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This paper is concerned with the problem of controllability of semi-linear stochastic systems with time varying multiple
delays in control in finite dimensional spaces. Sufficient conditions are established for the relative controllability of semi-
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1. Introduction

Modelling and control of dynamical systems with
input/output delays arise naturally in numerous
engineering applications. Further, satisfactory modelling
of time-varying delays is also important for the synthesis
of effective control systems since they show significantly
different characteristics from that of fixed time delays
(Basin et al., 2004; Klein and Ramirez, 2001; Li, 1970).
In practical applications, time varying input delays
always exist in a flexible spacecraft due to the physical
structure and energy consumption of the actuators
(Zhang et al., 2013). It is essential that system models
must take into account these time delays in order to
predict the true system dynamics. The presence of
time delays is often the main cause of substantial
performance deterioration and even instability of the
system. Moreover, a majority of processes in industrial
practice have stochastic characteristics and systems have
to be modelled in the form of stochastic differential
equations (Oksendal, 2003). Thus, it is of theoretical and
practical significance to address controllability problems
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for such stochastic systems with delays in control input
(Gu and Niculescu, 2003; Richard, 2003).

Controllability is one of the most important aspects
of industrial process operability, because it can be used
to assess the attainable operation of a given process
and improve its dynamic performance. It refers to the
ability of a controller to arbitrarily alter the functionality
of the dynamical system. Controllability of nonlinear
deterministic systems in a finite dimensional space was
extensively studied (Klamka, 1991; 2000). Conditions
for controllability of linear and nonlinear systems with
delays in control were well studied as well (Klamka, 1976;
1978; 1980; 2009; Somasundaram and Balachandran,
1984; Balachandran, 1987; Balachandran and Dauer,
1996; Dauer et al., 1998). Further, one can refer to the
survey article by Klamka (2013) for recent developments
in this topic.

The results on controllability of linear and nonlinear
stochastic systems have been a subject of intense research
over the past few years (Mahmudov, 2001; Mahmudov
and Denker, 2000; Mahmodov and Zorlu, 2003; Zabczyk,
1981). However, the situation is less satisfactory for
stochastic systems with state/control delays. In recent
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years, we have witnessed increasing interest in stochastic
systems involving state or control delays (see the works
of Balachandran and Karthikeyan (2009) as well as
Karthikeyan and Balachandran (2013) and the references
therein). Klamka (2008a) investigated the controllability
of linear stochastic systems with single time-variable
delay in control. Shen and Sun (2012) extended the above
results to nonlinear stochastic systems via a fixed point
technique. So far, there have been very few results for
stochastic systems in which multiple delays in control
input are involved (Klamka, 2008b; Sikora and Klamka,
2012). Recently, Balachandran et al. (2012) established
global relative controllability of fractional dynamical
systems with multiple delays in control. Inspired by
the above recent works, this study focuses on the
controllability problem for semi-linear stochastic systems
involving multiple time varying delays in control input.

The outline of this paper is as follows. Section 2
formulates the problem and presents preliminary ideas.
Section 3 investigates the controllability of linear
stochastic systems with time delay in control inputs.
Section 4 is entirely devoted to establishing sufficient
controllability conditions for semi-linear stochastic
systems via one of the fixed point methods, namely, the
contraction mapping principle. An illustrative example to
show the effectiveness of the obtained results is given in
Section 5. Some important remarks on fractional systems
driven by white noise processes are also discussed. In
addition, the proposed result is applied to an example
which illustrates that a time delay in the control input
contributes to controllability of systems.

Notation. The notation used in this paper is fairly
standard. Throughout the paper, (Ω,F ,P) is a complete
probability space with a probability measure P on Ω
and a filtration {Ft|t ∈ [t0, T ]} generated by an
l-dimensional Wiener process {w(s) : t0 ≤ s ≤
t}. L2(Ω,Ft,R

n) denotes the Hilbert space of all
Ft-measurable square-integrable random variables with
values in R

n. LF
2 ([t0, T ],R

n) denotes the Hilbert space
of all square-integrable and Ft-measurable processes with
values in R

n. Uad := LF
2 ([t0, T ],R

l) is the set of
admissible controls, L(Rn,Rm) denotes the space of all
linear transformations from R

n to R
m, E denotes the

mathematical expectation operator of a stochastic process
with respect to the given probability measure P.

