh et al., 1996), where the one-step ahead
predictive error is obtained by expanding the output and
reference signals in an ri-th order Taylor series, where ri

is the relative degree of the i-th output. Then, the contin-
uous minimization of the predicted tracking errors is used
to derive the control law. Note that these nonlinear pre-
dictive controllers are given in a closed form, thus no on-
line optimization is required. Stability is also guaranteed.
Moreover, these methods can be applied to nonlinear sys-
tems with fast dynamics (robots, motors, etc.) provided
that the dynamic zeros are stable and the relative degree is
well defined.

This paper examines the nonlinear continuous-time
generalized predictive control approach based on finite-
horizon dynamic minimization of predicted tracking er-
rors to achieve tracking objectives. The proposed con-
trol scheme takes advantages of the properties of robust-
ness, good reference tracking and reducing the computa-
tion burden. Indeed, the optimization is performed off-
line and suitable Taylor series expansions are adopted for
the prediction process. Thus, our contributions are as fol-
lows:

• The performance index is minimized along the inter-
val [0,h] and this will increase the dynamics of the
tracking error with regard to Ping’s method (Ping,
1995), where the performance index is minimized
over a fixed time horizon (one step ahead).

• To increase the robustness of the proposed control al-
gorithm with respect to model uncertainties and pa-
rameters variations, we propose to introduce an inte-
gral action into the loop.

Note that this method can be viewed as an exten-
sion to nonlinear systems of continuous GPC developed
for linear systems (Demircioglu et al., 1991). Moreover,
it will be shown that, when compared with input-output
linearization methods, some advantages of this control
scheme include good tracking performance, clear physical
meaning of maximum and minimum control values when
saturation occurs.

Two kinds of nonlinear systems are considered. First,
we deal with a general multi-variable affine nonlinear sys-
tem. The proposed nonlinear predictive controller is de-
rived by minimizing a predictive cost function along a fi-
nite horizon. A mobile robot is used as an illustrative ex-
ample to show the tracking performance achieved by this
nonlinear predictive controller. Afterwards, a particular
multi-variable affine nonlinear system is considered. To
increase the robustness of the proposed control scheme
to parameter variations and/or to uncertainties, an integral
action is incorporated into the loop. The derived nonlinear

predictive controller is applied to a rigid-link robot manip-
ulator to achieve both position and speed angular tracking
objectives in matched or mismatched cases. The nonlin-
ear observer is used to estimate the speed angular joint
of the robot. It is mentioned in (Lee et al., 1997) that
the feedback control algorithm with the sliding observer
developed in (Canudas De Wit et al., 1992) guarantees
that the tracking error tends to zero exponentially but con-
strains the initial estimation errors in the joint positions to
be zero. In this paper, this constraint is weakened by the
proposed feedback nonlinear predictive control approach
with Gauthier’s observer.

The rest of the paper is organized as follows: In Sec-
tion 2, the problem statement is given, and a control law
is developed to minimize the difference between the pre-
dicted and desired responses. The properties of the con-
trol law are discussed, including stability and robustness.
In Section 3, the proposed controller is first applied to the
planning motion problem of the mobile robot. The second
application of the proposed control approach deals with
the trajectory tracking problem of the rigid link robot ma-
nipulator in matched and mismatched cases. Our results
are summarized in Section 4, where we also provide some
directions for related research.

2. Optimal Nonlinear Predictive Control

In the receding horizon control strategy, the following
control problem is solved at each t > 0 and x(t):

min J
(
x(t), u(t), t

)
= min

u(t)

1
2

∫ t+h

t

[
x(τ)T Qx(τ) + u(τ)T Ru(τ)

]
dτ (1)

subject to the state equation (2), where h >0 is the pre-
diction horizon, Q is a positive-definite matrix and R
a semi-positive-definite matrix. We denote by u∗(τ),
τ ∈ [t, t + h] the optimal control vector for the above
problem. The currently applied control u(t) is set equal
to u∗(τ). This process is repeated for every t for the sta-
bilization of the system at the origin. However, solving
a nonlinear dynamic optimization problem is highly com-
putationally intensive, and in many cases it is impossible
to perform it within a reasonable time limit. Thus, the de-
rived control law can be applied only to slow dynamic sys-
tems. Furthermore, the global optimization solution can-
not be guaranteed in each optimization procedure since,
in general, it is a nonconvex, constrained nonlinear opti-
mization problem (Henson et al., 1997).
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2.1. General Multi-Variable Affine Nonlinear System

First, we consider a general multi-variable affine nonlinear
system modelled by{

ẋ = f(x) + g(x) u(t),
y = h(x),

(2)

where x(t)⊂ X ∈ R
n is the state vector, u(t) ⊂ U ∈

R
n represents the control vector and y(t) ⊂ Y ∈ R

m

is the output. The functions f(x) : R
n → R

n, g(x) :
R

n → R
n×n and h(x) : R

n → R
m are sufficiently

smooth. The desired trajectory is specified by a smooth
vector function xref(t) ∈ R

n for t ∈ [t, tf ].

