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Automated Incident Detection (AID) is an important part of Advanced Traffic Management and Information Systems
(ATMISs). An automated incident detection system can effectively provide information on an incident, which can help
initiate the required measure to reduce the influence of the incident. To accurately detect incidents in expressways, a
Support Vector Machine (SVM) is used in this paper. Since the selection of optimal parameters for the SVM can improve
prediction accuracy, the tabu search algorithm is employed to optimize the SVM parameters. The proposed model is
evaluated with data for two freeways in China. The results show that the tabu search algorithm can effectively provide
better parameter values for the SVM, and SVM models outperform Artificial Neural Networks (ANNs) in freeway incident
detection.
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1. Introduction

In freeway traffic monitoring and control, the detection
and verification of incidents is very important. When
incidents happen, they can destroy the normal traffic
flow and lead to a traffic jam. Rapid and reliable
detection is an effective method to reduce the impacts
of incidents and guarantee the safety of the freeway as
much possible. Thus, the freeway incident detection
problem is in freeway and arterial traffic management
systems, and has been the subject of research in the
past several decades. Automated Incident Detection
(AID) is an important component in many Advanced
Transportation Management and Information Systems
(ATMISs). Using AID is attempted to detect freeway
incidents such as accidents, stalled vehicles, spilled loads,
temporary maintenance and construction activities. Many
scholars have done a lot of work on freeway incident
detection methods for several decades.

In the incident detection study, some technologies
like time-series (Ahmed and Cook, 1982) and the decision
tree for pattern recognition (Chen and Wang, 2009) have
been used. In the literature, Ahmed and Cook (1982)

presented time-series analysis techniques for automatic
incidents detection. The model attempted to provide
short-term forecasts of traffic occupancies based on the
associated 95% confidence limits and an incident was
detected if the observed occupancy value was out of
the confidence limits. Chen and Wang (2009) applied
a decision tree learning for freeway automatic incident
detection. In this research, the traffic data of volume,
speed, time headway and occupancy at both upstream and
downstream detectors are used for incident detection.

Recently, neural networks have been widely applied
in incident detection. Srinivasan et al. (2005)
presented three neural network models for freeway
incident detection, which consisted of a multi-layer
feed-forward network, a basic probabilistic network and
a constructive probabilistic network. Jin et al. (2002)
attempted to propose a constructive probabilistic neural
network for detecting freeway incidents, in which there
is a mixture Gaussian model and a dynamic decay
adjustment algorithm used to construct the model.

Artificial Neural Networks (ANNs) are a
mathematical model or a computational model motivated
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by emulating the intelligent data processing ability
of human brains. A neural network consists of an
interconnected group of artificial neurons, and it
processes information using a connectionist approach
to computation. That is, the synaptic weights can be
adjusted in a learning process to reflect the input–output
relationship for the analyzed system automatically (Hagan
et al., 1996; Wei and Wu 1997). ANNs appear to be a
promising approach to describe complex systems due to
their versatile parallel distributed structures and adaptive
learning processes. However, it has been commonly
reported that ANN models require a relatively large
amount of training data to analyze the distribution of an
input pattern, while the performance of the ANN can to be
deteriorated for a small data pool. Moreover, it is difficult
for it to generalize the results due to its overfitting nature.

The SVM is a very specific type of learning
algorithm characterized by capacity control of the
decision function, the use of kernel functions, and the
sparse solution (Cristianini and Shawe-Taylor, 2000;
Vapnik 1999; 2000; Jelen et al., 2008; Mahmoud, 2011;
Sumi et al., 2012; Peter, 2013). Like ANNs, SVMs also
depend on the similarity between historic and real-time
traffic patterns. The SVMs can generally produce
better prediction results due to the over-fitting avoidance
ability and the high generalization performance. One
disadvantage of SVMs is that it requires a large amount of
computation time for a large training database (Cao et al.,
2003). However, it has provided some breakthroughs and
plausible performances, such as traffic-pattern recognition
(Ren et al., 2002), head recognition (Reyna et al., 2001),
travel time prediction (Wu et al., 2004; Yu et al., 2006;
2010; 2012) and incident detection (Yuan and Cheu,
2003). These successful applications motivate us to apply
SVMs for solving the incident detection problem.

