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The Linear Canonical Transform (LCT) is a four parameter class of integral transform which plays an important role in
many fields of signal processing. Well-known transforms such as the Fourier Transform (FT), the FRactional Fourier
Transform (FRFT), and the FreSnel Transform (FST) can be seen as special cases of the linear canonical transform. Many
properties of the LCT are currently known but the extension of FRFTs and FTs still needs more attention. This paper
presents a modified convolution and product theorem in the LCT domain derived by a representation transformation in
quantum mechanics, which seems a convenient and concise method. It is compared with the existing convolution theorem
for the LCT and is found to be a better and befitting proposition. Further, an application of filtering is presented by using
the derived results.
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1. Introduction

The Linear Canonical Transform (LCT) (Alieva and
Bastiaans, 1999; Moshinsky and Quesne, 1971;
Nazarathy and Shamir, 1982; Pei and Ding, 2001;
2002; Hennelly and Sheridan, 2005) is a four parameter
(a, b, c, d) class of linear integral transform. It was
introduced in the 1970s (Moshinsky and Quesne, 1971)
and has found many applications in signal processing,
radar system analysis, filter design, phase retrieval,
pattern recognition (Shin and Park, 2011; Krzysztof
and Domańska, 2011), signal synthesis, and many other
areas (Stern, 2006; Tao et al., 2004; Ozaktas et al.,
2000; Almeida, 1994; Barshan et al., 1997; Sharma
and Joshi, 2006; Goel and Singh, 2011). Well-known
transforms such as the Fourier Transform (FT), the
FRactional Fourier Transform (FRFT), and the FreSnel
Transform (FST) can be seen as special cases of the linear
canonical transform (Tao et al., 2004; Ozaktas et al.,
2000; Almeida, 1994). Origins of LCTs are in quantum
mechanics; a brief overview may be found in the work of
Wolf (1979). As a generalization of the FT and FRFT, the

basic theories of the LCT have been developed including
sampling the signals (Deng et al., 2006; Li et al., 2007;
Koc et al., 2008; Healy and Sheridan, 2008; Tao et al.,
2008), discrete approximations to the transforms (Pei and
Ding, 2002; Hennelly and Sheridan, 2005; Healy and
Sheridan, 2009; Oktem and Ozaktas, 2010), and so on,
which can enrich the theoretical system of the LCT.

Many properties of the LCT and FRFT are already
known (Alieva and Bastiaans, 1999; Pei and Ding,
2002; Ozaktas et al., 2000), including the product and
convolution theorem (Deng et al., 2006; Ozaktas et al.,
1994; Almeida,1997; Zayed,1998; Sharma and Joshi,
2007; Wei et al., 2012; 2009; Singh and Saxena, 2011),
but none have received acclamation because either their
definitions do not generalize very nicely to the classical
definition for the FT or result in a bigger hardware
complexity due to a large number of chirp signals.

In mathematics and, in particular, functional
analysis, convolution is a mathematical operation on two
functions f and g, producing a third function that is
typically viewed as a modified version of one of the
original functions, giving the area overlap between the
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two functions as a function of the amount by which one
of the original functions is translated. In other words,
the Fourier transform of the convolution of two signals
is the point-wise product of the Fourier transform of their
respective signals. In the literature, many definitions of
the convolution theorem for the LCT (Deng et al., 2006;
Wei et al., 2012; 2009) are proposed. The classical
definition of the convolution and product theorem of the
FT for the signals f(x) and g(x) is given by

Convolution :

f (x)⊗ g (x)

=

∞∫

−∞
f(y)g(x− y) dy

FT←→
√

2π F (p)G(p), (1)

Product :

f (x) · g (x) FT←→F (p)⊗G (p) , (2)

where F (p) and G(p) are the FTs of f(x) and g(x),
respectively, and ‘⊗’ denotes the convolution operation.

