
Int. J. Appl. Math. Comput. Sci., 2013, Vol. 23, No. 4, 761–772
DOI: 10.2478/amcs-2013-0057

ON THE DYNAMICS OF A VACCINATION MODEL WITH MULTIPLE
TRANSMISSION WAYS

SHU LIAO, WEIMING YANG

School of Mathematics and Statistics
Chongqing Technology and Business University, Chongqing, 400067, China

e-mail: shuyang2011@yahoo.com

In this paper, we present a vaccination model with multiple transmission ways and derive the control reproduction number.
The stability analysis of both the disease-free and endemic equilibria is carried out, and bifurcation theory is applied to
explore a variety of dynamics of this model. In addition, we present numerical simulations to verify the model predictions.
Mathematical results suggest that vaccination is helpful for disease control by decreasing the control reproduction number
below unity.

Keywords: vaccination model, stability, equilibrium.

1. Introduction

Waterborne diseases, the world’s leading killer, are
infectious diseases caused by pathogenic microorganisms
that are transmitted in contaminated water. According
to the World Health Organization (WHO) reports, 3–5
million people are affected by water-related diseases every
year. Cholera is an acute intestinal infection caused by
bacterium Vibrio cholerae; its transmission is different
from other diseases since it involves multiple transmission
pathways and occurs primarily by drinking contaminated
water or eating food that has been contaminated by
the feces of an infected person, including one with no
apparent symptoms. Currently, cholera is endemic in
over 50 countries, including India (2007), Congo (2008),
Iraq (2008), Zimbabwe (2008–2009), Vietnam (2009),
Kenya (2010), Nigeria (2010), and most recently Haiti
(2010–2011) (WHO).

Recently, the use of compartmental models has
proved to be a powerful tool for exploring complex
transmission dynamics. There have been published
many mathematical models focused on modeling
and simulating the nature of the cholera dynamics.
Capasso and Paveri-Fontana (1979) framed a simple
cholera model to study the 1973 cholera epidemic in
the European Mediterranean region. Codeço (2001)
first proposed an SIRB epidemic model by adding an
environmental component into the regular SIR model (B
is the V. cholerae concentration in the water environment).

The extension of Codeço’s model by Hartley et al. (2006)
accounted for a hyperinfectious state of the pathogen,
representing the hyperinfectious state of the pathogen, the
explosive infectivity of freshly shed V. cholerae, based on
the laboratory results. Recently, Liao and Wang (2011)
conducted a dynamical analysis of Hartley’s model. They
studied the stability of both the disease-free and endemic
equilibria so as to explore the complex epidemic and
endemic dynamics of the disease. Also, Mukandavire
et al. (2011) considered both human-to-human and
environment-to-human transmission pathways and
simplified Hartley’s model to study the 2008–2009
cholera outbreak in Zimbabwe. Moreover, Tien and
Earn (2010) proposed a water-borne disease model with
multiple transmission pathways, and identified how these
transmission routes influence disease dynamics.

Although waterborne diseases are severe infections,
due to vaccination, advanced water treatments and
sanitation practices, which shorten the course of the
disease and reduce the severity of the symptoms, these
terrible diseases are no longer major health threats in most
countries. Vaccination of susceptible, as one of the most
effective controlling methods for many diseases (measles,
pertussis, rubella, hepatitis B, mumps, influenza, etc.)
has been included in mathematical compartmental models
and published recently. Many studies have shown that
vaccination strategies are very important to control or
eradicate diseases (Dietz et al., 1985; Kribs-Zaleta and
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Velasco-Hernandez, 2000; Kribs-Zaleta and Martcherab,
2002; Brauer, 2004; Samsuzzoha et al., 2012; Szymanska,
2013). Dietz and Schenzle (1985) pointed out that
realistic epidemic models need to consider vaccination
programmes. Kribs-Zaleta and Velasco-Hernandez
(2000) explored disease control via a vaccination program
in which the vaccine provides complete protection against
low-level infection and partial protection against infection
by acute infectives. In the work of Kribs-Zaleta and
Martcherab (2002), a simple two-dimensional SIS model
with vaccination was exhibited and showed a vaccination
campaign meant to reduce a disease’s reproduction
number below which one may fail to control the disease.
Brauer (2004) studied the backward bifurcation in simple
vaccination models and gave conditions for the existence
of multiple endemic equilibria and backward bifurcations.
Samsuzzoha et al. (2012) considered an SVEIRS model
to explore the impact of vaccination as well as diffusion on
the transmission dynamics of influenza. In addition, there
are many other epidemic models including different kinds
of vaccination (Yildirim and Cherramt, 2009; Song et al.,
2009; Yu et al., 2010), such as constant or impulsive.

