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Nonnegative Matrix Factorization (NMF) is an important tool in data spectral analysis. However, when a mixing matrix
or sources are not sufficiently sparse, NMF of an observation matrix is not unique. Many numerical optimization algo-
rithms, which assure fast convergence for specific problems, may easily get stuck into unfavorable local minima of an
objective function, resulting in very low performance. In this paper, we discuss the Tikhonov regularized version of the
Fast Combinatorial NonNegative Least Squares (FC-NNLS) algorithm (proposed by Benthem and Keenan in 2004), where
the regularization parameter starts from a large value and decreases gradually with iterations. A geometrical analysis and
justification of this approach are presented. The numerical experiments, carried out for various benchmarks of spectral
signals, demonstrate that this kind of regularization, when applied to the FC-NNLS algorithm, is essential to obtain good
performance.

Keywords: blind source separation, nonnegative matrix factorization, active-set algorithm, regularized NMF, polytope
approximation.

1. Introduction

Nonnegative Matrix Factorization (NMF) decomposes an
input matrix into lower-rank factors that have nonnegative
values and usually some physical meaning or interpreta-
tion. Hence, it has already found diverse applications in
data spectral analysis, mostly as a tool for blind unmix-
ing or extraction of pure spectra (endmembers) from ob-
served noisy mixtures. Examples include Raman scat-
tering (e.g., Sajda et al., 2003; Li et al., 2007; Miron
et al., 2011), hyperspectra unmixing (e.g., Miao and Qi,
2007; Zymnis et al., 2007; Zhang et al., 2008; Jia and
Qian, 2009; Guo et al., 2009; Huck et al., 2010; Chan et
al., 2011; Heylen et al., 2011; Qian et al., 2011; Iordache
et al., 2011; 2012; Plaza et al., 2012; Bioucas-Dias et al.,
2012; Zdunek, 2012), spectral unmixing in microscopy
(e.g., Pengo et al., 2010), chemical shift imaging (e.g.,
Sajda et al., 2004), reflectance spectroscopy (e.g., Pauca
et al., 2006; Hamza and Brady, 2006), fluorescence spec-
troscopy (e.g., Gobinet et al., 2004), two-photon spec-
troscopic analysis (e.g., Hancewicz and Wang, 2005), as-
trophysical ice spectra unmixing (e.g., Igual et al., 2006;
Igual and Llinares, 2008; Llinares et al., 2010), and gas
chromatography-mass spectrometry (e.g., Likic, 2009).

Various numerical optimization algorithms have
been successfully applied for NMF. Probably the most
popular ones are based on multiplicative updates (Lee
and Seung, 1999) that assure a monotonic convergence
but only with a linear rate. To tackle the slow conver-
gence problem, several algorithms with additive updates
have been proposed, including Projected Gradient (PG)
descent (Lin, 2007), Alternating Least Squares (ALS)
(e.g., Berry et al., 2007) and active-set algorithms (Kim
et al., 2007; Kim and Park, 2008; 2011). A survey of PG
and ALS algorithms used for NMF is presented by Ci-
chocki et al. (2009). Since the pure spectra or their abun-
dance/concentration profiles are expected to be large and
sparse, a good choice seems to be active-set algorithms.

In this paper, we discuss the selected active-set algo-
rithms that are inspired by the NonNegative Least Squares
(NNLS) algorithm, proposed by Lawson and Hanson
(1974). The solution estimated by the NNLS algorithm
is proved to be optimal according to the Karush–Kuhn–
Tucker (KKT) conditions. Many research works have re-
ported its usefulness in diverse research areas (e.g., Chen
and Plemmons, 2009; Garda and Galias, 2012). Bro and
Jong (1997) considerably accelerated the NNLS algorithm
by rearranging computations for cross-product matrices.
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Kim and Park (2008) applied its modified version to the
l1- and l2-norm regularized Least Squares (LS) problems
in NMF, and showed that such algorithms work very effi-
ciently for gene expression microarrays. Their approach
assumes constant regularization parameters to enforce the
desired degree of sparsity.

Unfortunately, the basic NNLS algorithms are not
very efficient for solving nonnegatively constrained lin-
ear systems with multiple Right-Hand Side (RHS) vectors
since they compute a complete pseudoinverse once for
each RHS. To tackle this problem, Benthem and Keenan
(2004) devised the Fast Combinatorial NNLS (FC-NNLS)
algorithm and experimentally demonstrated it works effi-
ciently for energy-dispersive X-ray spectroscopy data.

Zdunek (2011) noticed that the regularization param-
eter in the l2 regularized version of the FC-NNLS algo-
rithm should decrease gradually with iterations to enforce
a given character of iterative updates. This observation
and the efficiency of using the FC-NNLS algorithm in
hyperspectral imaging (Zdunek, 2012) motivate the study
presented here. In this approach, we give the geometri-
cal interpretation and justification of the proposed method,
and extend it to spectral signal unmixing. NMF updates
obtained with the regularized FC-NNLS algorithm are an-
alyzed from a geometric point of view. The updates pro-
jected onto a probabilistic simplex form convex polytopes.
The proposed method attempts to estimate probable posi-
tions of vertices of the convex polytope generated by ob-
servations, even for moderately noisy data. We have also
improved the original implementation of the FC-NNLS al-
gorithm.

The paper is organized in the following way. The
next section discusses the concept of NMF for spectra un-
mixing. Section 3 is concerned with NNLS algorithms.
The geometrical analysis is included in Section 4. The
experiments are presented in Section 5. Finally, the con-
clusions are given in Section 6.

2. NMF for spectra recovering

The aim of NMF is to find lower-rank nonnegative ma-
trices A = [aij ] ∈ R

I×J
+ and X = [xjt] ∈ R

J×T
+

such that Y = [yit] ∼= AX ∈ R
I×T
+ , given the matrix

Y , the lower rank J (the number of pure spectra), and
possibly a priori knowledge on the matrices A and X .
The set of nonnegative real numbers is denoted by R+.
Assuming each row vector of Y represents an observed
mixed spectrum, and J is an a priori known number of
pure spectra, we can interpret each row vector of X as
an unknown constituent pure spectrum (endmember), and
the corresponding column vector of A = [a1, . . . , aJ ] as
abundance/concentration of the constituent material.

