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In this paper, we introduce a method for survival analysis on data streams. Survival analysis (also known as event history
analysis) is an established statistical method for the study of temporal “events” or, more specifically, questions regarding
the temporal distribution of the occurrence of events and their dependence on covariates of the data sources. To make this
method applicable in the setting of data streams, we propose an adaptive variant of a model that is closely related to the
well-known Cox proportional hazard model. Adopting a sliding window approach, our method continuously updates its
parameters based on the event data in the current time window. As a proof of concept, we present two case studies in which
our method is used for different types of spatio-temporal data analysis, namely, the analysis of earthquake data and Twitter
data. In an attempt to explain the frequency of events by the spatial location of the data source, both studies use the location
as covariates of the sources.
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1. Introduction

The so-called data streams have recently attracted
increasing attention in various fields of theoretical,
methodological and applied computer science, such as
database systems, data mining, and distributed systems.
As the notion suggests, a data stream can roughly be
thought of as an ordered sequence of data items that arrive
continuously as time progresses (Golab and Tamer, 2003;
Garofalakis et al., 2002; Das et al., 2003). Streams of
that kind are naturally produced in various applications,
for example, network monitoring, telecommunication
systems, customer click streams, stock markets, or any
type of multi-sensor system.

A data stream system may constantly produce
huge amounts of data. As an illustration, imagine a
multi-sensor system with 10,000 sensors, each of which
sending a measurement every second of time. Regarding
data storage, management and processing, the continuous
arrival of data items in multiple, rapid, time-varying, and
potentially unbounded streams raises new challenges and
research problems. Indeed, it is usually not feasible to
simply store the arriving data in a traditional database
management system in order to perform operations on

those data later on. Rather, stream data must generally be
processed in an online manner in order to guarantee that
results are up-to-date and that queries can be answered
with small time delay. The development of corresponding
stream processing systems is a topic of active research
(Cherniack et al., 2003; Krizanovic et al., 2011).

The remarks on data stream processing in general
also apply to the analysis of stream data in particular.
In fact, mining data streams and learning from data
streams have been topics of active research in recent
years (Gaber et al., 2005; Gama and Gaber, 2007; Gama,
2012). Roughly speaking, the key motivation behind
these and related fields is the idea of a system that
learns incrementally, and maybe even in real time, on a
continuous stream of data, and which is able to properly
adapt itself to changes of environmental conditions or
properties of the data-generating process. Systems
with these properties have already been developed for
different machine learning and data mining problems,
such as clustering (Aggarwal et al., 2003; Beringer
and Hüllermeier, 2006; Oliveira and Gama, 2012),
classification (Hulten et al., 2001; Ikonomovska et al.,
2011), and frequent (sequential) pattern mining (Cormode
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and Muthukrishnan, 2005; Chen et al., 2005).

In this paper, we address another data analysis
problem in the context of data streams, namely, the
analysis of temporal “events” or, more specifically,
questions regarding the temporal distribution of (duration
between) the occurrence of events and their dependence
on covariates of the data sources. To this end, we develop
an incremental, adaptive version of survival analysis,
which is a standard statistical method for event analysis.
The basic mathematical tool in survival analysis is the
hazard function, which models the “propensity” of the
occurrence of an event (marginal probability of an event
conditional to no event so far) as a function of time.

Connections between survival analysis on the one
hand and machine learning and data mining on the other
have already been established by some authors (see, for
example, Zupan et al., 2000; Amati et al., 2012). To the
best of our knowledge, however, survival analysis has not
been considered in the data stream setting so far. This is
arguably surprising, for several reasons. Most notably, the
temporal nature of event data naturally fits the data stream
model, and indeed, “event data” are naturally produced
by many data sources. Moreover, survival analysis is
widely applicable and routinely used in many application
fields. In fact, survival analysis, a term commonly used
in medicine, is also known as event history analysis in
sociology, reliability analysis in engineering and duration
analysis in economics. Although “survival analysis”
seems to be most widely used, we shall adopt the term
“Event History Analysis” (EHA) in the remainder of this
paper, simply because this term is more neutral and less
associated with a specific application.

To make event history analysis applicable in the
setting of data streams, we develop an adaptive (online)
variant of a model that is closely related to the well-known
proportional hazard model proposed by Cox and Oakes
(1984). In this model, the hazard rate may depend
on one or more covariates associated with a statistical
entity. More specifically, in the proportional hazard
model, the effect of an increase in a covariate by one unit
is multiplicative with respect to the hazard rate.

We adopt a sliding window approach, which is a
common technique in data stream analysis. In order to
estimate the influence of the covariates, we assume the
hazard rate to be constant on the current window. The
estimate then depends on the frequency and temporal
distribution of events falling inside the window, and
sliding the window calls for adapting the estimate in an
incremental (and as efficient as possible) manner.