2. System description and preliminaries

Consider the linear time-varying stochastic system with
time-varying delays in control of the form

dx(t) =

[
A(t)x(t) +

M∑
i=0

Bi(t)u(δi(t))

]
dt

+σ̃(t) dw(t),
x(t0) = x0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1)

where x(t) ∈ R
n is the instantaneous state of the

system, A(t) and Bi(t) (i = 0, 1, . . . ,M) are respectively
n × n and n × l time-varying matrices whose elements
are bounded measurable functions on [t0, T ] and σ̃ :
[t0, T ] → R

n×n. Further, u(t) ∈ R
l is a vector input

to the stochastic dynamical system. The functions δi :
[t0, T ] → R, i = 0, 1, . . . ,M , are twice continuously
differentiable and strictly increasing in [t0, T ], and

δi(t) ≤ t for t ∈ [t0, T ], i = 0, 1, . . . ,M.

Here, the control function u(t) regulates the system state
by fusing the values of u(t) at various time moments
δi(t), i = 1, . . . ,M , where δi(t) are time varying delays
as well at the current time t, which assumes that the
current system state depends not only on the current value
of u(t) but also on its values after certain lags δi(t), i =
1, . . . ,M .

For a given initial condition (1) and any admissible
control u ∈ Uad, there exists a unique solution
x(t;x0, u) ∈ L2(Ω,Ft,R

n) of the linear system (1)
which can be represented in the following integral form
(Enrhardt and Kliemann, 1982; Mahmudov and Denker,
2000):

x(t) = Φ(t, t0)x0

+

∫ t

t0

Φ(t, s)
M∑
i=0

Bi(s)u(δi(s)) ds

+

∫ t

t0

Φ(t, s)σ̃(s) dw(s),

(2)

where Φ(t, t0) is the transition matrix of the linear system
ẋ(t) = A(t)x(t) with Φ(t0, t0) = I being the identity
matrix.

Let us introduce the time lead functions ri(t) :
[δi(t0), δi(T )] → [t0, T ] such that

ri(δi(t)) = t, i = 0, 1, . . . ,M, t ∈ [t0, T ].

We also introduce the so-called complete state of the
system (1) at time t to be the set y(t) = {x(t), ut(s)},
where ut(s) = u(s) for s ∈ [min

i
δi(t), t).

Taking δi(s) = τ in (2) and using the time lead
function ri(t), we have

s = ri(τ) and ds = ṙi(τ) dτ.
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Thus (2) can be written as

x(t) = Φ(t, t0)x0

+

M∑
i=0

∫ δi(t)

δi(t0)

Φ(t, ri(s))Bi(ri(s))ṙi(s)u(s) ds

+

∫ t

t0

Φ(t, s)σ̃(s) dw(s).

(3)

Without loss of generality, it can be assumed that

δ0(t) = t,

and the following inequalities hold for t = T :

δM (T ) ≤ δM−1(T ) ≤ · · · ≤ δm+1(T )

≤ t0 = δm(T ) < δm−1(T ) = . . .

= δ1(T ) = δ0(T ) = T. (4)

By using (4), Eqn. (3) for t = T can be expressed as

x(T )

= Φ(T, t0)x0

+

m∑
i=0

∫ t0

δi(t0)

Φ(T, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

m∑
i=0

∫ δi(T )

t0

Φ(T, ri(s))Bi(ri(s))ṙi(s)u(s) ds

+

M∑
i=m+1

∫ δi(T )

δi(t0)

Φ(T, ri(s))

×Bi(ri(s))ṙi(s)ut0(s) ds

+

∫ T

t0

Φ(T, s)σ̃(s) dw(s)

= Φ(T, t0)x0

+

m∑
i=0

∫ t0

δi(t0)

Φ(T, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

m∑
i=0

∫ T

t0

Φ(T, ri(s))Bi(ri(s))ṙi(s)u(s) ds

+

M∑
i=m+1

∫ δi(T )

δi(t0)

Φ(T, ri(s))

×Bi(ri(s))ṙi(s)ut0(s) ds

+

∫ T

t0

Φ(T, s)σ̃(s) dw(s).