To estimate the matrices A and X from Y , we as-

sume the Tikhonov regularized Euclidean function:

D(Y ||AX) =
1
2
||Y −AX||2F +

λ

2
||A||2F , (1)

where λ is a regularization parameter and || · ||F denotes
the Frobenious norm. The function (1) is convex with re-
spect to only one set of arguments, i.e., the matrix A or
X , but it is not jointly convex. Thus, the solution to the
nonconvex optimization problem:

{A∗, X∗} = arg min
A,X

D(Y ||AX),

subject to A, X ≥ 0, (2)

is approximated by solving alternately the following non-
negatively constrained convex subproblems:

min
xjt≥0

D(Y ||AX), min
aij≥0

D(Y ||AX). (3)

The Lagrangian functional associated with (3) can be writ-
ten as

L(A, X,ΛA,ΛX) =
1
2
||Y −AX||2F +

λ

2
||A||2F

− tr
(
ΛT

AA
)
− tr

(
ΛT

XX
)

,

where ΛA = [λ(A)
ij ] ∈ R

I×J and ΛX = [λ(X)
jt ] ∈ R

J×T

are the matrices of Lagrangian multipliers. The optimal
solution (A∗, X∗) satisfies the KKT first-order optimality
conditions:

∇AL(A∗, X∗,Λ∗
A,Λ∗

X) = 0, (4)

∇XL(A∗, X∗,Λ∗
A,Λ∗

X) = 0, (5)

a∗
ij > 0 and (λ∗

ij)
(A) = 0, (6)

a∗
ij = 0 and (λ∗

ij)
(A) ≥ 0, (7)

x∗
jt > 0 and (λ∗

jt)
(X) = 0, (8)

x∗
jt = 0 and (λ∗

jt)
(X) ≥ 0, (9)

and the complementarity slackness conditions

a∗
ij(λ

∗
ij)

(A) = 0, x∗
jt(λ

∗
jt)

(X) = 0. (10)

For the objective function (1), we have

ΛA = ∇AD(Y ||AX)

= (AX − Y )XT + λA ∈ R
I×J

and

ΛX = ∇XD(Y ||AX) = AT (AX − Y ) ∈ R
J×T .

In the remainder, we will discuss the methods for
solving the first problem in (3), i.e., the minimization with
respect to X , assuming that both problems are symmet-
ric in arguments, and A can be estimated by solving the
transposed system XT AT = Y T with the same or other
suitable method.
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3. NNLS algorithms

The NNLS algorithm, which was originally proposed by
Lawson and Hanson (1974), is given by Algorithm 1. It
iteratively partitions the unknown variables into the basic
variables that are strictly positive and the nonbasic ones
that should satisfy the active constraints (zero-values).

Let P = {j : xjt > 0} be a passive set that contains
indices of the basic variables, and R = {1, . . . , J}\P
be an active set with indices of the remaining (not nec-
essary active) variables. In consequence, we assume the
following partitions: ∀t : xt = [x(P )

t ; x(R)
t ]T ∈ R

J and

gt = [gjt] = ∇xt
D(yt||Axt) = [g(P )

t ; g(R)
t ]T ∈ R

J ,
where xt is the t-th column of X . The columns of A
can be also partitioned in a similar way: A = [AP AR],
where AP = [a∗,P ] and AR = [a∗,R]. Algorithm 1
starts from xt = 0 and recursively updates the basic
variables according to the KKT conditions. Note that, if
∃m : gmt < −τ for any threshold τ > 0, then xmt cannot
be a nonbasic variable. Hence, the index m is moved from
the set R to P (Line 6), and the basic variables are then
updated by solving the unconstrained LS problem (line 9):

x̄
(P )
t = argmin

x
(P )
t

{
||yt −AP x

(P )
t ||2

}
, (11)

where AP has full column rank. Note that the up-
date x̄

(P )
t may cross the border of the feasible region,

if the step length along the gradient g
(P )
t is too long. If

so, the maximum step length αt along the search direc-
tion pt = αt(x̄

(P )
t − x

(P )
t ) is determined. The update

x
(P )
t ←− x

(P )
t + pt moves the estimate to the border of

the feasible region. Thus some variables become nonba-
sic, which involves the update of the sets P and R (Line
14), and the problem (11) is recomputed. All the variables
whose indices belong to the set R are set to a zero-value.

As mentioned by Lawson and Hanson (1974), the in-
ner loop of Algorithm 1 requires no more than |P | − 1
iterations. The number of iterations in the main loop de-
pends on the sparsity of the solution, and it should not be
greater than |P | for x∗

t .
Bro and Jong (1997) considerably speed up this al-

gorithm for I 	 J by precomputing the normal matrix
AT A and the vector AT yt, and then solving the problem
(11) as follows:

x̄
(P )
t =

(
(AT A)P,P

)−1

(AT yt)P . (12)

Unfortunately, the inverse of (AT A)P,P must be com-
puted for each t, which is still very expensive if the num-
ber of RHSs is very large.

Benthem and Keenan (2004) proposed the FC-NNLS
algorithm to tackle the problem of a high computational
cost of Algorithm 1 for multiple RHSs. They noticed that,
for a sparse solution with multiple column vectors, a prob-
ability of finding column vectors that have the same layout

of zero-entries (active constraints) is high. Hence, after
detecting basic variables for each xt, the passive entries
in the vectors {xt} that have an identical sparsity profile
(a common passive set) are updated by computing the in-
verse of (AT A)P,P only once.

Kim and Park (2008) applied the NNLS algorithm to
Tikhonov regularized NMF problems, where the penalty
terms are formed using the l1- and/or l2-norm constraints.
They showed that the following problem:

min
A,X

{
1
2
||Y −AX||2F

+
λ

2
||A||2F +

β

2

T∑
t=1

||xt||21
}

, (13)

Algorithm 1: LH-NNLS.