The parameters in the SVM govern the training
process and the values have a profound effect on the
performance of the SVM. Therefore, there are many
works on parameter determination for the SVMs. Lin et
al. (2006) attempted to optimize appropriate parameters
for an SVM prediction model by using the structural risk
minimization principle. Zhang et al. (2010) developed
Ant Colony Optimization (ACO) to select optimal
parameters for the SVM. Lin et al. (2008) introduced
particle swarm optimization to optimize the parameters in
the SVM. Hou and Li (2009) attempted to determine the
values for parameters in the SVM by using an evolution
strategy with covariance matrix adaptation. Yao et al.
(2010) tried to use a shuffled complex evolution algorithm
to optimize the parameters for SVMs. Lorena et al. (2008)
proposed genetic algorithms to optimize a set of parameter
values for SVMs. Lebrun et al. (2008) proposed tabu
search to build a selection of the hyperparameters for
SVMs. The tabu search algorithm is a higher level
heuristic algorithm for solving combinatorial optimization

problems by allowing the search to explore solutions.
These solutions do not decrease the objective function
value only where these solutions are not forbidden. It
has been successfully applied to solving some classic
compounding optimization problems (Augugliaro et al.,
2002; Bortfeldt et al., 2003; Falco et al., 1994; Ho and
Haugland, 2004; Talbi et al., 1998; Yao et al., 2013). The
present paper attempts to find the appropriate parameters
in SVMs by using the tabu search algorithm.

Most of the AID methods indirectly judge traffic
event existence through identifying abnormal changes
of traffic flow parameters. Induction coil detector AID
system are most widely used to get traffic flow parameters
due to the lowest cost. However, the induction coil
detector also has its disadvantages. For example, incidents
involve some time to get a nearest detector. Moreover, the
induction coil detector is not suitable for the low traffic
flow. So the traffic management department is not highly
concerned about them. The incident detection system
based on the induction coil usually uses parameters such
as flow, market share, etc., and in some cases it also needs
time to detect all kinds of accidents between the upstream
and downstream speed parameters.

This paper presents a prediction model based on
the SVM for freeway incident detection, and the tabu
search algorithm is used for parameters optimization for
the SVM. The structure of this paper is as follows.
Section 2 provides a brief introduction to a prediction
model of the SVM, and parameter optimization for the
tabu search algorithm is presented. Section 3 contains a
case study and some computational results; and lastly, the
conclusions are provided in Section 4.

2. Support vector machine for the incident
detection problem

2.1. Support vector machine for regression. The
SVM is a non-probabilistic binary linear classifier, which
can be adjusted to map the input–output relationship for a
non-linear system. By applying a set of high dimensional
linear functions, the SVM shows strong resistance to the
over-fitting problem and high generalization performance.

Given the training data set

{xk, yk}, k = 1, 2, . . . , s,

xk ∈ R
m is the input data and yk ∈ R

n is the actual
value. The SVM estimates the relationships between the
input and the output by the following function:

f(x) = 〈w, x〉 + b, w, x ∈ R
m, b ∈ R

n. (1)

Here, 〈w, x〉 is the feature of the inputs. The coefficients
w and b are estimated by the so-called regularized risk
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functional:

min J = 1
2‖w‖2 + C

s∑

i=1

(ξ∗i + ξi)

subject to ⎧
⎨

⎩

yi − 〈w, x〉 − b ≤ ε + ξi,
〈w, x〉 + b − yi ≤ ε + ξi,
ξ∗i , ξi ≥ 0.

(2)

The first term, 1
2‖w‖2, is called the regularized term

and is used as a measurement of function flatness. C is a
regularization constant to determine the trade-off between
the training error and the generalization performance.
Two positive slack variables ξ, ξ∗ are used to cope with
infeasible constraints of the optimization problem. The
parameter is used to reflect that the loss equals zero if the
forecast value is within the “ε-tube”.