In this paper, a modified convolution and product
theorem is proposed with a new proof from the
quantum mechanical representations transform, which
seems simple and elegant. With the help of simulations,
an attempt is made to compare the simulation results of
the proposed theorem with the theorems proposed in the
literature and it is found that the proposed theorem is a
better proposition and can be considered a generalization
of the classical convolution theorem of the FT. In the
application section, a filter is designed by using the
derived results.

2. Brief review of the correspondence
between the LCT and its quantum
mechanical counterpart

The LCT is also known as the generalized Fresnel
transform (James and Agarwal,1996; Palma and Bagini,
1997), the ABCD transform (Bernardo, 1996), the Collins
formula (Collins, 1970), generalized Huygens integrals
(Nazarathy and Shamir, 1982), quadratic-phase integrals
or quadratic-phase systems (Bastiaans, 1979), extended
fractional Fourier transforms (Hua et al., 1997) as well
as Moshinsky and Queesne integrals (Moshinsky and
Quesne, 1971), and is a special case of the special affine
Fourier transform (Abe and Sheridan, 1994a; 1994b). The
one-dimensional LCT with parameters of a signal f(x) is
defined (Alieva and Bastiaans, 1999) as

L(a,b,c,d)[f(x)](p)

=

⎧⎪⎨
⎪⎩

+∞∫
−∞

f(x)K(a,b,c,d)(p, x)dx, b �= 0,
√

dej(cd/2)p2
f(d · p), b = 0,

(3)

where parameters (a, b, c, d) are real numbers and the
matrix

(
a b
c d

)
belongs to SL(2,R).

In this paper, we only consider the case of b �= 0
since the LCT is just a chirp multiplication operation if
b = 0. The term K(a,b,c,d)(p, x) represents the integral
kernel and is given by

K(a,b,c,d)(p, x)

=
√

1
j2πb

exp
[
j(ax2 + dp2)

2b
− jxp

b

]
. (4)

As special cases of the LCT, when (a, b, c, d) =
(cos α, sin α, − sinα, cos α), the LCT reduces to the
FRFT, and when (a, b, c, d) = (0, 1,−1, 0) the LCT
reduces to the FT.

To relate the LCT kernel in a quantum mechanical
representation, we use the completeness relation of the
coherent state with the arguments of z1 and z2. The
coherent state |z〉 is defined (Zhang et al., 1990) by the
eigenstate of the annihilation operator a with the complex
eigenvalue z, i.e.,

a |z〉 = z |z〉 ,
and the completeness relation (Ogura and Sekiguchi,
2007)

∫
d2z

2πj
|z〉 〈z| = 1.

To relate the LCT kernel in quantum mechanics, we use
the completeness relation of the coherent state with the
arguments of z1 and z2,

〈Q|U(t) |q 〉

=
∫

d2z1d2z2

(2πj)2
〈Q|z1〉 〈z1|U(t) |z2 〉 〈z2|q〉 (5)

where ∫
d2z ≡

∫
d[Re(z)]d[Im(z)],

and with the aid of the Integration Within Ordered Product
(IWOP) technique (Fan and VanderLinde, 1989; Fan et
al., 1987) the coherent state representation of the unitary
operator is given by

〈z1|U(t) |z2 〉 =
1√
s

exp
[
− r

2s
(z∗1)2 +

z2z
∗
1

s
+

r∗

2s
(z2)

2

−|z1|2
2
− |z2|2

2

]
,

(6)

where(r, s) ,
∣∣s2

∣∣− ∣∣r2
∣∣ = 1, are related to a classical ray

transfer matrix
(

a b
c d

)
by

s =
1
2
[a + d + j(b− c)], r =

1
2
[d− a− j(b + c)], (7)
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the uni-modularity condition ad − bc = 1 is equivalent
to

∣∣s2
∣∣ − ∣∣r2

∣∣ = 1, and the coordinate and momentum
representation of the coherent state |z〉(Ogura, 2009)

〈Q|z1〉 =
1

π1/4
exp

[
−Q2

2
+
√

2z1Q− z2
1

2
− |z1|2

2

]
,

(8)

〈q|z2〉 =
1

π1/4
exp

[
−q2

2
− j
√

2z2q +
z2
2

2
− |z2|2

2

]
.