Input : A ∈ R
I×J , yt ∈ R

I

Output: x∗
t ≥ 0 such that

x∗
t = arg minxt ||yt −Axt||2

Initialization: P = ∅, R = {1, . . . , J}, xt = 0,1

gt = −AT yt, k = 0;
repeat2

k ←− k + 1 ;3

m = argminj∈R{gjt}; // the4

constraint to add
if R �= ∅ and gmt < −τ then5

P ←− P ∪m, and R←− R\m ;6

// updates of the passive
and active sets

else7

stop with xt as an optimal solution8

x̄
(P )
t =

(
(AP )T AP

)−1 (AP )T yt where9

AP = [a∗,P ] ∈ R
I×|P | ;

while min{x̄(P )
t } ≤ 0 do10

αt = min
j∈P

x̄
(P )
jt ≤0

{
x

(P )
jt

x
(P )
jt − x̄

(P )
jt

}
;

11

// steplength

x
(P )
t ←− x

(P )
t + αt(x̄

(P )
t − x

(P )
t );12

N =
{
j : x

(P )
jt = 0

}
; // the13

constraints to drop
P ←− P\N , and R←− R ∪N ;14

x̄
(P )
t =

(
(AP )T AP

)−1 (AP )T yt where15

AP = [a∗,P ] ∈ R
I×|P | ;

xt ←−
[
x

(P )
t ; x

(R)
t

]T

∈ R
J
+ where16

x
(P )
t = x̄

(P )
t and x

(R)
t = 0 ;

gt = AT (AP x
(P )
t − yt) ; // gradient17

until k > kmax ;18
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Algorithm 2: RFC-NNLS.

Input : A ∈ R
I×J , Y ∈ R

I×T , λ ≥ 0
Output: X∗ ≥ 0 such that X∗ =

argminX

{
1
2 ||Y −AX||2F + λ

2 ||X ||2F
}

Initialization: M = {1, . . . , T},1

N = {1, . . . , J};
Precompute: B = [bij ] = AT A + λIJ and2

C = [cit] = AT Y ;
X = B−1C ; // unconstrained min.3

P = [pjt], where pjt =
{

1 if xjt > 0,
0 otherwise ;

4

// passive set
F = {t ∈M :

∑
j pjt < I} ; // columns to5

be optimized or verified

xjt ←−
{

xjt if pjt = 1,
0 otherwise ;

6

while F �= ∅ do7

P F = [p∗,F ] ∈ R
J×|F |,8

CF = [c∗,F ] ∈ R
J×|F | ;

[x̄∗,F ] = cssls(B, CF , P F ) ; // basic9

variable update with the CSSLS
H = {t ∈ F : minj∈N{x̄jt} < 0} ;10

// columns with neg. vars.
while H �= ∅ and k ≤ kinner do11

St =12

{j : x̄jt < 0 and pjt > 0, j ∈ N, t ∈ H};
αjt =

xjt

xjt − x̄jt
for j ∈ St and t ∈ H ;

13

jt = arg min
j∈St

{αjt} for t ∈ H ;
14

// constraint to drop
x∗,t ←− x∗,t + α∗

t (x̄∗,t − x∗,t), where15

α∗
t = αjt,t for t ∈ H ;

xjt,t = 0, pjt,t = 0 for t ∈ H ;16

// active entries

P H = [p∗,H ] ∈ R
J×|H|,17

CH = [c∗,H ] ∈ R
J×|H| ;

[x̄∗,H ] = cssls(B, CH , P H);18

H = {t ∈ F : minj∈N{x̄jt} < 0} ;19

// columns with neg. vars.

W F = [w∗,F ] = CF −BX̄F , where20

X̄F = [x̄∗,F ] ; // negative gradient
J = {t ∈ F : wjt(1 − pjt) ≤ 0, ∀j ∈ N} ;21

// optimized columns
F ←− F\J ; // col. to be optim.22

if F �= 0 then23

[x∗,F ] = [x̄∗,F ], zjt = wjt(1− pjt);24

pjt =25 {
1 if j = arg maxj∈N {zjt, ∀t ∈ F} ,

pjt otherwise

subject to A, X ≥ 0, can be solved with any NNLS algo-
rithm by applying it to the reformulated alternating mini-
mization subproblems:

min
X≥0

∣∣∣∣
∣∣∣∣
(

A√
β11×J

)
X −

(
Y

01×T

)∣∣∣∣
∣∣∣∣
2

F

, (14)

min
A≥0

∣∣∣∣
∣∣∣∣
(

XT

√
λIJ

)
AT −

(
Y T

0J×I

)∣∣∣∣
∣∣∣∣
2

F

, (15)

where IJ ∈ R
J×J is an identity matrix, 11×J is a row

vector of all ones, and 0J×I is a zero matrix of size J × I .
In their approach, the parameters λ and β are set to fixed
small positive values. The parameter λ is used to suppress
the growth of ||A||F , and the parameter β controls the
sparsity in X . Moreover, the parameter λ with a small
value assures full rank of the matrix XXT when applied
for updating the matrix A.

Contrary to Kim and Park (2008) and motivated by
Zdunek and Cichocki (2007), we propose to gradually de-
crease the regularization parameter λ with alternating it-
erations for updating the matrix A, starting from a large
value λ0 > 0. The parameter can be changed accord-
ing to the following rule: λ = max

{
λ̄, 2−kλ0

}
, where

k = 0, 1, . . . is the current alternating step, and λ̄ > 0
determines the lowest value of this parameter. The aim of
using such regularization for updating A is to enforce a
certain character of iterations, rather than to stabilize ill-
posed problems since the matrix X is not expected to be
severely ill-conditioned. When λ is large, the updates can
be regarded as gradient descent ones with a small stepsize,
and when the alternating iterations proceed, the update are
determined by the Newton step. When λ ∼= λ̄, the pro-
posed NMF algorithm is identical with SNMF/R given by
Kim and Park (2008), and the parameter λ̄ plays the role
of the standard Tikhonov regularization. In the next sec-

Algorithm 3: CSSLS.

Input : B ∈ R
J×J , C ∈ R

J×K , P ∈ R
J×K

Output: X ∈ R
J×K

M = {1, . . . , K}, N = {1, . . . , J},1

P = [p1, . . . , pK ] ;
Find the set of L unique columns in P :2

U = [u1, . . . , uL] = unique{P } ;
for j = 1, . . . , L do3

hj = {t ∈M : pt = uj} ; // indices4

of columns with identical
passive sets

xuj ,hj
=

(
[B]uj ,uj

)−1 [C]uj ,hj
;5

// back-substitution with
submatrices
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Algorithm 4: RASLS-NMF.