Assumptions:

(A1) The vector function f(x) is bounded, i.e., there ex-
ist two constants fmax and fmin that satisfy fmin ≤
‖ f(x) ‖≤ fmax, ∀ x ∈ R

n.

(A2) The matrix g(x) is symmetric, bounded and nonsin-
gular.

(A3) The reference trajectories are bounded:
‖ xref(t) ‖≤ r1, ‖ ẋref ‖≤ r2 and ‖ ẍref ‖≤ r3.

(A4) From Assumptions (A1) and (A3), we can deduce
that there exist a scalar function δ(x, xref) and a pos-
itive number δ that satisfy the following inequality:
‖ f(x) − ẋref ‖ ≤ δ(x, xref) < δ, where ‖ · ‖ is
the Euclidean norm.

The problem consists in designing a control law
u(x, t) that will improve the tracking accuracy along the
interval [t, t + h], where h >0 is a prediction horizon,
such that x(t + h) tracks xref(t + h). That is, the pre-
dicted tracking error is defined by

e(t + h) = x(t + h) − xref(t + h). (3)

A simple and efficient way to predict the influence of
u(t) on x(t + h) is to expand it in the ri-th order Taylor
series, in such a way as to obtain

x(t + h) = x(t) + Z(x, h) + Λ(h)W(x)u(t), (4)

where

Z(x, h) =
[

z1(x, h) z2(x, h) . . . zn(x, h)
]T

,

Λ(h) = diag
(

hr1/r1! . . . hrn/rn!
)
,

W(x) =
(

w1 w2 · · · wn

)T
with

zi(x, h) = hfi +
h2

2
Lffi + · · · + hri

ri
Lri−1

f fi

and

wi =
(
Lg1L

ri−2
f fi . . . LgmLri−2

f fi

)
for i = 1, . . . , n. Note that Lf(·) or LfLg(·) represents
the Lie-Derivative.

In both cases, we also expand each component of
xref(t + h) in the ri-th order Taylor series to have

xref(t + h) = xref(t) + d(t, h),

where
d(t, h) =

(
d1 d2 · · · dn

)T
with

di = h ẋrefi +
h2

2
ẍrefi + · · · + hri

ri
x

(ri)
refi

.

The tracking error at the next instant (t + h) is then
predicted as a function of u(t) by

e(t + h) = x(t + h) − xref(t + h)

= e(t) + Z(x, h) − d(t, h)

+ Λ(h)W(x)u(t). (5)

In order to find current control u(t) that improves the
tracking error along a fixed interval and to avoid the com-
putational burden, the tracking error e(τ) is used instead
of the state vector x(τ). Thus, the optimization problem
can be reformulated as

min J1(e(t), u(t), t)

= min
1
2

∫ h

0

e(t + T )T Q e(t + T ) dT

+
1
2
u(t)T R u(t). (6)

Replace e(t + T ) by the prediction equation (5). The
cost function J1 is quadratic in u(t), and hence the
unique control signal uop that minimizes J1, obtained
by setting ∂J1/∂u = 0, is

uop = − (W(x)T Γ(h)W(x) + R
)−1

W(x)T
(
K(h)e(t)

+ V(x, xref , h)
)
, (7)

where

e(t) = x(t) − xref(t),

K(h) =
∫ h

0

Λ(T )Q dT,

Γ(h) =
∫ h

0

ΛT (T )QΛ(T ) dT,

V(x, xref , h) =
∫ h

0

ΛT (T )Q
(
Z(x, T )

− d(t, T )
)

dT.
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Tracking performance. We will assume that the matrix
W(x) has a full rank. This assumption is needed for the
stability analysis, but is not necessary for the control law
to be applicable, since one can always choose R > 0, and
then the inverse matrix in (7) will still exist. If R = 0,
then (7) becomes

uop = −W(x)−1Γ−1(h) (K(h)e(t) + V(x, xref , h)) .