It has to be noted that the last term of the third integral
is zero by the definition of the time lead function rm(t)
which is a constant rm(t0) in the interval [t0, T ].

For convenience, we introduce the following
notation:

H(t, t0)

=

m∑
i=0

∫ t0

δi(t0)

Φ(t, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

M∑
i=m+1

∫ δi(t)

δi(t0)

Φ(t, ri(s))

×Bi(ri(s))ṙi(s)ut0(s) ds

Gi(t, s) =

i∑
j=0

Φ(t, rj(s))Bj(rj(s))ṙj(s),

i = 1, 2, . . . ,M.

We define the linear and bounded control operator

L : LF
2 ([t0, T ],R

l) → L2(Ω,FT ,R
n)

as follows:

Lu =

∫ T

t0

Gm(T, s)u(s) ds,

and its adjoint bounded linear operator

L
∗ : L2(Ω,FT ,R

n) → LF
2 ([t0, T ],R

l)

as

(L∗z)(t) = G∗
m(T, t)E{z | Ft}, t ∈ [t0, T ],

where the star (∗) denotes the adjoint matrix.
From the above notation it follows that the set of

all states reachable from the initial state x(t0) = x0 ∈
L2(Ω,FT ,R

n) in time T > 0, using admissible controls,
has the form

RT (Uad)

= {x(T ;x0, u) ∈ L2(Ω,FT ,R
n) : u(·) ∈ Uad}

= Φ(T, t0)x0 + Im L

+

m∑
i=0

∫ t0

δi(t0)

Φ(T, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

M∑
i=m+1

∫ δi(T )

δi(t0)

Φ(T, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

∫ T

t0

Φ(T, s)σ̃(s) dw(s).

The linear controllability operator W : L2(Ω,FT ,R
n) →

L2(Ω,FT ,R
n) is associated with the system (1) and

defined by

W = L L
∗{·} =

∫ T

t0

Gm(T, s)G∗
m(T, s)E{· | Fs} ds,
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and the deterministic controllability matrix ΓT
s ∈

L(Rn,Rn) is

ΓT
s =

∫ T

s

Gm(T, s)G∗
m(T, s) ds, s ∈ [t0, T ].

Definition 1. (Klamka, 1976) The stochastic system
(1) is said to be relatively controllable on [t0, T ] if,
for every complete state y(t0) and every x1 ∈ R

n,
there exists a control u(t) defined on [t0, T ] such that
the corresponding trajectory of the stochastic system (1)
satisfies the condition x(T ) = x1.

Definition 2. (Klamka, 2007b) The stochastic system (1)
is said to be relatively exact controllable on [t0, T ] if

RT (Uad) = L2(Ω,FT ,R
n),

that is, if all the points in L2(Ω,FT ,R
n) can be exactly

reached at time T from any arbitrary initial point x0 ∈
L2(Ω,FT ,R

n) at time T > 0.

Definition 3. (Klamka, 2007b) The stochastic system (1)
is said to be relatively approximate controllable on [t0, T ]
if

RT (Uad) = L2(Ω,FT ,R
n),

that is, if all the points in L2(Ω,FT ,R
n) can be

approximately reached at time T from any arbitrary initial
point x0 ∈ L2(Ω,FT ,R

n) at time T > 0.

3. Linear stochastic systems

In this section, we recall some important results to
establish the relative controllability of the linear stochastic
system (1).

Consider the corresponding deterministic system of
the following form:

z′(t) = A(t)z(t) +
M∑
i=0

Bi(t)v(δi(t)), (5)

where the admissible controls v ∈ L2([t0, T ],R
l).

For the deterministic system (5) let us denote by RT

the set of all states reachable from the initial state z(t0) =
z0 in time T > 0 using admissible controls.