The remainder of the paper is organized as follows.
As a background, we recall some basic information
about data streams in Section 2 and on event history

analysis in Section 3. Section 4 is devoted to our
extension of EHA and describes the main adaptations
that we realized to make this method applicable in a
streaming setting. Finally, to evaluate our approach, we
present two case studies that are meant as a proof of
principle. In both studies, our method is used for a
specific type of spatio-temporal data analysis, namely, the
analysis of earthquake data (Section 5) and of Twitter data
(Section 6).

2. Data stream model

The data stream model assumes that input data are not
available for random access from disk or memory, such as
relations in standard relational databases, but rather arrive
in the form of one or more continuous data streams. The
stream model differs from the standard relational model in
the following ways (Babcock et al., 2002):

• The elements of a stream arrive incrementally in an
“online” manner. That is, the stream is “active” in
the sense that the incoming items trigger operations
on the data rather than being sent on request.

• The order in which elements of a stream arrive are
not under the control of the system.

• Data streams are potentially of unbounded size.

• Data stream elements that have been processed
are either discarded or archived. They cannot
be retrieved easily unless being stored in memory,
which is typically small relative to the size of the
stream.1

• Due to limited resources (memory) and strict time
constraints, the computation of exact results will
usually not be possible. Therefore, the processing
of stream data does commonly produce approximate
results (Considine et al., 2004).

For data mining and machine learning methods, the above
properties have a number of important consequences and
come with several challenges. In particular, the standard
“batch mode” of learning, in which the entire data as a
whole is provided as an input to the learning algorithm,
is no longer practicable. Correspondingly, the learner is
not allowed to make several passes through the data set,
which is commonly done by standard methods in statistics
and machine learning. Instead, the data must be processed
in a single pass, which implies an incremental mode of
learning and model adaptation.

1Stored/condensed information about past data is often referred to as
a synopsis.
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Domingos and Hulten (2003) list a number of
properties that an ideal stream mining system should
exhibit, and suggest corresponding design decisions: the
system uses only a limited amount of memory; the time
to process a single record is short and ideally constant;
the data are volatile and a single data record accessed
only once; the model produced in an incremental way
is equivalent to the one that would have been obtained
through common batch learning (on all data records
so far); the learning algorithm should react to concept
drift (i.e., any change of the underlying data-generating
process) in a proper way and maintain a model that always
reflects the current concept.

3. Event history analysis

Event history analysis is a statistical method for modeling
and analyzing the temporal distribution of events in the
course of time or, more specifically, the duration before
the occurrence of an event; the notion of an “event” is
completely generic and may indicate, for example, the
failure of an electrical device. The method is perhaps even
better known as “survival analysis”, a term that originates
from applications in medicine, in which an event is the
death of a patient and the survival time the time period
s = tevent − tstart between the beginning of the study and
the occurrence of this event.

Thus, the basic statistical entities in EHA are
subjects, typically described in terms of feature vectors
x ∈ R

n, together with their survival time s. The goal,
then, is to model the dependence of s on x. In principle,
one may thus be tempted to approach this task as a
standard regression problem with input (regressor) x and
output (response) s.

However, the survival time s is normally not
observed for all subjects. Indeed, the problem of cen-
soring plays an important role in EHA and occurs in
different facets. In particular, it may happen that some
of the subjects are still under observation when the study
ends at time tend; in other words, these subjects have
survived till the end of the study. They are censored or,
more specifically, right censored, since tevent has not been
observed for them; instead, it is only known that tevent >

tend. Another reason for censoring could be that a subject
leaves the study, not since the event of interest occurred,
but simply for other reasons (for example, a patient in a
breast cancer study may die from a car accident).

3.1. Survival function and hazard rate. Suppose the
time for an event to occur is modeled as a real-valued
random variable T with probability density function f(·).
Moreover, denote the cumulative distribution function by

F (·), i.e.,

F (t) = P {T ≤ t} =
∫ t

0

f(x) dx

is the probability of an event to occur before the time t.
The survival function S(·) is then defined as

S(t) = P {T > t} = 1 − F (t) =
∫ ∞

t

f(x) dx. (1)

Since S(t) is the probability that the event did not occur
until time t, it can be used to model the probability of an
event that is right censored.

The hazard function or hazard rate h(·) is defined as
follows:

h(t) = lim
dt→0

P {t < T ≤ t + dt |T > t}
dt

(2)

=
f(t)
S(t)

.

Roughly speaking, h(t) is the conditional probability that
the event will occur within a small time interval after t,
given that it has not occurred until t. More specifically,
h(t) is the limit of this probability when the length of the
time interval tends to 0. Mathematically, it is hence a kind
of density (and not a probability) function, which means
that it may thoroughly assume values larger than 1. Note
that the density f(·) can be recovered from the hazard rate
and the survival function, since

f(t) ≡ h(t) · S(t).