This optimal control signal uop, used in (2), leads to the
closed-loop equation of the i-th component of the track-
ing error vector e(t) which is given by

hri

(2ri + 1)ri!
(ri)
ei +

hri−1

2ri(ri − 1)!
(ri−1)

ei + · · ·

+
h3

3!(ri + 4)
(3)
ei +

h2

2!(ri + 3)
ëi

+
h

(ri + 2)
ėi +

1
(ri + 1)

ei = 0,

or, in a compact form,
ri∑

j=0

hj

j!(ri + j + 1)
(j)
ei= 0, (8)

where

(j)
ei = Lj−1

f fi−
(j)
x refi

, 0 < j ≤ ri,

(0)
e = xi − xrefi

, j = 0.

The error dynamics (8) are linear and time-invariant.
Thus, the proposed controller that minimizes the pre-
dicted tracking error naturally leads to a special case of
input/state linearization. The advantage of this controller
compared with the linearization method is a clear physical
meaning of a maximum and a minimum when saturation
occurs. Note that, by using the Routh-criterion, we can
show that the tracking error dynamics (8) are stable only
for systems with ri ≤ 4.

For most mechanical systems with actuator dynamics
neglected, the relative degree is ri = 1 or ri = 2. In this
case, the eigenvalues of the characteristic equations of the
error dynamics are:

• Ping’s method (Ping, 1995):

s1 = − 1
h

(ri = 1)

or s1,2 = − 1
h

(1 ± j) (ri = 2).

• the proposed method:

s1 =− 3
2h

(ri = 1)

or s1,2 =− 5
4h

(
1 ± j

√
17
15

)
(ri = 2).

Thus, the proposed controller achieves higher tracking er-
ror dynamics compared with Ping’s method (Ping, 1995).

2.2. Particular Affine Nonlinear Systems

To overcome the stability restriction of the relative degree
ri ≤ 4, we will consider a special form of nonlinear sys-
tems that are modelled by the equations{

ẋ1 = x2,

ẋ2 = f(x) + g(x)u(t),
(9)

where x =
[

x1 x2

]T ∈ R
2n and u(t) ∈ R

n. We
note that many physical systems can be modeled by the
above equations. For example, in mechanical systems, x1

can represent a position vector and x2 a velocity vector.

In this case, the objective function to minimize is

J2(e, u, t)

=
1
2

∫ h

0

(
e1(t + T )
e2(t + T )

)T(
Q1 0
0 T 2 Q2

)

×
(

e1(t + T )
e2(t + T )

)
dT +

1
2
uT (t)R u(t).

(10)

The tracking error is given by

e(t) = x(t) − xref(t) =

∣∣∣∣∣ e1(t)
e2(t)

∣∣∣∣∣ =

∣∣∣∣∣ x1 − xref1

x2 − xref2

∣∣∣∣∣.
By using the Taylor approximation, the tracking error

is then predicted as a function of u(t) by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1(t + T ) = e1(t) + T ė1 +
T 2

2!
(f(x) − ẍref1)

+
T 2

2!
g(x) u(t),

e2(t + T ) = e2(t) + T (f(x) − ẋref2)

+Tg(x) u(t),

and the minimization of the cost function J2 gives

u(t) = −M(x)P−1
(h3

6
Q1e1 +

h4

8
(Q1 + 2Q2)e2

+
h5

20
(Q1 + 4Q2)(f(x) − ẋref2)

)
, (11)

where

P =
h5

20
(Q1 + 4Q2) + M(x)RM(x)

is a positive-definite matrix, ẍref1 = ẋref2 and M(x) =
g−1(x).
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2.3. Stability Issues

Dynamic performance. To obtain the tracking error dy-
namic, one substitutes the control signal (11) in (9), to
have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ė1 = e2,

ė2 = −h3

6
P−1Q1e1 − h4

8
P−1(Q1 + 2Q2)e2

+P−1M(x)R M(x)(f(x) − ẋref2).

(12)

Let Q1 = q1In and Q2 = q2In. The tracking error equa-
tion (12) can be written in a compact form:

ė = Λ(x, h)e + B Sl(x, xref), (13)

where

Λ(x, h) =

∣∣∣∣∣ 0 In

−h3q1
6 P−1 −h4(q1+2q2)

8 P−1

∣∣∣∣∣ ,

B =

∣∣∣∣∣ 0
In

∣∣∣∣∣ ,
and the perturbed term is given by

Sl(x, xref) = P−1M(x)R M(x)(f(x) − ẋref2).

Assumptions (A1)–(A4) insure the boundedness of this
additional term.

Lemma 1. The matrix Λ(x, h) is Hurwitz.