(9)
By substituting the values of Eqns. (6), (8) and (9) in
Eqn. (5), we get

〈Q|U(t) |q 〉

=
∫

d2z1d2z2

(2πj)2
× 1

π1/2

1√
s

· exp

[
−Q2

2
+
√

2z1Q− z2
1

2
− |z1|2

2

]

· exp

[
− r

2s
(z∗1)2 +

z2z
∗
1

s
+

r∗

2s
(z2)

2 − |z1|2
2
− |z2|2

2

]

· exp

[
−q2

2
+
√

2z∗2q − (z∗2)2

2
− |z2|2

2

]
.

(10)

This results from solving for z1 and using the fact (Puri,
2001) that, if a2

1 − 4|c1|2 > 0, then

1
π

∫
d2α exp

(
−a1|α|2 + b1α + b∗1α

∗+ c1α
2 +c∗1(α

∗)2
)

=

√
1

a2
1 − 4|c1|2

exp

[
b2
1c

∗
1 + b∗2c1 + a1|b1|2

a2
1 − 4|c1|2

]

and

1
π

∫
d2z1 exp

[
−|z1|2+z1

√
2Q +

z2z
∗
1

s
−z2

1

2
− r

2s
(z∗1)2

]

=
√

s

s− r
exp

[
−Q2r − z2

2
2s +

√
2Qz2

s− r

]
.

(11)

Here a1 = 1, b1 =
√

2Q, b∗1 = z2/s, c1 = −1/2, and
c∗1 = −r/2s. Similarly, solving for z2 and substituting
the value in Eqn. (10), we finally get
〈Q|U(t) |q 〉

=

√
1

π (s− s∗ − r + r∗)
exp

[
2qQ

s− s∗ − r + r∗

−q2

2
s + s∗ − r − r∗

s− s∗ − r + r∗
− Q2

2
s + s∗ + r + r∗

s− s∗ − r + r∗

]
.

(12)

By substituting the value of r and s from Eqn. (7),
the LCT kernel is given by

〈Q|U(t) |q 〉 =
√

1
j2πb

exp
[

j

2b

(
aq2 − 2qQ + dQ2

)]
.

(13)
As a special case of the LCT, when (a, b, c, d) =
(cos α, sin α, − sin α, cos α), Eqn. (13) reduces to the
kernel of the fractional Fourier transform (Namias, 1979)
Kα(Q, q) as

Kα(Q, q) =
√

1
2jπ sin α

exp
[
j

2

(
q2 + Q2

cotα
− 2qQ

sin α

)]
.

(14)
Multiplying and dividing Eqn. (13) by

√
exp(jα), we

finally get

L(cos α,sin α,− sin α,cos α) [x (q)] =
√

exp(−jα)Fα [x (q)] ,

where Fα [x (q)] denotes the fractional Fourier transform
of x (q). As a special case of the LCT, when (a, b, c, d) =
(0, 1,−1, 0), Eqn. (13) reduces to the kernel of Fourier
transform as

L(0,1,−1,0) [x (q)] =
√
−j F [x (q)] ,

where F [x (q)] denotes the Fourier transform of x (q).
Hence the LCT can extend its utilities and applications
and solve some problems that cannot be solved well by
the operations defined by Ozaktas et al. (2000).

3. Modified identities for the convolution
and product theorem

The new definition of the convolution and product
theorem for the LCT is as follows.

Theorem 1. (Convolution) If F(a,b,c,d)(p) is the LCT of
f (x) and G(a,b,c,d)(p) is the LCT of g (x), then

√
j2πb e−

j
2 ( d

b p2)F(a,b,c,d)(p)G(a,b,c,d)(p)

is a linear canonical transform of h(x), i.e.,

L(a,b,c,d) (h (x))

=
√

j2πb exp
[
− j

2

(
d

b
p2

)]

× F(a,b,c,d)(p)G(a,b,c,d)(p),

(15)

where

h(x) =

∞∫

−∞
f(y) g(x− y) ỹ(x, y) dy,

is the weighted convolution and the weight function is
ỹ(x, y) = e−j a

b y(x−y) while the role of g and f can be
interchanged.
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Theorem 2. (Product) For any two functions f (x) and
g (x), the modified product operation is defined as

m(x) = g(x).f(x).ej a
2b x2

L(a,b,c,d)

(
g (x) · f (x) · ej a

2b x2
)

= G(a,b,c,d)(p)⊗ F(a,b,c,d)(p) · exp
[
j
d

b
vp

]
.