3.2. Modeling the hazard rate. Since a statistical
entity is not always a person, we shall subsequently use
the more neutral term “instance” instead of “subject”.
Suppose such an instance to be described in terms of a
feature vector

x = (x1, . . . , xn)� ∈ R
n, (3)

where xi is the i-th property of the instance (for example,
the age of a patient in a medical study). Assuming the
hazard rate for this instance to depend not only on time
but also on the properties (features) xi, it can be written
as h = h(x, t).

Often, the hazard rate is even assumed to be constant
over time, in which case it only depends on x but not on t.
In this case, we shall also denote it by λ = λ(x). Note that
a constant hazard rate gives rise to an exponential survival
function:

S(t) = exp(−λt).

In the Cox proportional hazard model (Cox and Oakes,
1984), the hazard rate is modeled as a log-linear function



202 A. Shaker and E. Hüllermeier

of the features xi:

λ(x) = α0 · exp
(
x�β

)
(4)

= α0 · exp

(
n∑

i=1

βixi

)
.

In this context, the xi are also called covariates.
Extending the covariate vector x in (3) by a constant entry
x0 ≡ 1, (4) can be written more compactly as

λ(x) = exp
(
x�β

)
, (5)

with β0 = log(α0). As can be seen, according to the
above model, the effect of an increase in a covariate by one
unit is multiplicative with respect to the hazard rate; or,
stated differently, the hazard rate is proportional to each
covariate: increasing xi by one unit increases λ(x) by a
factor of αi = exp(βi).

Statistical methods for event history analysis, such
as Cox regression (Cox, 1972), provide estimates of the
model parameters βi and, therefore, of the hazard rate
itself. The latter can be used, for example, for prediction
purposes: given an estimate of the hazard rate, one can
predict the time span till the next event will occur, both
in terms of point predictions (e.g., the expected survival
time of a patient) and confidence sets (e.g., a confidence
interval for the survival time). At least as interesting
as the hazard rate itself, however, are the estimates of
the parameters βi, which inform about the influence of
different covariates on the hazard rate. For example, if
βi = log(2) is the parameter modeling the influence of
the covariate smoking (a binary attribute with value 1
if the patient is a smoker and 0 otherwise) in a medical
study, this means that—under the model (5) and ceterus
paribus, i.e., all other covariates being equal—smoking
doubles the hazard rate and therefore halves the expected
survival time.

Before proceeding, let us note that non-constant
hazard functions h(x, t), in which the rate does not only
depend on covariates x, but also changes with time t,
have been studied extensively in the statistical literature,
and many parameterized families of functions have been
proposed for modeling the influence of time on the rate
(Cox and Oakes, 1984). As will become clear later
on, however, the constant model λ(x) is sufficient for
our purpose, or at least provides a sufficiently good
approximation. This is due to the use of a sliding window
approach: roughly speaking, the assumption of a constant
rate does not refer to a data stream as a whole but only
to the current time window; therefore, by sliding the
window, the hazard rate may actually vary in the course
of time, too. Overall, our model thus even becomes very

flexible, especially since time-dependence is modeled in a
non-parametric way.2

4. Event history analysis on data streams

Our setting assumes a fixed set of J data streams to
be given, each of which corresponds to an instance
x characterized in terms of a vector of covariates
(x1, . . . , xn). Moreover, each stream produces a sequence
of temporal events, i.e., events that are associated with a
unique time of occurrence; (see Fig. 1 for an illustration).
For simplicity, we assume the underlying time scale to
be discrete, i.e., time progresses in discrete steps (such
as seconds or minutes).

As an example, imagine that each stream
corresponds to a book offered by an online book
store, and the covariates are properties of the book (price,
genre, etc.). Moreover, an “event” occurs whenever a
client is purchasing a book. The hazard rate associated
with a book can then be interpreted as a measure of
the propensity of people to buy this book. Obviously,
this propensity will change in the course of time, and
for each book; therefore, it is interesting to monitor
the evolution of its hazard rate. Apart from that, it is
interesting to figure out the influence of the covariates on
the buying behavior of the clients and, perhaps even more
importantly, how this influence changes over time. One
may expect, for example, that the price of a book will
become more important, and will hence have a stronger
influence on the hazard rates of all books, in times of an
economic crisis.