Proof. Both the matrix P and its inverse are symmetric
and positive definite. Let x ∈ R

n and λ ∈ R
+ be the

eigenvector and the correspondent eigenvalue of the ma-
trix P−1, respectively. Thus, for λ ∈ R we have the
equalities

Λ(x, h)

∣∣∣∣∣ x

λx

∣∣∣∣∣ =

∣∣∣∣∣ λx

−h3q1
6 λx − h4(q1+2q2)

8 λλx

∣∣∣∣∣
=

∣∣∣∣∣ λx

λ2x

∣∣∣∣∣ = λ

∣∣∣∣∣ x

λx

∣∣∣∣∣ ,
where λ is the solution of the equation

λ2 +
h4(q1 + 2q2)

8
λλ +

h3q1

6
λ = 0. (14)

Therefore, λ is the eigenvalue of the matrix Λ(x, h) and
| x
λx | is the correspondent eigenvector. Setting λ1 and λ2

as the solutions of (14), we have the relations

λ1 + λ2 = −h4

8
(q1 + 2q2)λ,

λ1λ2 =
h3

6
q1λ.

Since the eigenvalue λ is positive, then both λ1

and λ2 have negative real parts. Thus, the matrix
Λ(x, h) is Hurwitz. Consequently, for any symmetric
positive-definite matrix Qa(x, h), there exists a symmet-
ric positive-definite matrix Pa(x, h) being a solution of
the Lyapunov equation

Ṗa(x, h) + ΛT (x, h)Pa(x, h) + Pa(x, h)Λ(x, h)

= −Qa(x, h).

Theorem 1. The solution e(t) of the system (12) is
uniformly ultimately bounded (Khalil, 1992) for all
t ≥ t0 > 0.

Proof. Consider the Lyapunov function candidate

V(e) = eT Pae. (15)

The differentiation of V along the trajectories of the sys-
tem (12) leads to

V̇ (e) = −eT Qae + 2ST
l BT Pae, (16)

which can be bounded by using Assumptions (A1)–(A4)
as

V̇ (e) ≤ −λmin(Qa) ‖ e ‖2 +2λmax(Pa)rδm2 ‖ e ‖,
where r =‖ R ‖ and m =‖ M(x) ‖.

We will use the well-known inequality

ab ≤ za2 +
b2

4z

for any real a, b and z > 0. With z = θλmin(Qa) and
0 < θ < 1, we obtain

V̇ (e) ≤ −(1 − θ)λmin(Qa)‖e‖2 +
λmax(Pa)2r2δ2m4

θλmin(Qa)
.

(17)
The solution of this inequality is

V (t) ≤
[
V (0) − β

α

]
exp

(
−αt +

β

α

)
,

where

α = (1 − θ)
λmin(Qa)
λmax(Pa)

and

β =
λmax(Pa)2r2δ2m4

θλmin(Qa)
.

As t → ∞, the tracking error is bounded by

‖e‖ ≤ λmax(Pa)
λmin(Qa)

rδm2√
θ(1 − θ)

√
λmax(Pa)
λmin(Pa)

. (18)
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It can be easily shown that, as R tends to a null matrix
by reducing the penalty on control, the bound of the per-
turbed term decreases for large t and the equilibrium point
tends to the origin. Setting R = 0 in (12), the time deriva-
tive of the Lyapunov function becomes

V̇ (e) = −eT Qa e,

which is negative definite for all e. By LaSalle’s invari-
ance theorem, the solution e(t) of (12) tends to the invari-
ant set S =

{
e | e2 = 0, P−1e1 = 0

}
. Since the matrix

P−1 has a full rank, we have that e1 = 0. So, the origin
e = 0 is globally asymptotically stable.

2.4. Robustness Issues

In the real world, model uncertainties are frequently en-
countered in nonlinear control systems. These model un-
certainties may decrease significantly the performance of
the method in terms of tracking accuracy. Therefore, one
should inspect the robustness of the closed-loop system
with respect to uncertainties. The model of the nonlinear
system (9) with uncertainties can be written as{

ẋ1 = x2,

ẋ2 = f(x) + Δf(x) + (g(x) + Δg(x)) u(t).
(19)

To estimate the worst-case bound of the uncertainties, we
make the following assumptions:

(A5) ∀ x(t) ∈ X , ∃ κ > 0, ‖Δf(x)‖ < κ.

(A6) ∀ x(t) ∈ X , ∃μ= max ‖Δg(x)‖
‖g(x)‖ , the uncertainties in

the matrix g(x) can be bounded by Δg(x) = μg(x)
with 0 < μ < 1.