Input : Y ∈ R
I×T
+ , J - lower rank, λ0 - initial

regularization parameter, λ̄ - minimal
value of regularization parameter,

Output: Factors A and X

Initialize (randomly) A and X , k = 0;1

repeat2

k ←− k + 1;3

λ = max
{
λ̄, 2−kλ0

}
; // Regular.4

param. schedule
X ←− RFCNNLS(A, Y , 10−12) ;5

// Update for X

d
(X)
j =

∑T
t=1 xjt;6

X ←− diag
{

(d(X)
j )−1

}
X;7

A←− A diag
{

d
(X)
j

}
;8

Ā←− RFCNNLS(XT , Y T , λ) ; // Update9

for AT

A = Ā
T

;10

d
(A)
j =

∑I
i=1 aij ;11

X ←− diag
{

d
(A)
j

}
X;12

A←− A diag
{

(d(A)
j )−1

}
13

until Stop criterion is satisfied ;14

tion, we give a geometrical interpretation and justification
of the proposed approach.

Regularized Active-Set Least-Squares (RASLS)
NMF that is based on the regularized FC-NNLS algorithm
with β = 0 is given by Algorithm 4. Both factors A and
X are updated with Algorithms 2 and 3, but only the esti-
mate of the factor A is regularized with a varying regular-
ization parameter. For updating the matrix X , the regular-
ization parameter is set to a small value, e.g., λ = 10−12,
to avoid numerical instabilities.

4. Geometrical interpretation

Exact nonnegative matrix factorization, i.e., Y = AX ,
means that each column vector in Y is a convex combina-
tion of the nonnegative column vectors in A. The vectors
{a1, . . . , aJ} form the simplicial cone (Donoho and Stod-
den, 2004) in R

I that lies inside the nonnegative orthant
R

I
+. If the column vectors of A are linearly independent,

then the simplicial cone is generated by these vectors that
are referred to as the extreme rays.

Definition 1. The (I − 1)-dimensional probability sim-
plex S(I−1) = {y = [yi] ∈ R

I
+ : yi ≥ 0,1T

I y = 1}
contains all the points of R

I
+ located onto the hyperplane

Π : ||y||1 = 1. Its vertices are determined by the versors
(unit vectors) of the Cartesian coordinate system.

Definition 2. The matrix X = [x1, . . . , xT ] ∈ R
J×T
+

is sufficiently sparse if there exists a square diagonal full-
rank submatrix X̃ ∈ R

J×J
+ created from a subset of its

column vectors.

The intersection of the directional rays determined
by a columns of Y and S(I−1) can be expressed as

PS(I−1)(Y ) = Ȳ =
{

y1

||y1||1
, . . . ,

yT

||yT ||1

}
. (16)

The intersection can be also regarded as the special pro-
jection of the nonzero columns in Y onto S(I−1) along
the directional rays. The points in PS(I−1)(Y ) form the
convex polytope C(Y ) (Chu and Lin, 2008). If the matrix
X is sufficiently sparse (see Definition 2), the vertices of
C(Y ) correspond to those column vectors of A that inter-
sect with S(I−1). Any column vector ȳt whose the corre-
sponding vector xt contains at most two positive entries
lies on the edge of the convex polytope C(Y ).

The aim of NMF is to find these vertices or possible
locations of the vertices if the observations are corrupted
with noise. This task is not easy to achieve unless the
vertices of C(Y ) lie on the border of R

I
+. If ∀i, j : aij >

0, all the vertices of C(Y ) are located strictly inside R
I
+.

Assuming strict positivity for the entries of A, NMF of Y
is not unique although the matrix X is sufficiently sparse.
In other words, there might exist a convex polytope C(Ã)
such that C(Y ) ⊂ C(Ã) ⊂ R

I
+ whose vertices are not

determined by the column vectors of A, i.e., Ã �= A and
Ã ∈ R

I×J
+ . Note that such C(Ã) does not come from

the scale or permutation indeterminacies that are intrinsic
ambiguities of NMF. To minimize the risk of convergence
to such C(Ã), we assume that the updates for A should
be Tikhonov regularized with a decreasing regularization
parameter.

Let Ak denote the update of A in the k-th alternating
step, and let Y (Zk) = [y∗,Zk

] ∈ R
I×|Zk|
+ , where

Zk =
{
t :

J∑
j=1

p
(k)
jt = J

}

and p
(k)
jt are the entries of the matrix P in Algorithm 2

used for updating the matrix X . The RASLS-NMF al-
gorithm for computing X at k = 1 is initialized with
any A0 ∈ R

I×J
+ . If C(A0) ∩ C(Y ) �= ∅, we have

Y (Z1) = {y : y ∈ C(Y ) ∧ y ∈ C(A0)} after computing
X1. Then, the rows of X1 are scaled to the unit l1-norm
(see line 7 in Algorithm 4).

If the initial regularization parameter λ0 is large
enough, i.e., when the condition λ0 	 σmax(X1) is satis-
fied, where σmax(X1) is the largest singular value of X1,
we have

A1 = Y XT
1 (X1X

T
1 + λIJ )−1 ∼= 1

λ
Y XT

1 . (17)
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Since λ > 0, ∀i, t : yit ≥ 0 and ∀j, t : x
(1)
jt ≥ 0, where

X1 = [x(1)
jt ], then ∀i, j : a

(1)
ij ≥ 0 from (17). If so,

F = ∅ in Algorithm 2, and this algorithm terminates af-
ter the first iteration. Moreover, due to the normalization
∀j :

∑T
t=1 x

(1)
jt = 1, the columns in the matrix A1 are a

convex combination of the columns in Y . Thus after the
normalization in line 13 of Algorithm 4, the columns of
the matrix A1 have the unit l1-norm, and C(A1) ⊆ C(Y ).
This means that the first iteration of Algorithm 4 ensures
that the columns of A1 are located inside the polytope
C(Y ).

If λ 	 σmax(Xk) for k > 1, the consecutive iter-
ations do not change the positions of the columns in the
estimated matrix Ak noticeably. In consequence, we may
observe a stagnation in the residual error versus iterations.
When C(Ak) ⊆ C(Y ), then each y ∈ C(Ak) also belongs
to Y (Zk+1), where

Zk+1 =
{
t :

J∑
j=1

p
(k+1)
jt = J

}
.