Definition 4. (Klamka, 1991) The deterministic system
(5) is said to be relatively controllable on [t0, T ] if RT =
R

n.

Lemma 1. (Klamka, 1991) The following conditions are
equivalent:

(i) The deterministic system (5) is relatively control-
lable on [t0, T ].

(ii) The controllability matrix W is nonsingular.

The following lemma shows that the relative
controllability of the associated deterministic linear
system (5) is equivalent to the relative exact controllability
and the relative approximate controllability of the linear
stochastic system (1).

Lemma 2. (Klamka, 2008a) The following conditions are
equivalent:

(i) The deterministic system (5) is relatively control-
lable on [t0, T ].

(ii) The stochastic system (1) is relatively exact control-
lable on [t0, T ].

(iii) The stochastic system (1) is relatively approximate
controllable on [t0, T ].

Note that, from the work of Klamka (2007a), we
see that if the linear stochastic system (1) is relatively
exact controllable then the operator W is strictly positive
definite and thus the inverse linear operator W−1 is
bounded. Using the fact that the operator W−1 is
bounded, we shall construct a control u0(t), t ∈ [t0, T ]
that steers the system from the initial state x0 to a desired
final state x1 at time T .

Lemma 3. Assume that the stochastic system (1)
is relatively exact controllable on [t0, T ]. Then, for
an arbitrary target x1 ∈ L2(Ω,Ft,R

n) and σ̃(·) ∈
LF
2 ([t0, T ],R

n×n), the control

u0(t)

= G∗
m(t, T )E

{
W−1

(
x1 − Φ(T, t0)x0

−
m∑
i=0

∫ t0

δi(t0)

Φ(T, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

−
M∑

i=m+1

∫ δi(T )

δi(t0)

Φ(T, ri(s))

×Bi(ri(s))ṙi(s)ut0(s) ds

−
∫ T

t0

Φ(T, s)σ̃(s) dw(s)
)∣∣∣Ft

}
(6)

transfers the system

x(t)

= Φ(t, t0)x0

+

m∑
i=0

∫ t0

δi(t0)

Φ(t, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

M∑
i=m+1

∫ δi(t)

δi(t0)

Φ(t, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

∫ t

t0

Gm(t, s)u(s) ds+

∫ t

t0

Φ(t, s)σ̃(s) dw(s)



Controllability of nonlinear stochastic systems with multiple time-varying delays in control 211

from x0 ∈ R
n to x1 ∈ R

n at time T .
Moreover, among all the admissible controls u(t)

transferring the initial state x0 to the final state x1 at time
T > 0, the control u0(t) minimizes the integral perfor-
mance index

J (u) = E

∫ T

t0

‖u(t)‖2 dt.

Proof. Since the stochastic dynamical system (1) is
relatively exact controllable on [t0, T ], the controllability
operator W is invertible and its inverse W−1 is a linear
and bounded operator, that is,

W−1 ∈ L(L2(Ω,Ft,R
n), L2(Ω,Ft,R

n)).

Substituting the control u0(t) into the solution
formula of the differential state equation and substituting
t = T , one can easily verify that the control (6) steers the
linear system from x0 to x1. The second part of the proof
is similar to that of Theorem 2 of Klamka (2007a). �

4. Nonlinear systems

Taking into account the above notation and results, we
shall derive sufficient controllability conditions for the
semi-linear stochastic system with multiple delays in
control of the form

dx(t) =

[
A(t)x(t) +

M∑
i=0

Bi(t)u(δi(t))

]
dt

+σ(t, x(t)) dw(t),
x(t0) = x0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

where σ : [t0, T ] × R
n → R

n×n and A(t), Bi(t),
δi(t), i = 1, 2, . . .M , are defined as before.

Then the solution of the system (7) can be expressed
in the following form:

x(t) = Φ(t, t0)x0

+

∫ t

t0

Φ(t, s)

M∑
i=0

Bi(s)u(δi(s)) ds

+

∫ t

t0

Φ(t, s)σ(s, x(s)) dw(s).