The previous example has made clear that, when
looking at a single data stream, we are interested in events
that can occur repeatedly (for the same instance x) in
the course of time. Events of that kind are called recur-
rent events and need to be distinguished from those that
can occur at most once (like the death of a patient in a
medical study). More specifically, we are interested in the
time duration between the occurrence of two events. For
a fixed instance (data stream) x, suppose the hazard rate
λ = λ(x) to be constant, and let

t1 < t2 < · · · < tk

denote the time points at which an event has been
observed for this instance; moreover, let a = t0 < t1
and b = tk+1 > tk denote the start and the end of
the observation interval [a, b]. The probability of the

2To some extent, this is comparable with statistical methods like ker-
nel density estimation or locally weighted linear regression.
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observation sequence T (x) = {tτ}k
τ=1 is then given by

P(T (x)) =

(
k∏

τ=1

f(tτ−1, tτ )

)
· S(tk, tk+1) (6)

= λ(x)k ·
k+1∏
τ=1

exp
(
− λ(x)(tτ − tτ−1)

)
,

where

f(t′, t) = h(t) · S(t′, t)

= λ(x) · exp
(
− λ(x)(t − t′)

)
is the probability that an event occurs at time t if the
observation starts at time t′.

4.1. Left censoring. More generally, suppose that the
observation of the first event started at an unobserved time
t prior to the start of the observation window at time t0;
this is a situation of left censoring that we are facing in
our sliding window approach to be detailed below. The
probability to observe the duration from t0 to t1 is then
given by the conditional probability of the event at time t1
given survival until t0, i.e., by the expression

f(t0, t1) =
f(t, t1)
S(t, t0)

=
λ(x) · exp

(
− λ(x)(t1 − t)

)
exp

(
− λ(x)(t0 − t)

)
= λ(x) · exp

(
− λ(x)(t1 − t0)

)
.

Thus, we eventually obtain the same expression (6).
Roughly speaking, this is due to the fact that a process
with a constant hazard rate is “memoryless”.

4.2. Parallel event sequences. In our setting, we
assume to observe a sequence of recurrent events T (x) =
{tτ}k

τ=1 not only for a single instance x, but for a fixed set
of J instances {x1, . . . , xJ}, with xj = (xj

1, . . . , x
j
n)�.

Thus, the data relevant to a time window [a, b] are given
in the form of J parallel event sequences:

D =
(
T (x1), . . . , T (xJ )

)
(7)

=
(
{t1τ}k1

τ=1, . . . , {tJτ }kJ
τ=1

)
,

where kj is the number of events for xj and {tjτ}
kj

τ=1 the
corresponding time points. Assuming independence, the
probability of D is

P(D)

=
J∏

j=1

P(T (xj))

=
J∏

j=1

⎡
⎣λ(xj)kj

kj+1∏
τ=1

exp
(
− λ(xj)

(
tjτ − tjτ−1

))⎤⎦ ,

and the logarithm of this probability is

log

⎛
⎝ J∏

j=1

P(T (xj))

⎞
⎠

=
J∑

j=1

⎡
⎣kj log (λ(xj)) −

kj+1∑
τ=1

λ(xj)
(
tjτ − tjτ−1

)⎤⎦ .

For the model (5), this expression yields the following
log-likelihood function for the parameter vector β:

�(β) =
J∑

j=1

[
kjβ0 + kj

(
n∑

i=1

βix
j
i

)

−
kj+1∑
τ=1

β0 exp

(
n∑

i=1

βix
j
i

)(
tjτ − tjτ−1

)⎤⎦

=
J∑

j=1

[
kjβ0 + kj

(
n∑

i=1

βix
j
i

)

−β0 exp

(
n∑

i=1

βix
j
i

)
(b − a)

]
.

4.3. Adaptive ML estimation. Parameter estimation
on a time window [a, b] can now be done by means of
Maximum Likelihood (ML) estimation, i.e., by finding the
maximizer of the above likelihood function:

β∗ = (β∗
0 , β∗

1 , . . . , β∗
n) = arg max �(β).

Unfortunately, there is no analytical expression for β∗,
so that the estimator needs to be found by means of
numerical optimization procedures. Nevertheless, since
the log-likelihood function �(β) is concave (which can
be shown by checking corresponding conditions on the
second derivatives), simple gradient-based optimization
techniques and online versions of gradient ascent (Bottou,
1998) can be applied and in fact turned out to work rather
well.

The use of local optimization techniques is also
reasonable as it can be turned quite naturally into
an incremental learning algorithm applicable in our
streaming setting. Recall that we slide a time window
of fixed length w along the time axis. More specifically,
the window is repeatedly moved in discrete steps, each
time replacing the current window Wt = [t, t + w] by
the shifted one Wt+Δt = [t + Δt, t + w + Δt]. A shift
of that kind will of course also change the parallel event
sequences (7) associated with the current time window
and, therefore, necessitate a re-estimation of the parameter
vector β.

Typically, however, the event sequences T (xj) will
change but slightly, since most of the current events
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Fig. 1. Illustration of our setting consisting of a set of J (here J = 6) parallel data streams: every stream corresponds to a statistical
entity characterized in terms of a vector of covariates. Moreover, each stream produces a sequence of temporal events (marked
by solid squares). A sliding window (indicated by the grey box) is masking outdated events that occurred in the past.