(16)

4. Proposed transform of a convolution by
coordinate-momentum representation
transform

Using the quantum mechanical notation (Fan and Yue,
2003; Fan et al., 2008), the one-dimensional linear
canonical transform of the signal h(x) reads as

L(a,b,c,d) (h (x))

=
1√
j2πb

∞∫

−∞
dx 〈p|K|x〉 〈x|h〉 = 〈p|K|h〉

= 〈p|H〉 = H(a,b,c,d) (p) ,

(17)

where we use the notation 〈x|h〉 = h(x) and 〈p|K|x〉
gives the representation of the LCT kernel in quantum
mechanics. K is named as the LCT operator and

〈x|h〉 =
∞∫

−∞
dy 〈y|f〉 〈x− y|g〉 exp

[
−j

a

b
y(x− y)

]
.

(18)
Substituting the value of Eqn. (18) in (17) results in

L(a,b,c,d) (h (x))

=
1√

j2πb

∞∫

−∞
dx 〈p|K|x〉

∞∫

−∞
dy 〈y|f〉 〈x− y|g〉

· exp
[
−j

a

b
y(x− y)

]
(19)

Rearranging Eqn. (19) we get

L(a,b,c,d) (h (x))

=
1√

j2πb

∞∫

−∞

∞∫

−∞
dxdy 〈p|K|x〉 〈x− y|g〉 〈y|f〉

· exp
[
−j

a

b
y(x− y)

]
(20)

Substituting x − y = x′, i.e., x = x′ + y and y = y, in
Eqn. (20), we have dx dy = dx′ dy (Kiusalaas, 2010),

and then replacing x′ by x results in

L(a,b,c,d) (h (x))

=
1√

j2πb

∞∫

−∞

∞∫

−∞
dxdy 〈p|K|x + y〉 〈x|g〉 〈y|f〉

· exp
[
−j

a

b
yx

]
.

(21)

Rewriting 〈p|K|x + y〉 explicitly, we get

〈p|K|x + y〉 1√
j2πb

exp
[
−j

a

b
yx

]

=
1√

j2πb

· exp

[
jdp2 − 2jp(x + y) + ja(x + y)2 − 2jaxy

2b

]
.

(22)

Multiplying and dividing Eqn. (22) by
exp

[
j
2

d
b p2

]
/
√

j2πb result in

⇒
√

j2πb

j2πb

· exp
[
jdp2 − 2jpx− 2jpy + jax2 + jay2

2b

]

· exp
jdp2 − jdp2

2b
(23)

Rearranging Eqn. (23) we get

⇒
√

j2πb

j2πb

[
exp

{
jdp2 − 2jpx + jax2

2b

}

· exp
{

jdp2 − 2jpy + jay2

2b

}
exp

{−jdp2

2b

}]
.

(24)

Substituting Eqn. (24) in (21) results in

L(a,b,c,d) (h (x))

=
√

j2πb

j2πb

∞∫

−∞

∞∫

−∞
dxdy 〈x|g〉 〈y|f〉

·
[
exp

{
jdp2 − 2jpx + jax2

2b

}

· exp
{

jdp2 − 2jpy + jay2

2b

}
· exp

{−jdp2

2b

}]
.

(25)

Rewriting Eqn. (25) results in

L(a,b,c,d) (h (x))

=
√

j2πb

j2πb

∞∫

−∞

∞∫

−∞
dxdy 〈p|K|x〉 〈x|g〉

· 〈p|K|y〉 〈y|f〉 exp
[−jdp2

2b

]
.