Now, using the time lead function, we have

x(t) = Φ(t, t0)x0

+

M∑
i=0

∫ δi(t)

δi(t0)

Φ(t, ri(s))Bi(ri(s))ṙi(s)u(s) ds

+

∫ t

t0

Φ(t, s)σ(s, x(s)) dw(s) (8)

and, using (4), the above equation for t = T can be
expressed as

x(T )

= Φ(T, t0)x0

+

m∑
i=0

∫ t0

δi(t0)

Φ(T, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+
m∑
i=0

∫ T

t0

Φ(T, ri(s))Bi(ri(s))ṙi(s)u(s) ds

+

M∑
i=m+1

∫ δi(T )

δi(t0)

Φ(T, ri(s))

×Bi(ri(s))ṙi(s)ut0(s) ds

+

∫ T

t0

Φ(T, s)σ(s, x(s)) dw(s).

Now let us define the controllability operator and the
control function associated with the system (7) as follows:

W = W(t0, T ) =

∫ T

t0

Gm(T, s)G∗
m(T, s)E{· | Fs} ds,

u(t)

= G∗
m(T, t)E

{
W−1

(
x1 − Φ(T, t0)x0

−
m∑
i=0

∫ t0

δi(t0)

Φ(T, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

−
M∑

i=m+1

∫ δi(T )

δi(t0)

Φ(T, ri(s))

×Bi(ri(s))ṙi(s)ut0(s) ds

−
∫ T

t0

Φ(T, s)σ(s, x(s)) dw(s)
)∣∣∣Ft

}
, (9)

where Gm is defined as in the linear case.
Inserting (9) in (8), it is easy to verify that the control

u(t) transfers x0 to the desired vector x1 at time T .

For the proof of the main result, we impose the
following assumptions on the data of the problem:

(H1) The function σ is Lipschitz continuous, that is, for
x, y ∈ R

n and t0 ≤ t ≤ T there exists a constant
L1 > 0 such that

‖σ(t, x) − σ(t, y)‖2 ≤ L1‖x− y‖2.

(H2) The function σ satisfies the usual linear growth
condition, that is, there exists a constant L2 > 0 such
that for all t ∈ [t0, T ] and all x ∈ R

n

‖σ(t, x)‖2 ≤ L2(1 + ‖x‖2).
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Let B2 denote the Banach space of all square
integrable and Ft-adapted processes ϕ(t) with the norm

‖x‖2 := sup
t∈[t0,T ]

E‖x(t)‖2.

Define the nonlinear operator P from B2 to B2 by

(Px)(t)

= Φ(t, t0)x0

+

m∑
i=0

∫ t0

δi(t0)

Φ(t, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

M∑
i=m+1

∫ δi(t)

δi(t0)

Φ(t, ri(s))

×Bi(ri(s))ṙi(s)ut0(s) ds

+

∫ t

t0

Gm(t, s)u(s) ds

+

∫ t

t0

Φ(t, s)σ(s, x(s)) dw(s), (10)

From Lemma 3, it follows that if the operator P defined
in (10) has a fixed point, then the system (7) has a solution
x(t) defined in (8) with respect to u(·), and (Px)(T ) =
x(T ) = x1, which implies that the system (7) is relatively
controllable. Thus, the problem of the controllability of
the semi-linear system (7) can be reduced to the existence
of a unique fixed point of the operator P .

Now, for our convenience, let us introduce the
following notation:

M = max{‖ΓT
s ‖2 : s ∈ [t0, T ]},

k1 = max{‖Φ(t, s)‖2 : t0 ≤ s < t ≤ T },
k2 = max{‖H(t, t0)‖2 : t0 ≤ t ≤ T }.

Note that if the linear system (1) is relatively exact
controllable, then for some γ > 0 (Klamka, 2008b)

〈Wz, z〉 ≥ γE‖z‖2 for all z ∈ L2(Ω,FT ,R
n),

and so

‖W−1‖2 ≤ 1

γ
= k3.