Fig. 2. Illustration of the shift of the time window: the current window Wt = [t, t + w] is replaced by the new one Wt+Δt =

[t + Δt, t + w + Δt]. While the status of some of the events changes (filled boxes), the status of the others (non-filled boxes)
remains the same (either outdated or active).

tjτ will remain inside the window—only those close to
the lower boundary t will fall out (namely, those with
t ≤ tjτ < t + Δt), while new events observed between
t + w and t + w + Δt will be added (see Fig. 2 for
an illustration). In any case, the new ML estimate of β

will normally be found in close proximity to the old one.
Therefore, the current estimate β∗

t , i.e., the ML estimate
for the current time window Wt = [t, t + w], will provide
a good initial solution for the re-estimation problem to
be solved by our gradient-based optimizer. Indeed, in
practical experiments, we found that only a few adaptation
steps are generally needed to reach the new ML estimate
β∗

t+Δt (with sufficient accuracy).

As mentioned before, what our adaptive estimation
procedure eventually produces is a sequence of parameter
estimates that (implicitly) represents the evolution of both
the parameter β and the hazard rates λj = λ(xj) over
time. More specifically, for a fixed time point τ , let Wτ

denote the set of all time windows covering this time
point:

Wτ =
{
Wt | τ ∈ [t, t + Δt]

}
.

Moreover, let β∗
t denote the ML estimation of β on Wt.

Then, we define the parameter β at time τ by averaging:

β(τ) =
1

|Wτ |
∑

Wt∈Wτ

β∗
t . (8)

Correspondingly, the hazard rate λj at time τ is given by

λ(τ) = exp
(
x�

j β(τ)
)
. (9)

5. Case study: Earthquake analysis

As a proof of concept, we conducted two case studies
in which our streaming version of EHA is used for
spatio-temporal data analysis. While the temporal aspect
is naturally captured by the hazard rate model, the
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spatial aspect is incorporated through the use of spatial
information as covariates of the data streams. In other
words, the vector (3) of covariates describes the spatial
location of a data source.

In our first study, we apply our method to the analysis
of earthquake data. The data is collected from the
USGS3 (United States Geological Survey), specifically
from the catalog of the NEIC4 (National Earthquake
Information Center), whose mission is to quickly discover
the most recent destructive earthquakes in terms of
location and magnitude and to broadcast this information
to international agencies and scientist.

5.1. Data generation. The earthquakes were collected
in the time period between January 1, 2000 and the end of
March 27, 2012. Since entries in the USGS/NEIC catalog
can be added or modified at any time, we stick to the data
in the catalog at the time of exportation, namely, April
12, 2012. Table 1 presents an example of earthquake
data (a list of 5 earthquakes with their occurrence times
and attributes). The online catalog of the USGS/NEIC
retains only significant earthquakes with a magnitude
bigger than 2.5, though very few micro-earthquakes (with
a magnitude less than 1) could be found (and even a
few earthquakes with missing magnitude). In total, we
collected 319,884 earthquakes around the globe.

Every earthquake is identified by its geographic
coordinate, the exact time of occurrence (up to the
second), and the magnitude and depth. Figure 3(a) shows
a picture of the collected earthquakes, plotted as dots at
the place of their rounded geographic location.

Recall that, in our setting introduced in Section 3,
we assume to observe event sequences for a fixed set of
instances. In order to define these instances, we discretize
the globe both in terms of longitude and latitude, and
associate one instance with each intersection point. More
specifically, with φ ∈ {−90,−89, . . . , 90} for longitude
and η ∈ {−180,−179, . . . , 180} for latitude, we end
up with 181 × 361 = 65, 341 instances in total. The
regions thus produced are obviously not equal in size:
since latitudes are not parallel like longitudes, areas near
the equator are smaller than those closer to the poles.

Furthermore, recall that each instance is described
in terms of features (covariates) xi, which, according
to (5), have a proportional effect on the hazard rate.
In order to account for possibly nonlinear dependencies
between spatial coordinates and risk of earthquake, we
define these features in terms of a fuzzy partition, that
is, a partition defined in terms of fuzzy sets (Zadeh,
1965). In contrast to a standard partition defined in

3http://www.usgs.gov/.
4http://earthquake.usgs.gov/regional/neic/.

terms of intervals, this allows a smooth transition between
spatial regions. More specifically, we discretize both
longitude and latitude by means of triangular fuzzy sets
as shown in Fig. 3(c). The number of fuzzy sets
was chosen so as to achieve a reasonable compromise
between spatial resolution and computational complexity.
A two-dimensional (fuzzy) discretization of the globe
is defined in terms of the Cartesian product of these
two one-dimensional discretizations, using the minimum
operator for fuzzy set intersection. The covariates of an
instance x associated with coordinates (φ, η) are then
simply given by the membership degrees in all these
two-dimensional fuzzy sets, i.e., the covariates are of the
form

xi,j = min
(
Ai(φ), Bj(η)

)
,

where Ai is one of the 11 fuzzy sets for longitude and Bj

one of the 10 fuzzy sets for latitude; thus, each instance is
of the form

x =
(
x1,1, x1,2, . . . , x1,10, . . . , x11,10

)
∈ [0, 1]110.