Let R = 0. The dynamics of the tracking error in
a mismatched case in a closed loop with the optimal con-
trol (11) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = e2,

ė2 = −h3

6
(1 + μ)P−1Q1e1

− h4

8
(1 + μ)P−1(Q1 + 2Q2)e2

+ Δf(x) − μ(f(x) − ẋref2).

(20)

Note that here, even though R = 0, the origin is not
an equilibrium point of the system (20). However, we can
use the steps of the Lemma 1 and Theorem 1 to show that
the tracking error e(t) is ultimately bounded in this mis-
matched case and the equilibrium point is given by the set

S= {e/e1 �= 0, e2 = 0}. Hence, the uncertainties will in-
troduce only a short steady-state error in the tracking po-
sition error. The bound of this steady state error depends
on the magnitude of the uncertainties.

Integral action. It is known in the literature that the in-
tegral action increases the robustness of the closed-loop
system against low frequency disturbances as long as the
closed-loop system is stable. In this part, we shall incor-
porate an integral action into the loop to enhance the ro-
bustness of the proposed control scheme with respect to
model uncertainties and disturbances. The price to be paid
is an increase in the system dimension. Thus, the nonlin-
ear system (9) is augmented with the differential equation
ẋ0 = x1 and the tracking error vector becomes

e(t) =
∣∣ e0(t) e1(t) e2(t)

∣∣T ,

with e0 =
∫ t

0 e1(τ) dτ and e0(t + h) given by

e0(t+T ) = e0+Te1 +
T 2

2
e2

+
T 3

6
(f(x)−ẋref2)+

T 3

6
g(x)u(t). (21)

The cost function to be minimized becomes

J3(e, u, t) =
1
2

∫ h

0

e(t + T )T Qe(t + T ) dT

+
1
2
u(t)T R u(t), (22)

where Q = diag (Q0, Q1, T
2Q2) and Q0 ∈ R

n×n is
a positive-definite matrix. Following the same steps as in
the previous section, the optimal control u(t) that mini-
mizes the cost function J3(e, u, t) is

u(t) = −M(x)P
−1
(
α0(h)e0 + α1(h)e1

+ α2(h)e2 + α3(h)(f(x) − ẋref2)
)
, (23)

where

α0(h) =
h4

12
Q0,

α1(h) =
h5

15
Q0 +

h3

6
Q1,

α2(h) =
h6

36
Q0 +

h4

8
Q1 +

h4

4
Q2,

α3(h) =
h7

63
Q0 +

h5

20
Q1 +

h5

5
Q2,

P = α3(h) + M(x)RM(x).
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Dynamic performance. Let R = 0. Then the dynamics
of the tracking error are given in a compact form by

ė = Γ(x, h)e + B Sl, (24)

where
Γ(x, h)

=
∣∣∣∣ 0 In 0

0 0 In

−(1+μ)P
−1

α0(h) −(1+μ)P
−1

α1(h) −(1+μ)P
−1

α2(h)

∣∣∣∣,
Sl = Δf(x) − μ(f(x) − ẋref2)

and

B =

∣∣∣∣∣∣∣
0
0
In

∣∣∣∣∣∣∣ .
Note that also the perturbed term Sl is bounded.

Lemma 2. Let the parameters Q0, Q1, Q2 and h > 0
satisfy the inequality

λmax(P) <
(1 + μ)α1(h)α2(h)

α0(h)
.

Hence the matrix Γ(x, h) is Hurwitz.

Proof. Let Q0 = q0In, Q1 = q1In, Q2 = q2In, and as-
sume that x and λ are an eigenvector and the correspond-

ing eigenvalue of the matrix P
−1

, respectively. Hence we
have

Γ(x, h)

∣∣∣∣∣∣∣
x

λx

λ2x

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
λx

λ2x

λ3x

∣∣∣∣∣∣∣ = λ

∣∣∣∣∣∣∣
x

λx

λ2x

∣∣∣∣∣∣∣,
where λ ∈ R is the solution of

λ3 + (1 + μ)α2(h)λλ2 + (1 + μ)α1(h)λλ

+ (1 + μ)α0(h)λ = 0. (25)

The roots of this equation are stable if

λ >
α0(h)

(1 + μ)α1(h)α2(h)
.

Since λ is the eigenvalue of the matrix P
−1

, the pre-
vious inequality becomes

λmin(P
−1

) >
α0(h)

(1 + μ)α1(h)α2(h)

or

λmax(P) <
(1 + μ)α1(h)α2(h)

α0(h)
,

and this ensures that all poles of the matrix Γ(x, h) lie in
the stable domain. It is to be noted that λ is the eigenvalue

of the matrix Γ(x, h) and the vector
∣∣ x λx λ2x

∣∣T
is the corresponding eigenvector.