Theorem 1. Assume that the conditions (H1) and (H2)
hold and suppose that the linear stochastic system (1) is
relatively exact controllable. Further, if the inequality

2k1L1(1 +Mk3)T < 1 (11)

is satisfied, then the semi-linear stochastic system (7) is
relatively exact controllable.

Proof. In order to prove the relative controllability of
the system (7), it is enough to show that the operator P
has a fixed point in B2. To do this, we can employ the

contraction mapping principle. To apply the principle,
first we show that P maps B2 into itself. Now, by
Lemma 3, we have

E‖(Px)(t)‖2

= E

∥∥∥Φ(t, t0)x0

+

m∑
i=0

∫ t0

δi(t0)

Φ(t, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

M∑
i=m+1

∫ δi(t)

δi(t0)

Φ(t, ri(s))Bi(ri(s))ṙi(s)ut0(s) ds

+

∫ t

t0

Gm(t, s)u(s) ds

+

∫ t

t0

Φ(t, s)σ(s, x(s)) dw(s)
∥∥∥2

≤ 4E‖Φ(t, t0)‖2‖x0‖2 + 4E‖H(t, t0)‖2

+ 4E
∥∥∥ ∫ t

t0

Gm(t, s)u(s) ds
∥∥∥2

+ 4E
∥∥∥ ∫ t

t0

Φ(t, s)σ(s, x(s)) dw(s)
∥∥∥2. (12)

�

For simplification, first consider the third term in the
above inequality,

E

∥∥∥ ∫ t

t0

Gm(t, τ)u(τ) dτ
∥∥∥2

= E

∥∥∥ ∫ t

t0

Gm(t, τ)G∗
m(T, τ)

× E

{
W−1

(
x1 − Φ(T, t0)x0H(T, t0)

−
∫ T

t0

Φ(T, s)σ(s, x(s)) dw(s)
)∣∣∣Fτ

}
dτ
∥∥∥2

≤ 4Mk3
[‖x1‖2 + k1‖x0‖2 + k2

+k1L2

∫ T

t0

(1 + E‖x(s)‖2) ds
]
. (13)

Using (13) in (12), we have

E‖(Px)(t)‖2
≤ 4k1‖x0‖2 + 4k2 + 16Mk3

[‖x1‖2

+k1‖x0‖2 + k2 + k1L2

∫ t

t0

(1 + E‖x(s)‖2) ds
]

+ 4k1L2

∫ t

t0

(1 + E‖x(s)‖2) ds
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≤ 4k1‖x0‖2 + 4k2

+ 16Mk3(‖x1‖2 + k1‖x0‖2 + k2)

+ (4k1 + 16Mk3k1)L2

×
∫ T

t0

(1 + E‖x(s)‖2) ds. (14)

From (14) and (H2) it follows that there exists C > 0
depending on x0, T, L2, M, k1, k2 and k3 such that

E‖(Px)(t)‖2 ≤ C
(
1 +

∫ T

t0

E‖x(r)‖2 dr
)
.

Thus we have

E‖(Px)(t)‖2 ≤ C
(
1 + T sup

r∈[t0,T ]

E‖x(r)‖2
)
.

Therefore P maps B2 into itself.
Secondly, we claim that P is a contraction on B2. For

x, y ∈ B2,

E‖(Px1)(t) − (Px2)(t))‖2

≤ E

∥∥∥ ∫ t

t0

Φ(t, s)[σ(s, x1(s))− σ(s, x2(s))] dw(s)

+ ΓT
t0W−1

(∫ T

t0

Φ(T, s)[σ(s, x2(s))

−σ(s, x1(s))] dw(s))
∥∥∥2

≤ 2k1L1

∫ T

t0

E‖x1(s)− x2(s)‖2 ds

+ 2Mk1k3L1

∫ T

t0

E‖x1(s)− x2(s)‖2 ds

≤ 2k1(1 +Mk3)L1

∫ T

t0

E‖x1(s)− x2(s)‖2 ds.

Accordingly,

sup
t∈[t0,T ]

E‖(Px1)(t) − (Px2)(t))‖2

≤ 2k1L1(1 +Mk3)T sup
t∈[t0,T ]

E‖x1(t)− x2(t)‖2.