5.2. Results. Given the data produced in this way and
after sorting all earthquakes by their time of occurrence,
we are able to apply our method as outlined in Section 3.
We set the length of the time window to 3 months and
the shift parameter Δ to 1 week. These values appear to
be reasonable for this application, although they are not
optimized according to any specific criterion.

The results we obtain in terms of time-dependent
estimates of the parameters βi,j , each of which is
associated with a covariate xi,j and hence with a spatial
(fuzzy) region Ai × Bj , appear to be quite plausible.
In fact, several interesting observations could be made
for data from the last decade. For example, as can be
seen in Fig. 4(a), the occurrence of Sichuan’s earthquake
in April 2008 comes with a significant increase in the
coefficients of the fuzzy sets covering that area: the FS 83
line increases steeply a few weeks before the shock, which
caused about 80,0000 causalities.

The same can be noticed in Fig.4(b) before
Tohoku’s earthquake in March 2011, whose location
was (38.32◦N,142.36◦E). The coefficient of the FS 85
line increases by a factor of 4 till few hours before
the earthquake, indicating an increased hazard rate for
the (fuzzy) area around (φ, η) = (120, 120). Another
interesting observation is the increasing estimated hazard
in the epicenter of both earthquakes, as shown in Fig. 5.

http://www.usgs.gov/
http://earthquake.usgs.gov/regional/neic/


206 A. Shaker and E. Hüllermeier

Table 1. Example of earthquake data: 5 earthquakes that occurred on the first day of 2012.
Year Month Day UTC Time Latitude Longitude Mag. Depth Catalog

hhmmss.mm

2012 01 01 003008.77 12.008 143.487 5.1 35 PDE-W
2012 01 01 003725.28 63.337 -147.516 3.0 65 PDE-W
2012 01 01 004342.77 12.014 143.536 4.4 35 PDE-W
2012 01 01 005008.04 -11.366 166.218 5.3 67 PDE-W
2012 01 01 012207.66 -6.747 130.007 4.2 145 PDE-W

(a)

(b)

(c)

Fig. 3. Collected dataset of earthquakes, plotted by their geographic coordinates. The data contain earthquakes between January 1,
2000 till the end of March 27, 2012: earthquakes only (a), with latitude and longitude lines added (b), fuzzy partitions on the
two coordinates (c).
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Fig. 4. Parameters for those areas with significant earthquakes in 2008 and 2011.

6. Case study: Twitter data

Our second case study is based on data collected from
Twitter5, which is an online microblogging web site.
Twitter is a service that allows users to send short
messages of up to 140 characters known as “tweets”.
Every tweet is attributed by some meta data, including the
ID of the user who wrote it and the time the tweet was
sent. Further attributes can be extracted from the tweet
with the permission of the user. Those attributes indicate
the geolocation of the user when they posted their tweet;
this is supported by a GPS (Global Positioning System)
functionality embedded in a mobile device or a tablet PC.
The geolocation is represented as a pair (lo, la) with an
entry for the longitude and for the latitude. Table 2 shows
an example of Twitter data written in the Json6 format.

We collected tweets generated inside the bounding
box of Germany, which is determined by the corner points

5http://www.twitter.com/.
6http://json.org/.

(lo, la) = (5.53, 47.16) and (15.2, 55.03). This data
were collected during a timespan of about two months,
namely, between March 20, 2012 and May 27, 2012. In
total, we collected about 4.9 million tweets coming mainly
from Germany and its surrounding countries (Denmark,
Poland, Czech Republic, Austria, Switzerland, France,
Belgium and the Netherlands). Surprisingly, only 1.8
million of them were from inside Germany.

Like in the previous study on earthquakes, we apply
a discretization on the area of Germany, considering
every intersection point of the two coordinates
with φ ∈ {5.5, 5.6, . . . , 15.2} for longitude and
η ∈ {47.1, 47.2, . . . , 55.1} for latitude, provided this
intersection lies inside the borders of Germany. As a
result, we end up with 5013 intersection points, which
are considered the instances (data streams) xj to be kept
under observation. The next step is to find a proper
representation of the instances in terms of covariates.
Here, we decided to describe every instance by the

http://www.twitter.com/.
http://json.org/.
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Fig. 5. Hazard values for those areas with significant earthquakes in 2008 and 2011.

normalized vector of Mahalanobis distances to the center
of each of the 16 German states. Thus, each instance is
represented in terms of the vector

xj = (xj
1, . . . , x

j
16) ∈ R

16,

where xj
i is the distance of the location xj from the (center

of the) i-th German state. By sorting the tweets according
to their creation times, considering only those coming
from Germany and assigning every tweet to the closest
instance xj , we obtain a parallel stream of events that can
again be processed by our method described in Section 3.