Theorem 2. Under the assumptions of Lemma 2, the so-
lution of the tracking error (24) is ultimately uniformly
bounded.

Proof. Since the matrix Γ(x, h) is Hurwitz, we know that
for any symmetric positive-definite matrix Qa(x, h), the
solution Pa(x, h) of the Lyapunov equation

Ṗa(x, h) + ΓT (x, h)Pa(x, h) + Pa(x, h)Γ(x, h)

= −Qa(x, h) (26)

is a positive-definite matrix. We use V = eT Pae as a
Lyapunov function candidate for the augmented nonlinear
system (24). Following the same steps as in the proof of
Theorem 1, we can show that the tracking error is bounded
by

‖e‖ ≤ λmax(Pa)
λmin(Qa)

(κ + μδ)√
θ(1 − θ)

√
λmax(Pa)
λmin(Pa)

. (27)

The tracking error in the mismatched case with
integral action is bounded. Here also the bound de-
pends on the magnitude of the uncertainties. However,
the equilibrium point of the augmented system is S =
{e | e0 �= 0, e1 = 0, e2 = 0, }, the position tracking error
in this case converges to zero. Consequently, the steady
error induced by uncertainties is eliminated by the integral
action. Note that the price to be paid is the control signal
that will not vanish as the time t goes towards infinity.

3. Simulation Examples

In this section, the reference trajectory tracking problem
is simulated to show the validity and the achieved perfor-
mance of the proposed method.

3.1. Nonlinear Predictive Control of a Nonholonomic
Mobile Robot

A kinematic model of a wheeled mobile robot with two
degrees of freedom is given by (Kim et al., 2003):

ẋ = v cos(θ) − d ω sin(θ),
ẏ = v sin(θ) + d ω cos(θ),
θ̇ = ω,

(28)

where the forward velocity v and the angular velocity ω
are considered as the inputs, (x, y) is the centre of the rear
axis of the vehicule, θ is the angle between the heading
direction and the x-axis, and d is the distance from the
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coordinate of the origin of the mobile robot to the axis of
the driving wheel.

The nonholonomic constraint is written as

ẏ cos(θ) − ẋ sin(θ) = d θ̇.

The nonlinear model of the mobile robot can be rewritten
as

Ż = G(θ)U,

where

Z =
[

x y θ
]T

,

G(θ) =

∣∣∣∣∣∣∣
cos(θ) −d sin(θ)
sin(θ) d cos(θ)

0 1

∣∣∣∣∣∣∣ ,

U =
[

v ω
]T

.

Note that the above model matches the first general
multi-variable affine nonlinear system given by (2) with
f(x) = 0.

Consider the problem of tracking a reference trajec-
tory given by

ẋref = vref cos(θref),
ẏref = vref sin(θref),
θ̇ref = ωref ,

(29)

or, in a compact form, Żref = G(θref)Uref . The optimal
control that minimizes the objective function (6) subject
to (28) is

U = −
[
h3

3
GT (θ)Q G(θ) + R

]−1

× GT (θ)Q
(

h2

2
e(t)− h3

3
G(θref)Uref

)
, (30)

where e(t) = Z(t) − Zref .

In the simulation, the control parameters are

h = 0.01, Q = 104I3, R = 10−7I2.

The reference model and initial conditions are

ωref = 4 [rad/s], d = 0.5 [m],

vref = 15 [m/s], x(0) = 0,

y(0) = 4 [m], θ(0) = −π [rad].

Figures 1 and 2 show the resulting trajectory and position
tracking error

er(t) =
√

(x − xref)2 + (y − yref)2,

when the nonlinear predictive controller (30) is applied to
the system (28). We can see that the mobile robot tracks
the reference trajectory successfully. Figure 3 depicts the
manipulated variables v(t) and w(t).

−4 −3 −2 −1 0 1 2 3 4
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1

2

3

4

5
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8

y(
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Position of the mobile robot and the refrence trajectory

Z(t)
Zref(t)

Fig. 1. Tracking performance.
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Fig. 2. Tracking error dynamics.

Consequently, the proposed approach, which can be
viewed as an extension to nonlinear systems of the CGPC
developed by Demircioglu et al. (1991), was success-
fully applied to control a nonlinear system with a non-
holonomic constraint. On the other hand, the CGPC ap-
proach (Demircioglu et al., 1991), can be applied only to
linear systems. Moreover, with the proposed algorithm,
the stability of the closed-loop system is guaranteed and
asymptotic tracking performances are achieved.