(26)
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Rearranging Eqn. (26), we get

L(a,b,c,d) (h (x))

=
√

j2πb

⎡
⎣ 1√

j2πb

∞∫

−∞
dx 〈p|K|x〉 〈x|g〉

· 1√
j2πb

∞∫

−∞
dy 〈p|K|y〉 〈y|f〉 · exp

{−jdp2

2b

}⎤
⎦ .

(27)

Rewriting Eqn. (27) results in

L(a,b,c,d) (h (x))

=
√

j2πb e−
j
2 ( d

b p2)F(a,b,c,d)(p)G(a,b,c,d)(p).
(28)

This is just a new convolution theorem under the LCT,
derived by representation transformation in quantum
mechanics. Hence Eqn. (15) is obtained and the theorem
is proved.

The reciprocal transform of Eqn. (28) can be
obtained by writing the definition of the inverse LCT and
is given by

L−1
(a,b,c,d) (H(p)) =

∞∫

−∞
dp 〈p|K|x〉∗ ·H(a,b,c,d)(p),

(29)
where ∗ indicates the complex conjugate. By using
the theory of representation transformation in quantum
mechanics, Eqn. (29) results in

L−1
(a,b,c,d) (H(p))

=

∞∫

−∞
dp

〈
x|K†|p〉 · 〈p|H〉

=

∞∫

−∞
dp

〈
x|K†K|h〉 = 〈x|h〉 = h(x).

(30)

Seeing FT as a special case of the LCT, when
(a, b, c, d) = (0, 1,−1, 0) , Eqn. (28) becomes

L(0,1,−1,0) (h (x)) =
√

j2π F(0,1,−1,0)(p)G(0,1,−1,0)(p).
(31)

Similarly, seeing the FRFT as a special case of the
LCT, when (a, b, c, d) = (cos α, sin α, − sinα, cos α),
Eqn. (28) becomes

Fα (h (x)) =
√

j2π sin α e−
j
2p2 cot αFα(p)Gα(p),

(32)
and the FT as a special case of the FRFT, α = π/2 , (32)
becomes

Fπ/2 (h (x)) =
√

j2π F
π/2 (p)G

π/2 (p). (33)

Equations (31) and (32) are special cases of the LCT.

5. Proposed transform of a product by
coordinate-momentum representation
transform

The one-dimensional linear canonical transform of m(x)
in the context of quantum mechanics is given by

L(a,b,c,d) (m (x)) =
1√
j2πb

∞∫

−∞
dx 〈p|K|x〉 〈x|m〉.

(34)
From the definition of the modified product theorem as
given by Eqn. (16),

L(a,b,c,d) (m (x))

=
1√
j2πb

∞∫

−∞
dx 〈x|f〉 〈x|g〉 〈p|K|x〉

· exp
[
j

a

2b
x2

]
, (35)

the one-dimensional inverse linear canonical transform in
the context of quantum mechanics is given by

〈x|g〉 =
√ −1

j2πb

∞∫

−∞
dv 〈v|G〉 〈v|K|x〉∗, (36)

where * indicates the complex conjugate. Rewriting
Eqn. (36) results in

〈x|g〉 =
√ −1

j2πb

∞∫

−∞
dv 〈v|G〉 〈x|K†|v〉. (37)

Substituting the value of Eqn. (37) in (35) results in

L(a,b,c,d) (m (x))

=
∣∣∣∣ 1
2πb

∣∣∣∣
∞∫

−∞

∞∫

−∞
dv dx 〈v|G〉

· 〈x|K†|v〉 〈x|f〉 · 〈p|K|x〉 exp
[
j

a

2b
x2

]
.

(38)

Solving for
〈
x|K†|v〉 · 〈p|K|x〉 results in

⇒ exp
[−jdv2 + 2jvx− jax2

2b

]

· exp
[
jdp2 − 2jpx + jax2

2b

]
.