We fix the window size to 3 days and the shift
parameter Δt to one day. As a result, we again
obtain the time-dependent estimates (8) of the parameters
β1, . . . , β16 associated with the 16 German states.
Figure 6 shows how the estimated parameters change over
time, compared with the base line hazard α0 that is also
plotted in each subfigure. An increasing parameter βi

can be interpreted as follows: the closer a location xj to

the corresponding state, the higher the hazard or, say, the
propensity of users to send a tweet from that location.

As can be seen in Figs. 6(a) and (d), the parameter
for the state Berlin is increasing in the time between May
2 and 5 while the parameter for the state Brandenburg
is decreasing. Looking for an explanation for this
observation, we found that the conference re:publica7

took place during that time. This conference is a big
meeting for bloggers from Germany and all around the
world. Consequently, one can expect that more bloggers
were in Berlin and less in the surrounding area, including
the state of Brandenburg.

The opposite can be said about Saxony-Anhalt,
which was seen as a gate for travelers, so its parameter
was also increasing during that time. The parameters
associated with the mentioned states are marked by the ‘∗’
symbol in Fig. 6. In a similar way, Fig. 6(d) shows how

7http://re-publica.

http://re-publica.
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Table 2. Two examples of Twitter messages. Unimportant attributes are removed and some others are obfuscated, whereas important
attributes are written in bold. Both messages are artificially created.

favorited:false, text:’Stau: A8 München Richtung Stuttgart 6 km zur Ausfahrt im Schneckentempo..’, trun-
cated:false, created at:Fri Feb 10 10:38:47 +0000 2012, retweeted:false, retweet count:0, coordinates:type:Point,
coordinates:[9.55755, 48.6333], ..., entities:user mentions:[], urls:[], hashtags:[], geo:type:Point, coordi-
nates:[48.6333, 9.55755], ..., place:bounding box:type:Polygon, coordinates:[[[9.534815, 48.616779], [9.594667,
48.616779], [9.594667, 48.640891], [9.534815, 48.640891]]], place type:city, ..., country code:DE, attributes:,
full name:Aichelberg, Göppingen, name:Aichelberg, id:29ef9f01a553e601, country:Germany, ..., id str:###,
user:default profile:true, notifications:null, ..., time zone:Berlin, created at:Fri Sep 03 14:25:38 +0000 2010, ver-
ified:false, geo enabled:true..., favourites count:0, lang:de, ..., followers count:335, ..., location:Karlsruhe, ...,
name:###, ..., listed count:21, following:null, screen name:###, id:###, ..., statuses count:10935, utc offset:3600,
friends count:0, ..., id:###, ...
text:’top atmosphere in Weserstadion today, a very good match...’, ..., created at:Tue Apr 10 21:37:28
+0000 2012, place:bounding box:type:Polygon, coordinates:[[[8.481599, 53.011035], [8.990593, 53.011035],
[8.990593, 53.228969], [8.481599, 53.228969]]], country:Germany, attributes:, full name:Bremen, Bremen,
.., country code:DE, name:Bremen, id:9467fbdc3cdbd2ef, place type:city, coordinates:type:Point, coordi-
nates:[8.837596, 53.06693] , retweeted:false, in reply to status id:null, ..., truncated:false, contributors:null, possi-
bly sensitive:false, in reply to screen name:null, favorited:false, user:default profile:false, follow request sent:null,
lang:de, friends count:200, ..., is translator:false, created at:Sat May 23 13:01:45 +0000 2009, id str:###, ..., url:null,
following:null, verified:false, ..., location:Germany, ..., statuses count:4537, ..., time zone:Berlin, .., utc offset:3600,
followers count:432, ..., id:###, retweet count:0

the hazard associated with the state Schleswig-Holstein,
marked by the ‘+’ symbol, has increased on April
28. This was supposedly a direct effect of hosting a
conference for a political German party, namely the Pi-
ratenpartei.