3.2. Nonlinear Predictive Control of a Rigid-Link
Robot

To illustrate the conclusions of this paper, we have simu-
lated the nonlinear predictive scheme (11) on a two-link
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robot arm used in (Lee et al., 1997; Spong et al., 1992)
with the parameters given in Table 1.

Table 1. Physical parameters of a two-link robot manipulator.

Link1 m1 = 10 kg l1 = 1 m lc1 = 0.5 m I1 = 10
12

kgm2

Link2 m2 = 5 kg l2 = 1m lc2 = 0.5 m I2 = 5
12

kgm2

The kinetic energy of a robot manipulator with n de-
grees of freedom can be calculated as (Spong et al., 1989):

K(q, q̇) =
1
2
q̇T (t)M(q)q̇(t),

where q(t) ∈ R
n is the link position vector, M(q) is

the inertia matrix, and U(q) stands for the potential en-
ergy generating gravity forces. Applying Euler-Lagrange
equations (Spong et al., 1989), we obtain the model

M(q)q̈ + C(q, q̇)q̇ + G(q) + Fr = τ, (31)

where

G(q) =
∂U(q)

∂q
∈ R

n,

C(q, q̇)q̇ is the vector of the Coriolis and centripetal
torques, τ ∈ R

n stands for the applied torque, and Fr

represents friction torques acting on the joints. These fric-
tion are unknown and are modeled by

Fr = f q(t) + f sign(q̇(t))

with f = diag(f, f, . . . , f) ∈ R
n×n

and f = diag (f, f , . . . , f) ∈ R
n×n.

A state representation. The dynamic equation of an n-
link robot manipulator (31) can be written in the state
space representation as⎧⎪⎨

⎪⎩
ẋ1 = x2,

ẋ2 = f(x1, x2) + P(x1) τ(t),
y = x1,

(32)

where x =
[

x1 x2

]T =
[

q q̇
]T ∈ R

2n is
the state vector, τ(t) ∈ R

n represents the control torque
vector and y(t) is the output vector (angular position).

Here f(x) = f(x1, x2) = −M(q)−1(C(q, q̇)q̇ +
G(q)) ∈ R

n and P(x1) = M(q)−1 ∈ R
n×n are a

bounded vector under the assumption of the bounded-
ness of joints velocities and a bounded matrix, respec-
tively. We note that both the symmetric positive-definite
matrix M(q) and its inverse are uniformly bounded with
respect to the joint angular position q(t). Thus Assump-
tions (A1)–(A4) are satisfied by the nonlinear model of
the robot given by (32), c.f. (Spong et al., 1989).

The dynamic model is described by (31) with (see
Lee et al., 1997; Spong et al., 1992):

M11(q) = m1l
2
c1 + m2l

2
c2 + m2l

2
1

+ 2m2l1lc2 cos(q2) + I1 + I2,

M21(q) = M12(q) = m2lc22 + m2L1lc2 cos(q2) + I2,

M22(q) = m2l
2
c2 + I2,

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2,

C12(q, q̇) = −m2l1lc2 sin(q2)(q̇1 + q̇2),

C21(q, q̇) = m2l1lc2 sin(q2)q̇1,

C22(q, q̇) = 0,

G1(q) = (m1lc1 + m2l1) g cos(q1)
+ m2lc2 g cos(q1 + q2),

G2(q) = m2lc2 g cos(q1 + q2).

Nonlinear observer. A drawback of the previous non-
linear predictive controller is that it requires at least the
measurement of the velocity on the link side. Therefore,
a nonlinear observer proposed in (Gauthier et al., 1992) is
used in this paper. Define the new state vector as

z(t) = T x(t) =
[ · · · qi(t) q̇i(t) · · · ] ∈ R

2n,

where qi(t)and q̇i(t) are the link position and the velocity
of the i-th arm, respectively. T ∈ R

2n×2n is the trans-
formation matrix. With the assumption that the control
torque τ(t) is uniformly bounded, the observer described
in (Gauthier et al., 1992) can be used to estimate the an-
gular positions and angular velocities of the n-link rigid
robot manipulator (32). The dynamic nonlinear observer
is given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂z = Aẑ + H f(q, ˙̂q) + H P(q)τ(t)
− S−1

∝ CT (y − ŷ),
ŷ = C ẑ,

x̂ = T−1 ẑ,

(33)

where
A = diag(Ai), Ai =

[
0 1
0 0

]
,

C = diag(Ci), Ci =
[

1 0
]
,

and

H = diag(Hi), Hi =
[

0 1
]

with i = 1, n.