The aim of this paper is to extend and analyze
the waterborne disease model proposed by Tien and
Earn (2010) with the inclusion of a vaccinated class, V ,
and three important factors: vaccination rate φ, vaccine
efficacy rate σ and waning rate θ. The remainder of
the paper is organized as follows. In Section 2, we
formulate the vaccination model, and the derivation of the
control reproductive number RC is included. In Section 3,
we analyze the vaccination model, study the stability of
both the disease-free and endemic equilibria. Section 4
is devoted to the numerical study of the model, which
confirms our theoretical results. Finally, we close the
paper by a discussion in Section 5.

2. ODE model with vaccination

2.1. ODE model with vaccination and the con-
trol reproduction number. Tien and Earn (2010)
extended the classical SIR framework by adding a
compartment (W ) that tracked pathogen concentration
in the water. Susceptible individuals are infected with
multiple transmission pathways: contact with infected
individuals or contact with contaminated water. The
corresponding model consists of the following Ordinary
Differential Equations (ODEs):

dS

dt
= μN − βW WS − βISI − μS, (1)

dI

dt
= βW WS + βISI − (γ + μ)I, (2)

dR

dt
= γI − μR, (3)

dW

dt
= αI − ξW, (4)

where N is the total population size divided into three
groups: S , I and R, denoting the susceptible, the infected
and the recovered numbers, respectively. The population
size N remains constant, and S + I + R = N . Here
the parameters βW and βI represent the transmission
rate for environment-to-human and human-to-human,
respectively. Here μ is the natural human birth/death rate,
α is the shedding rate, ξ is the bacterial death rate, and γ
is the recovery rate.

The basic reproduction number R0, which represents
the average number of secondary infections that occur
when one infective is introduced into a completely
susceptible host population (Hethcote, 2000; Van den
Driessche and Watrauugh, 2002; Vynnycky et al., 2007;
Tien and Earn, 2010), is calculated as (Tien and Earn,
2010)

R0 =
N(βW α + βIξ)

ξ(γ + μ)
. (5)

Based on the above model, we formulate a
vaccination model and add a new group V that has begun
the vaccination process. Because of the new born and
those who have loss of immunity due to earlier infection
and vaccination with constant rate φ, the number of
susceptible individuals is increased. On the other hand,
this number is reduced by vaccination, infection and
natural death. Moreover, the vaccinated individuals are
increased, since the susceptible population is vaccinated
and moved to class V , the vaccine has the effect of
reducing the infection with constant rate σ, we make
the realistic assumption that the vaccine is not totally
effective, 0 ≤ σ ≤ 1, (1−σ) is the vaccine efficacy. Thus,
σ = 0 means that the vaccine is completely effective,
σ = 1 means that the vaccine has no effect. The number of
vaccinated individuals is decreased by natural death, while
the infection and waning of vaccine induced immunity at
the rate θ. The vaccination model is constructed as

dS

dt
= μN − βW WS − βISI − (μ + φ)S + θV,

(6)

dV

dt
= φS − σβIV I − (μ + θ)V, (7)

dI

dt
= βW WS + βISI − (γ + μ)I + σβIV I, (8)

dR

dt
= γI − μR, (9)

dW

dt
= αI − ξW, (10)

where S , V , I and R denote the susceptible, the
vaccinated, the infected, and the recovered numbers,
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respectively. The total population size is N = S + I +
R + V . Note that in the case of σ = 1, the vaccine is
totally useless. Thus the vaccination model reduces to the
vaccination free model (1)–(4).

The solution of the model system (6)–(10) is
biologically feasible for all times. Mathematically
speaking, the solution domain

D̄ =
{
(S, V, I, R)|S ≥ 0, V ≥ 0, I ≥ 0,

R ≥ 0, S + V + I + R = N},
is a positively invariant set in R

4.
We can write the ODEs (6)–(10) in vector form:

dX

dt
= F(X),

with
X =

(
S, V, I, R, W

)T
.