All the column vectors of the matrix X(Zk+1), where
X(Zk+1) = [x∗,Zk+1 ] ∈ R

J×|Zk+1|
+ , are computed in

the first iteration of Algorithm 2 (line 3). The remain-
ing columns of Xk+1 are updated in the inner iterations
(line 7). The columns that contain the active entries deter-
mine the border of C(Ak)

When λ ≈ σmax(Xk+1), the large singular values of
Xk+1 take part in updating Ak+1, and the minimization
of the objective function D(Y ||AXk+1) with respect to
A expands the volume of C(Ak+1). Algorithm 2 attempts
to find a nonnegative minimizer of the objective function
that has the lowest number of active entries. Note that
Algorithm 2 does not find the sparsest solution but in the
nested loop (lines 11–19) it tries to find the smallest set
of the active entries to guarantee a nonnegative update.
Hence, it is obvious that it tends to maximize the volume
of C(Ak+1) because all the entries strictly inside C(Ak+1)
belong to the passive set of the update.

According to Elden (1977) as well as Rojas and Stei-
haug (2002), the Tikhonov regularized LS problem with
the objective function (1) is equivalent to the Trust-Region
Subproblem (TRS):

min
A

1
2
||Y −AX||2F , (18)

subject to ||A||2F ≤ Δ, where Δ > 0 is the TR radius
that is reversely related to the regularization parameter,
e.g., when λ is large, Δ is small. Decreasing the reg-
ularization parameter λ, Δ increases, leading to the TR
expansion. In consequence, more and more entries from
A that were active in the previous alternating step move
to the passive set. This increases the volume of C(Ak+1)

until all the column vectors of Y belong to C(A). A grad-
ual increase in the volume of C(Ak) is needed to avoid
convergence to such Ã for which C(Y ) ⊂ C(Ã) ⊂ R

I
+

and Ã �= A. When the regularization parameter de-
creases, the nature of updates for A is changing from
gradient descent steps to Newton steps that explore the
local minimum deeply. Thus, the regularization param-
eter should diminish to a small value when the factor-
ization is exact. For noisy data, a certain lower bound
for λ should be assumed to exclude some outliers from
C(A). In this case, the problem of selecting the right
value of λ̄ or the number of alternating steps can be con-
sidered in terms of the standard regularization approach to
ill-posed problems (e.g., Hansen, 1998; Krawczyk-Stańdo
and Rudnicki, 2007; Calvetti et al., 2001).

The parameter λ0 should satisfy the conditions

λ0 	 σmax(X1).

From Gelfand’s formula, we have

σmax(Y ) ≤ σmax(A)σmax(X).

The normalization of the estimated factors leads to

σmax(A) ≥ 1

σmax(X) ≥ 1,

σmax(Y ) ≥ σmax(X).

Thus the assumption λ0 	 σmax(Y ) satisfies the condi-
tion λ0 	 σmax(X). When the matrix Y is large, the
direct computation of σmax(Y ) may involve a large com-
putational cost. Since ∀i, t : yit ≥ 0 and Y is irreducible,
from the Perron–Frobenius theorem we have

λmax(Y Y T ) ≤ γ(1)

λmax(Y T Y ) ≤ γ(2),

where

γ(1) = max
1≤i≤I

I∑
m=1

[Y Y T ]im,

γ(2) = max
1≤t≤T

T∑
n=1

[Y T Y ]tn,

and λmax(·) is the maximal eigenvalue of a matrix. Thus,
in practice we may assume

λ0 ≥ min{
√

γ(1),
√

γ(2)}. (19)
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Fig. 1. Processed Raman spectra for the following minerals (from the top): Dickite, Muscovite, Anorthite, Beryl, Albite, measured at
780 nm.

5. Experiments

The numerical experiments are carried out for three dif-
ferent benchmarks of nonnegative signals. Benchmark
A is created from five real Raman spectra taken from
the RRUFFTM project1. We selected the spectra for
the following minerals: Dickite from Stara Gora, Lower
Silesia in Poland, Muscovite from California (USA),
Anorthite from Miyakejima in Japan, Beryl from North
Keystone in South Dakota (USA), and Albite from the
Madawaska/Faraday mine, Bancroft, Ontario in Canada.
Figure 1 illustrates these spectra in the following order
from the top: Dickite, Muscovite, Anorthite, Beryl, Al-
bite. All the signals in benchmark A are measured at
780 nm, and resampled to 2000 samples (T = 2000).
Note that the signals differ in their magnitudes consider-
ably, and the selected signals are highly correlated. Let
ρ(xi, xj) be the correlation coefficient between the i-th
and the j-th signal. We have ρ(x1, x2) = 0.26 and
ρ(x3, x5) = 0.66, and |ρ(xi, xj)| < 0.01 for the other
pairs of signals. For such highly correlated source sig-
nals, Independent Component Analysis (ICA) techniques
(e.g., Hyvrinen et al., 2001; Dabrowski and Cetnarow-
icz, 2008; Siwek et al., 2009; Makowski, 2003; Tong
et al., 2003) cannot be used. According to Definition 2,
the matrix X created from the signals in benchmark A is
sufficiently sparse.

Benchmark B contains 50 random positive spiky sig-
nals where the sparsity of each signal amounts to about
80%. The total number of samples is 1000, i.e., T =

1http://rruff.info.

1000.
Benchmark C is generated from 15 randomly se-

lected spectral reflectance signals taken from the USGS
library2. The spectra are measured with a 224-channel
imaging AVIRIS spectrometer, covering the range 400 −
−2500 nm with the spectral resolution of about 10 nm.
For the selected signals, the minimum angle between any
two signals is larger than 10 degrees.

For benchmarks A and B the observed spectra are ob-
tained by mixing the source spectra with a uniformly dis-
tributed random matrix A, e.g., ∀i, j : aij > 0. In noisy
scenarios, the observations are corrupted with an additive
zero-mean Gaussian noise with the variance adopted to
have a given Signal-to-Noise Ratio (SNR). We carry out a
few numerical tests described below.