(39)
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Substituting the value of Eqn. (39) in (38) results in

L(a,b,c,d) (m (x))

=
∣∣∣∣ 1
2πb

∣∣∣∣
∞∫

−∞

∞∫

−∞
dv dx 〈v|G〉 〈x|f〉 · exp

[
j

a

2b
x2

]

· exp
[−jdv2 + 2jvx− jax2

2b

]

· exp
[
jdp2 − 2jpx + jax2

2b

]
.

(40)

Multiplying and dividing Eqn. (40) by
exp

[−j
2

d
b v(v − 2p)

]
results in

L(a,b,c,d) (m (x))

=
∣∣∣∣ 1
2πb

∣∣∣∣
∞∫

−∞

∞∫

−∞
dv dx 〈v|G〉 〈x|f〉

· exp
[−j

2

{
dv2 − 2vx− dp2 + 2px− ax2

b

+
dv2 − 2dpv − dv2 + 2dpv

b

}]
.

(41)

Rewriting Eqn. (41), we get

L(a,b,c,d) (m (x))

=
∣∣∣∣ 1
2πb

∣∣∣∣
∞∫

−∞

∞∫

−∞
dv dx 〈v|G〉 〈x|f〉

· exp
[
j

2

{
d

b

(
p2 + v2 − 2pv

)− 2x

b
(p− v) +

ax2

b

}]

· exp
[
−j

d

b
v2 + j

d

b
pv

]
.

(42)

Rewriting Eqn. (42) results in

L(a,b,c,d) (m (x))

=
∣∣∣∣ 1
2πb

∣∣∣∣
∞∫

−∞

∞∫

−∞
dv dx 〈v|G〉 〈x|f〉

· exp
[
j

2

{
d

b
(p− v)2 − 2x

b
(p− v) +

ax2

b

}]
.

· exp
[
j
d

b
v(p− v)

]
.

(43)

From the representation theory of quantum mechanics,

Eqn. (43) can be written as

L(a,b,c,d) (m (x))

=
√ −1

j2πb

∞∫

−∞
dv 〈v|G〉 〈p− v|f〉

· exp
[
j
d

b
v(p− v)

]

= G(a,b,c,d) (p)⊗ F(a,b,c,d) (p)

· exp
[
j
d

b
vp

]
.

(44)

This is just a new product theorem under the LCT, derived
by representation in quantum mechanics. Hence Eqn. (16)
is solved and the theorem is proved.

6. Simulation results

The convolution theorem in the LCT domain given by
Deng et al. (2006) and Wei et al. (2012; 2009)
is compared with the proposed convolution theorem by
simulating on system with an Intel coreTM i3-330M
2.13 GHz processor with 3 GB RAM. The convolution
operation of a rectangular function x(t) of unit amplitude
is performed with itself, i.e., (x ⊗ x)(t). As a result
of the convolution operation, one obtains a triangular
(Bartlett) function with a duration double of that of
the rectangular function as shown in Fig. 1. Then
the LCT of convolution operations defined by Deng et
al. (2006) and Wei et al. (2012; 2009) is compared
with the LCT of the proposed convolution operation
for (a, b, c, d) = (0.707, 0.707,−0.707, 0.707) and
(a, b, c, d) = (0.5, 0.866,−0.866, 0.5) as shown in
Figs. 2 and 3, respectively. Simultaneously, the
LCT of the triangular function is also evaluated for
the same values of (a, b, c, d) to make a comparison.
It is shown that the real (Re), imaginary (Im) and
absolute (Abs) components of the proposed convolution
theorem for the LCT resemble maximally the different
components of the LCT of a triangular function
for (a, b, c, d) = (0.707, 0.707, −0.707, 0.707) and
(a, b, c, d) = (0.5, 0.866, −0.866, 0.5).