Disease-Free Equilibrium (DFE) points are steady-state
solutions where there is no disease. Thus

X0 =
( N(μ + θ)

μ + φ + θ
,

Nφ

μ + φ + θ
, 0, 0, 0

)T

. (11)

Here, we use the control reproduction number,
denoted by RC , to describe the average number of
secondary cases generated by primary cases under
specified controls such as vaccination (Anderson and May,
1990; Hethcote, 2000). It is a useful threshold in the
study of a disease for predicting a disease outbreak and
for evaluating the control strategies. Based on the work
of Van den Driessche and Watmough (2000), the next
generation operator approach can be used to define the
control reproductive number, where F denotes the rates
of the appearance of new infections in each compartment;
V = V+ + V−, V+ being the vector of individual
transfer rates into the particular compartment, and V−

the vector of individual transfer rates out of the particular
compartment.

These two vectors are given by

F =

⎡

⎢
⎢
⎢⎢
⎣

βW WS + βISI + σβIV I
0
0
0
0

⎤

⎥
⎥
⎥⎥
⎦

,

V =

⎡

⎢
⎢
⎢
⎢
⎣

(γ + μ)I
ξW − αI

βW WS + βISI + (μ + φ)S − θV − μN
σβIV I + (μ + θ)V − φS

μR − γI

⎤

⎥
⎥
⎥
⎥
⎦

.

The next generation matrix is defined as FV −1 , where F
and V are both the Jacobian matrices given by

F =
[

∂Fi

∂Xj
(X0)

]
, V =

[
∂Vi

∂Xj
(X0)

]
,

with 1 ≤ i, j ≤ 2. After some algebra, it is found that

F =
[

βIS + σβIV βW S
0 0

]

and

V =
[

γ + μ 0
−α ξ

]
.

The next generation matrix, FV −1, has a nonzero
eigenvalue corresponding to the spectral radius. It
represents the control reproduction number of the model
as

RC =
βW αN(μ + θ) + βIξN(μ + θ + σφ)

ξ(γ + μ)(μ + θ + φ)
. (12)

We consider the vaccination rate φ as a key control
parameter and other parameters as fixed. RC depends on
the vaccination policy φ and it is a decreasing function of
φ since R

′
C(φ) ≤ 0. When φ = 0, RC = R0, and RC <

R0 for all φ > 0 (since 0 ≤ σ ≤ 1). Thus RC reflects
how the reproduction number becomes smaller under the
application of a vaccination control, and shows how much
the vaccination reduces RC .

There is a unique φC , such that RC(φC) = 1, which
can be given as

φC =
[βW αN + βIξN − ξ(γ + μ)](μ + θ)

ξ(γ + μ) − βIξNσ
.

(13)

2.2. Disease-free equilibrium.

Theorem 1. The disease-free equilibrium of the ODE
model (6)–(10) is locally asymptotically stable if RC <
1 , and unstable if RC > 1 .

Proof. Since RC < 1 , we have

NβI(μ + θ + φσ) < (γ + μ)(φ + μ + θ). (14)

The Jacobian of the ODE system (6)–(10) is

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

−βW W − βII − (μ + φ) θ

φ −σβII − (μ + θ)

βW W + βII σβII

0 0

0 0

−βIS 0 −βW S
−σβIV 0 0

βIS − (γ + μ) + σβIV 0 βW S
γ −μ 0
α 0 −ξ

⎤

⎥
⎥
⎥
⎥
⎦

.
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After substituting the values for the DFE

S =
N(μ + θ)
μ + φ + θ

,

V =
Nφ

μ + φ + θ
,

I = R = W = 0,

the above matrix becomes

JB =

⎡

⎣
J11 J12

J21 J22

⎤

⎦ ,

where

J11 =

⎡

⎢⎢
⎢
⎢
⎣

(μ + φ) θ

φ −(μ + θ)

0 0

−βIN(μ + θ)
μ + φ + θ

− σβINφ

μ + φ + θ

βIN(μ + θ)
μ + φ + θ

+ σβINφ
μ+φ+θ − (γ + μ)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

,

J12 =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

0 −βW N(μ + θ)
μ + φ + θ

0 0

0
βW N(μ + θ)

μ + φ + θ

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

J21 =

⎡

⎣
0 0 γ

0 0 α

⎤

⎦ ,

J22 =

⎡

⎣
−μ 0

0 −ξ

⎤

⎦ .