Therefore we conclude from (11) that P is a contraction
mapping on B2. Then the mapping P has a unique fixed
point x(·) ∈ B2, which is the solution of Eqn. (8). Thus
the system is relatively exact controllable on [t0, T ].

Remark 1. Obviously, the hypothesis (11) is fulfilled if
L1 is sufficiently small.

5. Numerical example

To illustrate the applicability of the above results, in this
section we consider the following semi-linear stochastic

system:

dx1(t) = [−0.5x1(t) + u1(t) + e−0.5tu2(t)

+ 0.05u1(0.75t) + e−0.4tu1(0.5t)

+ 0.01t2u2(0.5t) + e−5tu2(0.25t)] dt

+
x1(t) cosx2(t)

3
dw1(t), (15)

dx2(t) = [−0.1x2(t) + tu1(t)] dt

+
x2(t) sinx1(t)

4
dw2(t),

which can be reformulated in the form of (7) with M = 3:

x(t) =

[
x1(t)
x2(t)

]
, u(t) =

[
u1(t)
u2(t)

]
,

A(t) =

[ −0.5 0
0 −0.1

]
,

B0 =

[
1 e−0.5t

t 0

]
,

B1 =

[
0.05t 0
0 0

]
,

B2 =

[
e−0.4t 0.01t2

0 0

]
,

B3 =

[
0 e−5t

0 0

]
,

w(t) =

[
w1(t)
w2(t)

]
,

σ(t, x(t)) =

⎡
⎢⎣

1

3
x1(t) cosx2(t) 0

0
1

4
x2(t) cos x1(t)

⎤
⎥⎦ .

Moreover,

δ0(t) = t, δ1(t) = 0.75t,

δ2(t) = 0.5t, δ3(t) = 0.25t

for t ∈ [0, 2] and

δm(t) < δm−1(t) < · · · < δk(t)

< · · · < δ1(t) < δ0(t) = t

for t ∈ [t0, t1].
Consider the following lead functions

r0(t) = t, r1(t) =
4

3
t,

r2(t) = 2t, r3(t) = 4t.

Moreover, for t1 = 2 we have

δ3(2) < δ2(2) < δ1(2) < δ0(2) = 2.

Taking into account the form of the matrices
A(t), B0(t), B1(t), B2(t), B3(t) and the formula for
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the computation of the exponent matrix function, we have
the transition matrix

Φ(t, t0) =

[
e−0.5t2 0
0 e−0.1t

]
,

and the controllability Grammian

W(0, 2) =

∫ 2

0

Gm(t, s)G∗
m(t, s) ds

=

[
6.34 3.44
3.44 2.42

]
.

Hence rank W (0, 2) = 2. Take the final point as xT ∈
R

2. It is easy to show that, for all x ∈ R
2,

‖σ(t, x(t))‖2 ≤ 1

9
(1 + ‖x‖2).

One can see that the inequality (11) holds and all
other conditions stated in Theorem 1 are satisfied. Hence,
the system (15) is relatively exact controllable on [0, 2],
that is, the system (15) can be steered from x0 to x1.

Remark 2. It is important to note that the results
discussed in the papers by Guendouzi and Hamada (2013;
2014) are not valid. In these papers, sufficient conditions
for the controllability of nonlinear stochastic systems
involving fractional derivatives are established. Since the
integral representation of the fractional dynamical system
considered completely relies on the Laplace transform,
the solution representation is not valid, as the Laplace
transform of the diffusion term involving the white noise
term is not well defined.

6. Concluding remarks

In the paper, the relative controllability of semi-linear
stochastic systems with time varying multiple delays in
the control function is addressed. Sufficient conditions
are established by the application of the Banach fixed
point technique. It should be pointed out that the results
obtained here generalize those by Klamka (2008a) as
well as Shen and Sun (2012) from stochastic systems
with single control delay to multiple time-varying delays.
Further, they also generalize the results of Klamka
(2008b) from stochastic systems with constant delays to
time varying delays.
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