In a second experiment with the same stream of
events, our aim was to observe changes between the city
and the countryside. This was done by considering only
instances located inside the states of Bremen and Lower
Saxony8. Instances are now described only by a single
binary covariate, indicating whether or not an instance is
located in Bremen. Figure 7 shows how the corresponding
parameter changes on a weekly basis. Interesting patterns
can be observed especially for the weekends. First,
there are normal weekends where people move from
the condensed area of Bremen to the surrounding state,
causing a decrease in the hazard (less Tweets sent from
inside Bremen and more from outside); this pattern is
marked by the ‘+’ symbol. Second, we have weekends
on which the local football club (Werder Bremen) hosted a
football match in the German soccer league (Bundesliga),
causing an increase in the hazard; this group is marked by
‘∗’ symbol.

To get an idea of the efficiency of the system, Fig. 8
provides a summary of the time required for a single
adaptation step in the form of a histogram over runtimes.
As can be seen, the adaptation time is in the range of
seconds and upper bounded by one minute—compared

8Bremen is the smallest state in Germany, containing only two cities.
It is surrounded by the larger state of Lower Saxony.

to the shift length Δt of one day, this time is almost
negligible. The peak of the distribution in the vicinity of
zero suggests moreover that the adaptation effort is almost
zero most of the time.

Runtime in seconds

F
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0 10 20 30 40 50 60
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10

20

Fig. 8. Time needed for model adaptation.

7. Conclusion

In this paper, we introduced an adaptive approach to
survival analysis (event history analysis) on data streams.
To this end, we adopted a sliding window approach and
proposed an adaptive (online) variant of a model that is
closely related to the well-known Cox proportional hazard
model. In this approach, maximum likelihood estimation
of the model parameters is performed repeatedly, adapting
the estimates whenever the time window has been shifted.

As a first proof of concept, we used our method for
studying the occurrence of significant earthquakes during
the last decade. Here, an event is an earthquake, and a
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Fig. 6. Hazard rates for the 16 German states together with the base line hazard α0, on a logarithmic scale.
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Fig. 7. Base line hazard and hazard rate for the distinction of the city of Bremen from the surrounding state of Lower Saxony.

statistical entity is a two-dimensional region on the globe
characterized by its spatial coordinates; more specifically,
we make use of fuzzy discretization techniques in order to
capture the influence of the spatial location on the hazard
rate in a flexible way. The results we obtain are plausible

and agree with expectation. For a region such as Tohoku
in Japan, one can observe a significant increase in the
hazard rate prior to the disastrous earthquake in 2011.
Similar observations can be made for other significant
earthquakes such as Sichuan’s in 2008. Plausible results
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could also be obtained in a second study using streams of
almost 5 million Twitter messages. Interesting patterns or
irregularities in the time-dependent parameter estimations
of our hazard model could be explained by big events such
as conferences or football matches.

Needless to say, our approach can be generalized
and refined in various ways. So far, for example,
we simply assumed the length of the sliding window
to be fixed and predefined. However, noting that the
window length should be chosen so as to achieve an
optimal compromise between the availability of data (if
the window is too short, it may not contain enough events)
and the representativeness of the estimated hazard rate for
the current time point (if the window is too long, it may
cover outdated events that are no longer representative),
appropriate means for dynamically adapting the length are
clearly desirable.

In the stream-based approach to EHA as presented
in this paper, like in event history analysis in general,
event data are essentially assumed to be given. Or, stated
differently, the production of these data is not considered
part of the system; instead, events and the time points of
their occurrence are provided by some external source.
In many contemporary applications, however, the detec-
tion of an event can be seen as a non-trivial problem in
itself. For example, suppose an event is defined as a Tweet
reporting about a disaster or a crime (Li et al., 2012).
The production of an event sequence will then call for
efficient text mining and analysis techniques. We consider
the combination of our approach with methods for event
detection (Yang et al., 1998; Allan et al., 1998; Weng and
Lee, 2011; Sakaki et al., 2013) as an interesting challenge
for future work.

Another direction of future work is the use of our
approach for event prediction on data streams. In fact,
although the aspect of prediction has not been in the
focus of this paper, we already mentioned that hazard
rate models can be used for predicting the time span till
the occurrence of the next event, both in terms of point
predictions and confidence intervals. Thus, they may
provide an interesting alternative to existing approaches to
event prediction, which are based on other statistical and
machine learning methods (Cheon et al., 2009; Amodeo
et al., 2011; Radinsky and Horvitz, 2013).
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Eyke Hüllermeier is with the Department of
Mathematics and Computer Science at Marburg
University (Germany), where he holds an ap-
pointment as a full professor and heads the Com-
putational Intelligence Group. He holds M.Sc.
degrees in mathematics and business comput-
ing, a Ph.D. in computer science, and a habili-
tation degree, all from the University of Pader-
born (Germany). His research interests are cen-
tered around methods and theoretical foundations

of intelligent systems, with a specific focus on machine learning and rea-
soning under uncertainty. He has published more than 200 articles on
these topics in top-tier journals and major international conferences, and
several of his contributions have been recognized with scientific awards.
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