The equilibrium is locally asymptotically stable if
and only if all the roots of the matrices J11 and J22 have
negative real parts. It is easy to see that the matrix J22

has two negative eigenvalues, (−μ) and (−ξ). After some
simple calculation, the two eigenvalues of J11, (−μ) and
(−φ − μ − θ) are clearly negative, and according to the
inequality (14), the other eigenvalue of J11, −[(γ+μ)(φ+
μ + θ) − NβI(μ + θ + φσ)] is also negative.

This completes the proof. �

From the point of view of the control rate φ, we can
rewrite the Theorem 1 as follows.

Theorem 2. The disease-free equilibrium of the ODE
model (6)–(10) is locally asymptotically stable if φ >
φC , and unstable if φ < φC .

Next, we focus on the global stability of the ODE
system (6)–(10) if R0 < 1 . We establish the following
result.

Theorem 3. The disease-free equilibrium of the ODE
model (6)–(10) is globally asymptotically stable whenever
R0 < 1 .

Proof. We can integrate the equations (6)–(9) to obtain

S(t) =
∫ t

−∞
(μN − βW WS − βISI + θV )

× e−(μ+φ)(t−s) ds, (15)

V (t) =
∫ t

−∞
(φS − σβIV I)e−(μ+θ)(t−s) ds,

(16)

I(t) =
∫ t

−∞
(βW WS + βISI + σβIV I)

× e−(γ+μ)(t−s) ds, (17)

W (t) =
∫ t

−∞
αIe−ξ(t−s) ds. (18)

From Eqn. (18), with the substitution x = t−s, it follows
that

lim sup
t→∞

W (t) = lim sup
t→∞

∫ ∞

0

(αI(t − x))e−ξx dx.

Then we apply the following lemma introduced by
Kribs-Zaleta (1999).

Lemma 1. (Kribs-Zaleta, 1999) Given a measurable se-
quence of non-negative uniformly bounded functions fn,

∫
lim inf fn ≤ lim inf

∫
fn

≤ lim sup
∫

fn ≤
∫

lim sup fn.

Then Eqn. (19) becomes

lim sup
t→∞

W (t) ≤
∫ ∞

0

lim sup
t→∞

αI(t − x)e−ξx dx

≤ lim sup
t→∞

αI(t)
∫ ∞

0

e−ξx dx

=
α

ξ
lim sup

t→∞
I(t).
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Similarly, from Eqn. (17) we obtain

lim sup
t→∞

I(t) ≤ lim sup
t→∞

∫ ∞

0

[βW W (t − x)N

− V (t − x) + βII(t − x)N

− βIV (t − x)I(t − x)(1 − σ)] dx

≤ lim sup
t→∞

[βwW (t)N + βII(t)N ]

×
∫ ∞

0

e−ξx dx

≤
(α

ξ N + βIN)

γ + μ
lim sup

t→∞
I(t)

=
N(βW α + βIξ)

γξ + μξ
lim sup

t→∞
I(t).

Since R0 < 1, the inequality is true only if

lim sup
t→∞

I(t) = 0.

�

3. Endemic equilibria

Endemic equilibrium points are steady-state solutions
where the disease persists in the population (Chitnis et
al., 2008). We find that long term behavior has some
important epidemiological implications such as whether
an outbreak of a disease may result in an endemic situation
or the infection will die out. In this section we shall
conduct the endemic analysis. By setting the right-hand
sides of Eqns. (6)–(10) to zero, endemic equilibria E =
(S∗, V ∗, W ∗) are such that

S∗ =
(γ + μ)(σβII

∗ + μ + θ)
[φσβI + (βW α

ξ + βI)(σβII∗ + μ + θ)]
,

(19)

V ∗ =
(γ + μ)φ

[φσβI + (βW α
ξ + βI)(σβII∗ + μ + θ)]

,

(20)

W ∗ =
αI∗

ξ
. (21)

In addition, we obtain a single quadratic equation for I∗,

A(I∗)2 + BI∗ + C = 0, (22)

where

A = (γ + μ)(βW α + βIξ)σβI , (23)

B = −μN(βW α + βIξ)σβI + μξ(γ + μ)σβI

+ (γ + μ)ξφσβI + (γ + μ)(βW α + βIξ)
× (μ + θ), (24)

C = μ(1 − RC)ξ(γ + μ)(μ + θ + φ). (25)

Note that A = 0 if and only if σ = 0. When A = 0,
the endemic equilibrium is unique and exists only if RC >
1. In what follows, we must assume that 0 < σ < 1
(consistent with the assumption in Section 2). If σ = 0,
A = 0, then A(I∗)2 + BI∗ + C = 0 is a linear equation
with a unique solution

I∗
′
=

(γ + μ)R
′
C

μN(R′
C − 1)

,

where

R
′
C =

βW αN(μ + θ) + βIξN(μ + θ)
ξ(γ + μ)(μ + θ + φ)

.