5.1. Test A. The aim of Test A is to experimentally
verify the theoretical discussion, presented in Section 4.
The mixed signals in Y are generated synthetically. The
true sources are modeled by X = [xjt] ∈ R

3×200
+ , where

xjt = max{0, x̃jt} and x̃jt ∼ N (0, 1). The true mixing
matrix A ∈ R

3×3
+ , generated from a uniform distribution

and scaled to the unit l1 norm columns, is given as follows:

A(scaled) =

⎡
⎣

0.6 0.03 0.09
0.15 0.8 0.32
0.25 0.17 0.59

⎤
⎦ . (20)

The column vectors yt (t = 1, . . . , T ) create a ge-
ometrical object in the 3D observation space. The plane

2http://speclab.cr.usgs.gov/spectral.lib06/.

http://rruff.info.
http://speclab.cr.usgs.gov/spectral.lib06/.
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intersecting the points (1, 0, 0), (0, 1, 0) and (0, 0, 1) of
the Cartesian coordinates in the 3D space determines the
probabilistic simplex S(2) in R

3
+, which is an equilat-

eral triangle. Figures 2–4 show the analyzed vectors dis-
tributed on S(2). The vectors {yt} intersected with this
place are marked as the small cross points onto S(2). Note
that these points form the triangle onto S(2), but gener-
ally they will form a convex polytope C(Y ) onto S(I−1).
Since the matrix X is sparse, many points yt lie on the
border of C(Y ). The positions of the column vectors a∗

j

(j = 1, 2, 3) of the true mixing matrix Atrue are denoted
by the filled pentagrams. The columns of the initial matrix
A0, which form C(A0), are marked with the unfilled pen-
tagrams. Note that C(A0) ∩ C(Y ) �= ∅, and all the points
yt that fall into the intersection of these sets are marked
with the stars. After updating X1 with Algorithm 2, we
found that all the points of Y (Z1) are the same as the
points of C(A0) ∩ C(Y ). The columns of the updated
matrix A1 are denoted by the filled squares.

Note that all the columns of A1 are located inside
C(Y ) only for the regularized updates, i.e., in Figs. 2 and
4. For these cases, we set λ0 = 100, satisfying the con-
dition λ0 > σmax(X1), where σmax(X1) ≈ 41. Figure
4 refers to the noisy case with SNR = 30 [dB]. When
λ0 = 0 (see Fig. 3), the columns of A1 are outside C(Y )
and quite far from C(Atrue) (true solution). In the second
iteration, the points of Y (Z2) are marked with the unfilled
circles which all belong to C(A1). Figure 3 illustrates that
a majority of the vectors yt belongs to C(A1), which sug-
gests a very fast convergence—unfortunately, to a wrong
local minimum. The columns of Ak in consecutive iter-
ations are plotted with the unfilled squares. Note that the
updates Ak are convergent to Atrue only in Fig. 2. For
the noisy case (see Fig. 4), the updates Ak for k > 1 are
located in the vicinity of Atrue, although the extreme rays
of C(Y ) are very far from the extreme rays of C(Atrue).

The estimated mixing matrices are also evaluated in
terms of the averaged Signal-to-Interference Ratio (SIR).
This measure is defined by Cichocki et al. (2009, Chapter
3). For all the scenarios presented in Figs. 2–4, we ob-
tained SIR = 77.1, 13.1, 26.1 [dB] after 50 alternating
steps, respectively.

The normalized residual error ||Y −AX||F /||Y ||F
is plotted versus iterations in Fig. 5. Note that the fastest
convergence and the lowest value of the residual error is
obtained with the unregularized updates, i.e., for λ0 = 0.
Hence, one should be aware that this measure is inappro-
priate for estimating the quality of estimation when the
underlying problem is not unique. Probably, due to the
normalization of the updated factors, the local minimum
for the estimates shown in Fig. 3 is deeper than for the es-
timates in Fig. 2. This suggests that any NMF algorithm
that assures too fast convergence in early alternating steps
may encounter similar problems.
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Fig. 2. Geometry of updates projected onto S(2) for λ0 = 100
and noise-free data. After 50 alternating steps, the mix-
ing matrix is estimated with SIR = 77.1 [dB].
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Fig. 3. Geometry of updates projected onto S(2) for λ0 = 0 and
noise-free data. After 50 alternating steps, the mixing
matrix is estimated with SIR = 13.1 [dB].

5.2. Test B. In this test, we compare several algorithms
using some mixtures of the spectral signals presented in
Fig. 1. We analyze three scenarios for observations: (a)
I = J = 3 (the first three signals from Fig. 1), (b) I =
J = 5, (c) I = 10, J = 5. For each scenario, the noise-
free and noisy mixtures with SNR = 30 [dB] are obtained
using the mixing matrix A ∈ R

I×J
+ randomly generated

from a uniform distribution.

We compare the following algorithms: a few versions
of RASLS, FC-NNLS (Benthem and Keenan, 2004), pro-
jected ALS (Berry et al., 2007; Cichocki et al., 2009),
Lin’s Projected Gradient (LPG) (Lin, 2007), standard
Lee–Seung NMF for the Euclidean distance (referred
to as MUE) (Lee and Seung, 1999), Minimum Volume
Constrained NMF (MVC-NMF) (Miao and Qi, 2007),
Vertex Component Analysis (VCA) (Nascimento and
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Bioucas-Dias, 2005), Minimum Volume Simplex Anal-
ysis (MVSA) (Li and Bioucas-Dias, 2008), Simplex
Identification via Split Augmented Lagrangian (SISAL)
(Bioucas-Dias, 2009), and two versions of the SUNSAL
algorithm (SUNSAL and SUNSAL-TV) (Bioucas-Dias
and Figueiredo, 2010; Iordache et al., 2012) combined
with the FC-NNLS algorithm. The SUNSAL-based al-
gorithm is used for updating the matrix X , and the matrix
A is updated with the FC-NNLS algorithm. The mini-
mum number of augmented Lagrangian iterations in both
SUNSAL-based algorithms is experimentally set to 50.
The regularization parameter λ for the l1-norm penalty
term amounts to 0.01, and for the TV-based term is set
to 0.001. For the LPG algorithm3 we set tol = 10−8 to
avoid early termination of iterations.

3http://www.csie.ntu.edu.tw/˜cjlin/.

Table 1. Notation for RASLS algorithms.
Algorithm Description

RASLS-L1(d) In the problem (14) the parameter β
is decreasing according to the rule
β = max

{
β̄, 2−kβ0

}
, where β0 =

1000 and β̄ = 10−12. The parame-
ter λ in the problem (15) is set to a
constant value 10−12.

RASLS-L2(d) β = 0 and λ is decreased, starting
from λ0 = 1000 (Algorithm 4).

RASLS-L1(s) β = 104 is fixed and λ = 10−12 is
fixed.

RASLS-L2(s) β = 0 and λ = 10−4 is fixed.
RASLS-L1-L2(d) β = 104 is fixed and λ is decreased,

starting from λ0 = 1000.