7. Application

To illustrate the proposed work, an example of filtering is
presented. For filtering applications, the time-frequency
plot of the original signal and the corrupted signal
plays an important role. Many time-frequency signal
representations are available, such as the Wigner
Distribution (WD) (Wigner, 1932; Hlawatsch and
Boudreaux-Bartels, 1992; Classen and Mecklenbrauker,
1980), the Short Time Fourier Transform (STFT)
(Hlawatsch and Boudreaux-Bartels, 1992; Portnoff,
1980; Cohen, 1989), the ambiguity function (Hlawatsch
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(a) (b)
Fig. 1. Rectangular function x(t) (a), convolved signal (x ⊗ x)(t), i.e., triangular (Bartlett) window (b).

(a) (b)

(c)

Fig. 2. Real value (a), imaginary value (b), absolute value of the LCT of (x ⊗ x)(t) by using the Deng et al. (2006) and Wei et al.
(2012; 2009), Bartlett and proposed methods for (a, b, c, d) = (0.707, 0.707, −0.707, 0.707) (c).

and Boudreaux-Bartels, 1992; Cohen, 1989), the
Gabor transform (Swiercz, 2010) and the spectrogram
(Hlawatsch and Boudreaux-Bartels, 1992; Portnoff,
1980; Cohen, 1989). Out of these techniques, the
WD is a powerful (Bouachache and Rodriguez, 1984)
time-frequency analysis tool and is used in this paper. The
concept of the canonical filter design is understood from
the definition of canonical convolution (Pei and Deng,
2001), given by

g (t)

= L(d,−b,−c,a)

(
L(a,b,c,d) (h (t)) · L(a,b,c,d) (x (t))

)
,

where
H(u) = L(a,b,c,d) (h (t))

represents the transfer function of the pass-stop band
canonical filter and

L(d,−b,−c,a)

(
L(a,b,c,d) (f (t))

)
= f (t)

gives the reversibility property of the LCT. Consider an
original signal

x (t) = 2 exp
[
−1

8
(t + 1)2 − j0.5t2

]
.

Let this signal be corrupted by an Additive White
Gaussian Noise (AWGN) of 5 dB Signal to Noise Ratio
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(a) (b)

(c)

Fig. 3. Real value (a), imaginary value (b), absolute value of the LCT of (x ⊗ x)(t) by using the Deng et al. (2006) and Wei et al.
(2012; 2009), Bartlett and proposed methods for (a, b, c, d) = (0.5, 0.866, −0.866, 0.5) (c).

(SNR). As shown in Fig. 4(a), the original signal x(t)
is plotted. Figure 4(c) shows the corrupted signal.
Figures 4(b) and 4(d) show the WD of the original
signal and corrupted signal, respectively. Following the
method given by Pei and Deng (2001), we found the
optimal filtering domain is the canonical domain with
(a, b, c, d) = (0.16, 1,−1, 0). Figures 4(e) and 4(f) show
a comparison between the imaginary and real part of the
exact signal and the proposed signal output of the filter
with the Mean Square Error (MSE) equal to 0.00049.
As a comparison with the convolution theorems already
derived, the number of chirp functions required by the
proposed convolution process is two (cf. Eqn. (18))
and seven (cf. Eqn. (24)), compared with seven and six
chirp functions by Wei et al. (2009) or three and seven
chirp functions by Deng et al. (2006) for the left and
right-hand sides of the convolution process, respectively.
Hence the proposed convolution theorem also reduces the
computational complexity.

8. Conclusion

We defined the convolution and product operations of two
functions in the LCT domain and derived the convolution
and product theorem for linear canonical transformation
by employing the coordinate-momentum representation
and the LCT operator. The derivation is direct and concise
since we used Dirac’s representation theory (Huang et
al., 2006). It is seen from the results of Figs. 2 and
3 that the proposed weighted convolution theorem gives

better results than the convolution theorem by Deng et
al. (2006) and Wei et al. (2012; 2009), as the results
given by the proposed theorem resemble maximally the
shape of the LCT of the triangular function. Further, an
application of filtering was presented with the proposed
convolution theorem and it was found that with the
help of proposed theorem the signal is recovered with a
minimum mean square error. The derived approach can
be used for defining the canonical correlation theorem
for the LCT, which will play an important role in signal
spectrum analysis, beamforming and signal detection in
the canonical domain.
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