Clearly, the sign of C depends on the value of RC .
It is obvious that A > 0 since all parameters are positive.
The two non-zero roots of Eqn. (22), I1 and I2, must
satisfy

I1I2 =
C

A
, I1 + I2 = −B

A
.

When RC > 1, C < 0, B2 − 4AC > 0, there is one
and only one positive real root. If RC < 1, then C > 0,
which yields

N(βW α + βIξ) < ξ(γ + μ).

Thus

B = μσβI [ξ(γ + μ) − N(βW α + βIξ)]
+ (γ + μ)ξφσβI + (γ + μ)(βW α + βIξ)

> 0.

Hence, here we have either two negative real roots, or
two complex conjugate roots with negative real parts of
Eqn. (22). There is no positive endemic equilibrium.

The Jacobian matrix for the system (6)–(10) is given
by
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⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

−βW W − βII − (μ + φ) θ

φ −σβII − (μ + θ)

βW W + βII σβII

0 0

0 0

−βIS 0 −βW S

−σβIV 0 0

βIS − (γ + μ) + σβIV 0 βW S

γ −μ 0

α 0 −ξ

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

,

where the characteristic polynomial of the matrix J∗
B is

found as

det (λI − J∗
B)

= (λ + μ)
[
a4λ

4 + a3λ
3 + a2λ

2 + a1λ + a0

]
,

whose coefficients ai in terms of the elements of J∗
B are

a4 = 1,

a3 = βW W ∗ + βII
∗ + σβII

∗ + 2μ + φ + θ + ξ

+ (γ + μ − βIS
∗ − σβIV

∗),
a2 = ξ(σβII

∗ + μ + θ) + ξ(βW W ∗ + βII
∗ + μ + φ)

+ (−βIS
∗ − σβIV

∗ + γ + μ)(σβII
∗ + μ + θ)

+ (−βIS
∗ − σβIV

∗ + γ + μ)
× (βW W ∗ + βII

∗ + μ + φ)
+ (βW W ∗ + βII

∗ + μ)(σβII
∗ + μ + θ)

+ φ(σβII∗ + μ)

+ σ2β2
I V ∗I∗ + βW W ∗ + βII

∗,
a1 = ξ(βW W ∗ + βII

∗ + μ)(σβII
∗ + μ + θ)

+ [(βW W ∗ + βII
∗ + μ)(σβII

∗ + μ + θ)
+ φ(σβII∗ + μ)]
× (−βIS

∗ − σβIV
∗ + γ + μ) + ξφ(σβII∗ + μ)

+ (σβII
∗ + μ + θ + ξ + α)(βW W ∗ + βII

∗)

+ (βW W ∗ + βII
∗ + μ + φ + ξ)σ2β2

IV ∗I∗

+ φ2β2
I S∗I∗,

a0 = (βW W ∗ + βII
∗ + μ + φ)ξσ2β2

IV ∗I∗

+ θσβIV
∗(βW W ∗ + βII

∗) + ξφ2β2
I S∗I∗

+ (ξ + α)(σβII∗ + μ + θ)(βW W ∗ + βII
∗)

+ ξφ(σβII∗ + μ)(−βIS
∗ − σβIV

∗ + γ + μ).

The criterion that provides necessary and
sufficient conditions for the endemic equilibrium to
be asymptotically stable is the Routh–Hurwitz criterion
(Korn et al., 2000), which requires

a3 > 0 , a1 > 0 , a0 > 0 ,

a1(a2a3 − a1) > a0a
2
3.

From Eqn. (8), it is easy to see that

γ + μ − βIS − σβIV > 0.

Thus a3 > 0, a1 > 0 and a0 > 0.
To prove the inequality a1(a2a3 − a1) > a0a

2
3, it is

convenient to prove the following two inequalities:

a1a2a3 > 2a2
1,

a1a2a3 > 2a0a
2
3.