The notation for a family of RASLS algorithms is
given in Table 1. The parameters β and λ in RASLS-L1(s)
and RASLS-L2(s) are set optimally according to the re-
sults obtained for the scenario (c), and presented in Fig. 6.
It illustrates the SIR statistics (mean and std.) for RASLS-
L1(s) and the RASLS-L2(s) versus the penalty parameter.
Note that RASLS-L2(s) gives good results only for a very
narrow range of the parameter λ.

All the NMF-based algorithms, except for MVC-
NMF, are terminated after 50 alternating steps. The maxi-
mum number of alternating steps for MVC-NMF is set to
150 (as default).

Each NMF-based algorithm (except for MVC-NMF)
is run for 100 Monte Carlo (MC) trials with a random ini-
tialization. The statistics of SIR samples for benchmark
A and the scenario (c) are shown in Fig. 7(a) for noise-
free mixtures and in Fig. 7(b) for noisy mixtures with
SNR = 30 [dB]. The SIR results for the scenarios (a)
and (b) are presented in Table 2, together with the run-
time. The VCA algorithm is not randomly initialized, and
the MVSA and SISAL algorithms are initialized with the
VCA output. Hence, the MC analysis is not carried out
for the VCA, MVSA and SISAL algorithms.

The algorithms are coded in Matlab 2008a, and exe-
cuted on a computer with CPU X9650 (4 cores), 3 GHz,
64 bit, 8 GB RAM. The runtime considers evaluation of
the stopping criteria for RASLS and LPG. In ALS and
MUE, the matrices A and X are updated only once in
each alternating step.

Figure 7 shows that the RASLS-L2(d) algorithm ap-
plied to the noise-free data gives the best mean-SIR re-
sults. For the noisy data, RASLS-L1-L2(d) seems to be
the best choice, especially since it gives the most stable
results (with the lowest variation in the SIR performance).
Some outliers beyond the boxplots in Fig. 7 for RASLS-
L2(d) are probably caused by a wrong initialization when
the condition C(A0) ∩ C(Y ) �= ∅ is not satisfied.

The results presented in Table 2 also confirm that a

http://www.csie.ntu.edu.tw/~cjlin/
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Table 2. Mean-SIR [dB], STD [dB], and elapsed time [seconds] obtained in Test B for the scenario (a) (I = J = 3) and scenario (b)
(I = J = 5). The algorithms in the rows 1–11 (RASLS-L1(d)—NNLS-SUNSAL-TV) are initialized randomly in each MC
run. The mean-SIR and STD (in parenthesis) are calculated for 100 MC runs.

I = J = 3, cond(A) = 2.65 I = J = 5, cond(A) = 18.66
Algorithm SIR (STD) SIR (STD) Time SIR (STD) SIR (STD) Time

noise-free SNR = 30 [dB] sec. noise-free SNR = 30 [dB] sec.

RASLS-L1(d) 24.19 (8.61) 21.99 (5.56) 0.67 21.53 (4.99) 19.15 (2.9) 1.48
RASLS-L2(d) 31.13 (2.18) 28.86 (0) 0.48 15.12 (3.15) 11.29 (1.77) 2.43
RASLS-L1(c) 13.29 (2.19) 12.69 (1.81) 0.82 14.91 (1.45) 11.27 (2.33) 2.13
RASLS-L2(c) 28.71 (2.08) 26.09 (1.31) 0.44 14.01 (3.04) 14.06 (2.87) 2.16

RASLS-L1-L2(d) 13.18 (1.87) 13.16 (1.85) 0.85 16.92 (0) 16.91 (0) 0.88
FC-NNLS 24.95 (6.93) 19.87 (4.59) 0.35 9.88 (3.81) 6.59 (2.12) 1.34

ALS 21.07 (7.01) 19.11 (4.32) 0.12 11.54 (6.04) 6.25 (2.54) 0.2
LPG 17.15 (2.17) 16.64 (2.01) 2.51 7.23 (1.57) 6.38 (1.31) 2.96
MUE 13.53 (4.96) 12.95 (4.72) 0.12 7.63 (1.82) 7.21 (1.67) 0.19

NNLS-SUNSAL 11.87 (2.84) 11.4 (2.65) 3.54 13.23 (0) 12.29 (1.87) 6.77
NNLS-SUNSAL-TV 24.48 (6.03) 23.59 (5.94) 51.24 8.84 (3.07) 8.25 (2.91) 105.85

MVC-NMF 36. 59 13.61 14.89 - - -
VCA 20.46 14.83 0.16 12.95 6.42 0.16

MVSA 17.23 16.86 0.55 15.06 8.42 0.77
SISAL 17.76 16.98 0.24 14.52 13.73 0.37

gradual decrease in the regularization parameters is very
important to obtain good results. RASLS-based algo-
rithms are outperformed by the MVC-NMF algorithm but
only for the noise-free data with I = J = 3. Unfortu-
nately, MVC-NMF works very unstable for J > 3. Sur-
prisingly, the SIR result obtained with RASLS-L2(d) is
very good even for the noisy data with I = J = 3,
which is very difficult for most NMF algorithms. Ob-
viously, if the number of mixtures is the same as that
of sources, the mixing matrix must be well-conditioned.
In our case, cond(Atrue) = 2.65 for I = J = 3, and
cond(Atrue) = 18.66 for I = J = 5.

The good SIR performance of RASLS-based algo-
rithms does not considerably increase a computational
complexity. According to Table 2, the computational time
for these algorithms is from about three to twelve times
longer than for ALS and MUE, and slightly shorter than
for LPG. Interestingly, when the l1-norm constraint is im-
posed, the runtime for the RASLS algorithm decreases.
This is probably caused by an increase in the sparsity and
consequently in the number of active entries.

5.3. Test C. Test C is carried out for benchmark B.
The original 50 spiky signals are mixed using a random
positive matrix A ∈ R

150×50
+ . The MC simulations are

carried out for the following algorithms: RASLS-L1(d),
RASLS-L2(d), FC-NNLS, projected ALS, LPG, MUE,
SUNSAL combined with FC-NNLS, and SUNSAL-TV
combined with FC-NNLS. Each algorithm runs for 50 al-
ternating steps. In RASLS-L1(d) and RASLS-L2(d), we
set β0 = 103 and λ0 = 104, respectively.