The observer gain S∝(θ) = diag(Si(θ)) is given by
the solution of the following Ricatti equation with the real
positive factor θ:

θSi(θ) + AT
i Si(θ) + Si(θ)Ai = CT

i Ci. (34)
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Fig. 3. Manipulated variables.
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Fig. 6. Estimation error.
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Fig. 8. Performance in the mismatched case.
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According to (Gauthier et al., 1992), a Lyapunov analy-
sis shows that for a real positive factor θ and the uniform
observability assumption of the nonlinear system (32), the
solution (34) guarantees an exponential decay of the ob-
servation error.

The reference models chosen in continuous time are

xref1 =

∣∣∣∣∣ qref1

qref2

∣∣∣∣∣ =

∣∣∣∣∣ xref1

xref2

∣∣∣∣∣ .
They are smoothed by means of second-order polynomials
that are respectively given by

qref1(s) =
ω2

1

s2 + 2ξω1s + ω2
1

r1(s)

and

qref2(s) =
ω2

2

s2 + 2ξω2s + ω2
2

r2(s).

The nonlinear predictive controller (11) is used to
force the joint positions to track the desired trajectory (Lee
et al., 1997):

r1(t) = r2(t) = 1.5(1 − exp(−5t)(1 + 5t)) [rad].

For this simulation, the parameter values of the two refer-
ence models are chosen as ξ = 1 and ω1 = ω2 = 10 and
the initial conditions are

x(0) =
[

q1(0) q2(0) q̇1(0) q̇2(0)
]

=
[

0.1 0.1 0 0
]
,

x̂(0) =
[

0 0 0 0
]
.

Note that the initial estimation errors are different from
zero. Thus, with the proposed feedback nonlinear predic-
tive controller, one does not need to constrain the initial
estimation errors in the joint position to be zero to en-
sure the convergence of the tracking error to zero as in
(Canudas De Wit et al., 1992).

The finite horizon predictive controller (11) has been
tested by simulation with the following control parame-
ters: Q1 = 2 102I2, Q2 = 2 102I2, R = 10−8I2
and h = 0.01. The resulting position and speed track-
ing error are depicted in Figs. 4 and 5. The behaviour of
the state x(t) is close to the reference trajectory xref(t).
Observing these results, the state x(t) tracks tightly the
reference trajectories xref (t). Figure 6 displays the ob-
servation tracking error achieved by Gauthier’s observer.
Figure 7 illustrates the torque signals applied to the robot
manipulator, which are inside the saturation limits (Lee et
al., 1997; Spong et al., 1992).

In the mismatched case, the uncertainties used are

• Parameter variations in Link 2 due to an unknown
load are Δm2 = 5 kg; Δl2 = 0.3 m and ΔI2 =
1/6.

• The friction is added to the robot manipulator (31)
with the values f1 = f2 = 10 Nm and f1 = f2 =
10 N/ms2.

Case (a) in Fig. 8 shows the tracking performance of
Link 2 without integral action. It observed that the un-
certainties induce a short steady-state error in the second
link position q2(t), and this was expected by the robust-
ness analysis. When the integral action is introduced in
the control loop with Q0 = 104I2, it is observed from
the same figure (Case (b)) that the position reference tra-
jectory is closely tracked and the tracking error converges
towards the origin. Thus the torque frictions and parame-
ters uncertainties have no effect on the state tracking error.

4. Conclusion

In this paper, a finite-horizon nonlinear predictive con-
troller using the Taylor approximation is presented and
applied to two kinds of nonlinear systems. Minimizing
a quadratic cost function of the predicted tracking error
and the control input, we derived the control law. One
of the main advantages of these control schemes is that
they do not require on-line optimization and asymptotic
tracking of the smooth reference signal is guaranteed. The
stability was shown by using the Lyapunov method. Ac-
cording to a suitable choice of the control parameters, we
showed that all variables of the state tracking error are
bounded. The boundedness can be made small by reduc-
ing the penalty on the control torque signal. Moreover,
to increase the robustness of the proposed scheme to vari-
ations and uncertainties in parameters, an integral action
was incorporated into the loop. The proposed controllers
are applied to both the planning motion problem of a mo-
bile robot under nonholomonic constraints and the prob-
lem of tracking trajectories of a rigid link robot manip-
ulator. Finally, we expect that the results presented here
can be explored and extended to a discrete implementation
of these continuous-time predictive controllers through ei-
ther computers or specialized chips that can run at a higher
speed.
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