These inequalities can be verified by direct
calculation (details omitted), establishing the following
theorem.

Theorem 4. The positive endemic equilibrium of the
ODE system (6)–(10) is locally asymptotically stable if
RC > 1.

In epidemiology, bifurcation theory is concerned
with how solutions of a differential equation depend on
threshold parameters, and it can explain how the changes
in dynamics take place from a resting state to oscillations.
It plays a relevant role in disease control and eradication.
Next, we show that there are no backward bifurcations
possible when RC < 1 and B > 0. From RC < 1 it
follows that

βW αN(μ + θ) + βIξN(μ + θ + σφ)
< ξ(γ + μ)(μ + θ + φ),

that is,

N(μ + θ)(βW α + βIξ) < ξ(γ + μ)(μ + θ + φ).
(26)

Substituting this inequality into the expression (25)
of B, the first term of B satisfies

μN(βW α + βIξ)σβI <
μσβIξ(γ + μ)(μ + θ + φ)

μ + θ

< μσβIξ(γ + μ).

The other terms of B are all positive. Thus B > 0
whenever RC < 1. Hence, we have a forward bifurcation
when RC = 1. This result contrasts with the well-known
analysis of some regular SIR epidemic models (Brauer,
2000; Van den Driessche et al., 2000; Kribs-Zaleta and
Mertcherab, 2002; Arino et al., 2003; Chitnis et al., 2006).
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From this conclusion, when RC < 1, the infectious
number decreases to zero. When RC > 1, the infectious
number either increases or decreases to the curve that
represents the endemic equilibrium which is stable. We
can predict that significant changes make oscillations
during the long term period.

Theorem 5. The ODE model system (6)–(10) has a for-
ward bifurcation at RC = 1.

4. Simulation results

4.1. Vaccination free model. Cholera is one of the
worst waterborne diseases and is not easy to control. In
order to better understand the serious cholera outbreak
as well as for possible prediction and control of future
cholera epidemics, we apply the vaccination free model
(1)–(4) and the vaccination model (6)–(10) to study the
cholera dynamics. As an example, we use the data of
the 2008–2009 cholera outbreak in Zimbabwe to verify
the models. The Zimbabwe cholera outbreak began in
August 2008, swept to all of Zimbabwe’s ten provinces,
and spread to Botswana, Mozambique, South Africa and
Zambia quickly. The case fatality rate for the outbreak
was higher than expected for such outbreaks. On 4
December 2008, the Zimbabwe government declared
the outbreak to be a national emergency and requested
international aid (WHO). The principal cause of the
outbreak is the lack of safe water in urban areas and
communities. Many places had no water supply for much
longer during the outbreak period. By March 2009 the
World Health Organization estimated that 4,011 people
had succumbed to the waterborne disease and 91,164
cases were infected.

Since βI and βW vary from place to place, in our
Zimbabwe case we need to adjust these two parameters
to match the reported infections data published by the
WHO for the period from the end of August 2008 to
March, 2009. Since the total population in Zimbabwe
is 12,347,240, in order to make the calculation simpler
we scale down all data numbers by a factor of 1,200.
All epidemiological parameter values for cholera in the
literature are given in Table 1. When βW = 0.00000002,
βI = 0.0001568, the model prediction can well fit the

Table 1. Model parameters and values.
Parameter Symbol Value

Natural human birth/death rate μ (35y)−1

Shedding rate α 10 cells/ml.day
Bacterial death rate ξ (30d)−1

Recovery rate γ (5d)−1

Vaccination rate φ Variable
Waning rate θ Variable

Vaccine efficacy rate σ Variable

data. After substituting all parameters into Eqn. (5),
R0 = 1.163, showing cholera would spread in Zimbabwe.
Figure 1 shows the data fitting for the infected population
I , where the curve represents the model prediction and
the squares mark the reported Zimbabwean data.