The SIR results are shown in Fig. 8(a) for noise-

free mixtures, and in Fig. 8(b) for noisy mixtures with
SNR = 30 [dB]. For VCA, MVSA and SISAL, the SIR
performance is 8, 3.37, 12.7 [dB] for the noise-free data,
and 6.58, 2.9, and 11.57 [dB] for the noisy data, respec-
tively. The normalized residual error for the noisy case is
shown in Fig. 9.

The averaged elapsed time for the RASLS-L1(d),
RASLS-L2(d), FC-NNLS, ALS, LPG, MUE, NNLS-
SUNSAL, and NNLS-SUNSAL-TV algorithms running
for 50 alternating steps is 28.58, 92.84, 102.28, 1.66,
13.67, 1.56, 30.19, 650.36 seconds, respectively. We no-
ticed that the elapsed time of RASLS-L2(d) increases ex-
ponentially with the number of sources.

This test demonstrates that RASLS-L2(d) gives the
best SIR performance for benchmark B, both for noise-
free and noisy data. The noise only slightly deteriorates
the performance. The residual error informs us that, start-
ing from λ0 = 104, RASLS-L2(d) updates run for about
the first 12 alternating steps in a stagnation point, and
then go monotonically to another stagnation point after
about 30 iterations for the noisy data. The latter stagna-
tion reaches the lowest value of the residual error from all
the tested algorithms. For the noise-free data, the behavior
of the residual error is similar for the RASLS algorithms.

5.4. Test D. Test D is carried out for spectral unmix-
ing of hyperspectral data. The linear mixtures are created
using the spectral signals of the endmembers from bench-
mark C. The abundance maps are generated according to
Miao and Qi (2007), using a 7×7 low pass filter. The pure
pixels are removed. The noisy mixtures are obtained in a
similar way as in the previous experiments.
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Fig. 6. SIR statistics for the estimation of the mixing matrix A
in Test B using RASLS-L1(s) and RASLS-L2(s) versus
fixed values of the penalty parameter α: noise-free data
(a), noisy data with SNR = 30 [dB] (b). For RASLS-
L1(s): α = β and λ = 10−12. For RASLS-L2(s): α =
λ and β = 0.

Figure 10 illustrates the SIR statistics obtained with
100 MC runs of the following algorithms: RASLS-L1(d),
RASLS-L2(d), FC-NNLS, ALS, LPG, MUE, and NNLS-
SUNSAL. NNLS-SUNSAL-TV is omitted in this exper-
iment since it is extremely slow. For VCA, MVSA and
SISAL, the SIR performance is 23.45, 273, 92.3 [dB] for
noise-free data, and 12.91, 7.55, and 7.69 [dB] for the
noisy data, respectively.

In this test, the best SIR performance is obtained with
the MVSA and SISAL algorithms, but only for the noise-
free data. The noise considerably deteriorates this result,
and the best SIR performance for the noisy mixtures is
obtained with the NNLS-SUNSAL algorithm. RASLS al-
gorithms give somehow worse performance than NNLS-
SUNSAL, but still considerably better than the other NMF
algorithms.

6. Conclusions

We demonstrated by a geometrical analysis and numerical
experiments that RASLS NMF algorithms may be very
useful for blind spectral signal unmixing. When the NMF
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Fig. 7. SIR statistics for the estimation of the mixing matrix
A using various NMF algorithms (1: RASLS-L1(d), 2:
RASLS-L2(d), 3: RASLS-L1(s), 4: RASLS-L2(s), 5:
RASLS-L1-L2(d), 6: FC-NNLS, 7: ALS, 8: LPG, 9:
MUE, 10: NNLS-SUNSAL, 11: NNLS-SUNSAL-TV)
in Test B (I = 10, J = 5): noise-free data (a), noisy
data with SNR = 30 [dB] (b).

problem is not unique but one of the estimated factors
is sufficiently sparse, the regularization parameter should
decrease gradually with alternating steps, starting from a
large initial value that can be set up in a large range (e.g.,
102–1015) using the lower bound in (19). Obviously, a
larger value of λ0 needs more alternating steps to run,
but the risk of getting stuck into unfavorable local min-
ima is lower. We used the rule λ←− λ/2, although, other
rules are also possible. For example, the exponential rule
λ = λ0 exp{−τk} works even better, but it needs two pa-
rameters to be set up in advance. Moreover, the results
can be more stable if some additional l1-norm constraints
are added to impose sparsity on one of the estimated fac-
tors. This approach can be found in the RASLS-L1-L2(d)
algorithm.

The computational complexity of the proposed algo-
rithm strongly depends on the number of endmembers.
When this number is large, the algorithm can be very slow.
Hence, further research is needed to tackle this problem.

Summing up, the proposed approach is very simple
and may be useful for improving the performance of NMF
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Fig. 8. SIR statistics for the estimation of the mixing matrix
A using various NMF algorithms (1: RASLS-L1(d), 2:
RASLS-L2(d), 3: FC-NNLS, 4: ALS, 5: LPG, 6: MUE,
7: NNLS-SUNSAL, 8: NNLS-SUNSAL-TV) in Test C
(I = 150, J = 50): noise-free data (a), noisy data with
SNR = 30 [dB] (b).
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Fig. 9. Normalized residual error: ||Y −AX ||F /||Y ||F versus
iterations for Test C.

algorithms, especially for factorizable and nonunique
NMF problems. Apart from the data spectral analysis,
it might find numerous applications in machine learn-
ing and artificial intelligence, including supervised clas-
sification (e.g., Woźniak and Krawczyk, 2012; Górecki
and Łuczak, 2013), clustering (e.g., Kulczycki and Chary-
tanowicz, 2010), and image processing (e.g., Cichocki
et al., 2009; Hansen, 1998).

RASLS-L1(d) RASLS-L2(d) FC-NNLS ALS LPG MUE NNLS-SUNSAL
2

4

6

8

10

12

14

16

18

S
IR

[d
B

]

(a)

RASLS-L1(d) RASLS-L2(d) FC-NNLS ALS LPG MUE NNLS-SUNSAL

4

6

8

10

12

14

16

18

S
IR

[d
B

]
(b)

Fig. 10. SIR statistics for the estimation of the mixing matrix
A using various NMF algorithms in Test D: noise-free
data (a), noisy data with SNR = 30 [dB] (b).
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