To verify the model prediction, we run the numerical
simulation for a long time interval. Figures 2 and 3 show
the results for I , S and R of the vaccination free model
with the initial condition I(0) = 1, S(0) = 9999, R(0) =
B(0) = 0. By substituting all parameter values into
Eqns. (1)–(4), one can obtain the unique positive endemic
equilibrium (I∗, S∗, R∗) = (0.442, 8699.5, 1300). In
Fig. 2, cholera outbreak reaches the first peak at t = 22.5
weeks with the value 76 (normalized value), then drops
to almost zero, which means the disease is gradually
eradicated from the population. However, next a smaller
peak appears with a smaller value for I as 23 at
t = 325 weeks, and several oscillations later, showing
cholera will restart again and again until I reaches a
steady-state value 0.442, and after that no more outbreaks
are triggered. Figure 3 shows almost the same trend
with different magnitude, susceptible population S and
recovered population R appear the first pulse at t =
22.5 weeks with peak value around 7,700, and 2,224,
respectively. Finally, S and R reach their steady-state
value 8699.5 and 1300, respectively.

4.2. Vaccination model. For the vaccination model
(6)–(10), since the control reproduction number RC ,
which provides useful guidelines for the prevention and
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Fig. 1. Figure of I vs. time (weeks) shows data fitting for the
cholera outbreak in Zimbabwe, where the curve repre-
sents the model prediction and the squares mark the re-
ported data. After normalized by a factor of 1,200, the
cholera outbreak had 10, 30, 66 and 76 (normalized)
cholera infections after 12 weeks, 18 weeks, 22.5 weeks
and 26.5 weeks, respectively, from the beginning of the
outbreak.
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control strategies on cholera epidemics in Zimbabwe,
strongly depends on the parameters βW , βI , φ, σ, and
θ, in order to determine which of the parameters are
most influential on model output, we use the Latin
hypercube sampling approach (Blower and Dowlatabadi,
1994; Marino et al., 2008) to incorporate the uncertainty
in such five parameters into the model. A sensitive
analysis can be performed by calculating Partial Rank
Correlation Coefficients (PRCCs) for each parameter. The
magnitude of the PRCC indicates the importance of the
uncertainty in contributing to the imprecision in predicting
the value of the parameters. As shown in Table 2, we pick
the total infection I as the outcome and use sample sizes
n = 1000 and n = 2000, respectively. Here βI and βW

are more sensitive than other parameters. Especially, βI is
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Fig. 2. Result for I vs. time (weeks) of a vaccination free model
with the initial condition I(0) = 1, S(0) = 9999,
R(0) = B(0) = 0.
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Fig. 3. Result for S, R vs. time (weeks) of a vaccination free
model with the initial condition I(0) = 1, S(0) = 9999,
R(0) = B(0) = 0.

the most influential parameter in determining RC .
If we rewrite the expression for RC as

RC = 1 +
EI2 + FI

DI + H
, (27)

where

E = (γ + μ)(βW α + βIξ)σβI ,

F = [μσ2β2
IN2ξφ − μNσβIξ(γ + μ)φ

+ (γ + μ)2(μ + θ)ξ(μ + θ + φ)]/N(μ + θ),
H = μξ(γ + μ)(μ + θ + φ),

then Eqn. (27) represents approximately a curve passing
the bifurcation point RC = 1. After substituting all
parameters into Eqn. (27) and setting φ = 0.5, σ = 0.2,
θ = 0.5, a bifurcation diagram is illustrated in Fig. 4,
providing a picture of how these equilibria depend on RC

and how stability exchanges at point RC = 1.
Take the economic reason into consideration.

Vaccination strategies cost a lot, so if we want to
succeed in vaccinating the disease and bringing the control
reproduction number less than one, it is necessary to find
the minimum control reproduction number RC , that is,
a certain vaccination rate φ∗ can reduce RC to a value
which is less than one as σ and θ are fixed. Thus

φ∗ >
(μ + θ)[βW αN + βIξN − ξ(γ + μ)]

ξ[(γ + μ) − βINσ]
.

Table 2. Sensitivity analysis.
βw βI φ σ θ

Prcc Value (n = 1000) 0.6298 0.8885 0.3284 0.0558 0.03646
Prcc Value (n = 2000) 0.5878 0.8912 0.2109 0.08665 0.07032
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Fig. 4. Plot of I vs. RC shows a forward bifurcation with φ =
0.5, σ = 0.2, θ = 0.5, other parameters being given in
Table 1. The solid lines represent the stable equilibria,
and the dashed line represents the unstable equilibrium.
There is a stability exchange at RC = 1.
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Here, we consider the parameter values σ = 0.2 (vaccine
is 80% effective), θ = 0.5, based on (28). We need φ >
0.10, hence RC < 1. As shown in Fig. 5, we set the initial
condition as I(0) = 100, V (0) = 100, S(0) = 9800,
R(0) = B(0) = 0, and choose parameter values φ = 0.3,
σ = 0.2, and θ = 0.5. In this case, RC = 0.81 and
the disease quickly dies out (I = 0), so that it can be
eradicated. It is important to note that since the collapse of
Zimbabwe’s public health system, hospitals lacked basic
medicines and staff, and this vaccination standard was not
met in Zimbabwe.

Similarly, we now present numerical simulations in
order to verify the vaccination model prediction with the
initial condition I(0) = 1, V (0) = 1, S(0) = 9998,
R(0) = B(0) = 0, and the parameter values φ = 0.05,
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Fig. 5. Result for I vs. time (weeks) with the initial condition
I(0) = 100, V (0) = 100, S(0) = 9800, R(0) =
B(0) = 0, parameter values φ = 0.3, σ = 0.2, and
θ = 0.5.
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Fig. 6. Result for I vs. time (weeks) with the initial condition
I(0) = 1, V (0) = 1, S(0) = 9998, R(0) = B(0) = 0,
parameter values φ = 0.05, σ = 0.2, and θ = 0.5.

σ = 0.2, θ = 0.5. Under this setting, RC = 1.08.
Figure 6 shows the cholera outbreak will be trigged with a
peak value around 15, which is much lower than that of the
vaccination free model, showing the vaccination strategies
do weaken the cholera outbreak even though they do not
eradicate the outbreak. If we consider a much more longer
period, a single positive endemic equilibrium exists,
(I∗, V ∗, S∗, R∗) = (0.2263, 843.2, 8439.8, 716.78). As
shown in Figs. 7 and 8, after the first outbreak with a
lower magnitude, there exist several oscillations until I
drops to 0.2263. V , S and R reach their steady-state
values at 843.2, 8439.8, 716.78, respectively. Thus, our
vaccination model predicts that, even with the vaccination,
and if φ < φ∗, there will be a cholera outbreak every
70 years in Zimbabwe, and that the disease will remain
endemic in the long term finally.

5. Conclusion

We presented a vaccination model (6)–(10) for the
transmission of cholera, with multiple transmission
pathways: direct human-to-human and indirect
water-to-human modes, which differentiate cholera from
many other infectious diseases. The basic reproduction
number as modified by vaccination, namely, control
reproduction number RC is derived by (12) using the next
generation matrix method. It is a key parameter in our
model. We showed that if RC is less than one, the disease
dies out and the disease-free equilibrium is stable. If RC

is greater than one, the disease persists and the disease
free equilibrium is unstable while the positive endemic
equilibrium is stable. The forward bifurcation occurs at
the critical point RC = 1 (see Fig. 4).

We have to note that it is generally difficult to
show the global stability for the endemic equilibrium
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Fig. 7. Infected population I vs. time (weeks) of a vaccination
model with the initial condition I(0) = 1, V (0) = 1,
S(0) = 9998, R(0) = B(0) = 0.
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for high-dimensional nonlinear systems, such as our
vaccination model (6)–(10), no matter which methods
we use—the classic Lyapunov functions or the classical
Poincaré–Bendixson framework, the theory of monotone
flows–Lipschitz manifolds, etc. (Moghadas and Gumel,
2002; Zhang and Ma, 2003; Li and Zhen, 2005). Recently,
a few efforts (Feckan, 2001; Sanchez, 2010) provide
useful directions for our future work to study the global
stability for high-dimensional models. We only present
the graph trajectory of S vs. I in Fig. 9 with three different
initial conditions, and one can see that the endemic
equilibrium seems to be globally stable if RC > 1.

We must point out that vaccination is not the only
control measure against a cholera outbreak. Water
sanitation, medical therapy and antibiotic treatment are
possible prevention and intervention strategies. Also,
the vaccination does not always work out due to the
limitations of the medical development level and financial
budget, which is also a restriction in our study. However,
it is not possible to extend this vaccination model to
other kinds of diseases, such as HIV, since there is no
vaccine for HIV yet (Gani et al., 1997). Moreover, in this
paper, we consider the vaccination as a continuous state,
since sometimes the vaccination process is discontinuous
or seasonal, it can be modeled by impulsive differential
equations, which is one of our future works.
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