This constrained optimization problem is solved
using the following primal Lagrangian form:

L =
1
2
‖w‖2 + C

s∑

i=1

(ξ∗i + ξi) −
s∑

i=1

(ηiξi + η∗
i ξi)

−
s∑

i=1

αi(ε + ξi − yi + 〈w, xi〉 + b)

−
s∑

i=1

α∗
i
(ε + ξ∗ − yi + 〈w, xi〉 + b).

(3)

Here, L is the Lagrangian and ηi,η∗
i , αi, α∗

i are
Lagrange multipliers. Hence the dual variables in (3) have
to satisfy the following nonnegativity constraints:

ηi, η
∗
i , αi, α

∗
i ≥ 0. (4)

The above problem can be converted into a dual one
where the task is to optimize the Lagrangian multipliers,
αi and α∗

i . The dual problem contains a quadratic
objective function of αi and α∗

i with one linear constraint:

maxJ7 = − 1
2

s∑

i=1

(α∗
i − αi)(α∗

j − αj)〈xi, xj〉

+
s∑

i=1

α∗
i (yi − ε) −

s∑

i=1

α∗
i (yi + ε)

subject to
⎧
⎪⎪⎨

⎪⎪⎩

s∑

i=1

αi =
s∑

i=1

α∗
i ,

0 ≤ αi ≤ C,
0 ≤ α∗

i ≤ C.

(5)

Let

ω =
s∑

i=1

(αi − α∗
i )xi. (6)

Thus

f(x) =
s∑

i=1

(αi − α∗
i )〈xi, xj〉 + b. (7)

By introducing kernel function K(xixj), Eqn. (8) can be
rewritten as follows:

f(x) =
s∑

i=1

(αi − α∗
i )K(xi, xj) + b. (8)

The kernel function is proven to simplify the use of a
mapping. The value of K(xixj) is equal to the inner
product of two vectors xi and xj in the feature space φ(xi)
and φ(xj), that is, K(xi, xj)= φ(xi) φ(xj). By the use
of kernels, all necessary computations can be performed
directly in the input space, without having to compute the
map φ(x). More details on SVMs are given Vapnik (1999)
and Cao et al. (2003).

2.2. Tabu search algorithm for parameter optimiza-
tion of SVMs. The kernel function is the core of the
SVM which helps it to get an optimal solution. In
general, the RBF kernel, as a nonlinear kernel function,
is a reasonable first choice (Dong et al., 2005). The
parameters C, ε and σ are key elements of the RBF
kernel and directly exert considerable influence on the
generalization ability of the SVM. The parameter C
controls the trade-off between the margin and the size of
the slack variables (Shawe-Taylor and Cristianini, 2004).
If the value of C is too large, the classification accuracy
rate is very high in the training phase, but very low in
the testing phase. Otherwise, if the value of C is too
small, the classification accuracy rate is unsatisfactory.
The parameter σ has an effect on the partitioning outcome
in the feature space. If the value of σ is too large,
it will lead to over-fitting. If the value of σ is too
small, it will lead to under-fitting (Pardo and Sberveglieri,
2005). The parameter ε reflects the range of the prediction
deviation. If the value of ε is too large, it will results
in the solutions to be more independent of the existing
data. If the value of ε is too small, it will result in
overfitting. So parameter optimization is an important
factor for improving the prediction accuracy of the SVM.
The tabu search algorithm is applied to optimize the
parameters in the SVM.

Initial solution. In this study, the determination of
the initial solution in the tabu search algorithm is to
optimize the parameters (C, ε and σ) for the current
SVM model. Firstly, an initialization solution is presented
by random. To reduce the search space referring to
previous literature using the SVM (Yu et al., 2006; 2011),
it is recommended to introduce the constraints of the
three parameters which respectively attribute to the range
C ∈[2−5, 25] , ε∈[2−5, 25], and σ∈[2−5, 25] . The
solution is computed by appending the nearest unused
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neighbor values of the three parameters with respect to the
minimum sum of the Root Mean Squared Error (RMSE)
which is adopted in this paper,

RMSE =

[
1

n − p

n∑

i=1

(yi − ŷ)

]1/2

, (9)

where ŷ is the prediction value for the model, yi is the
observed value n is the number of observations and p is
the number of model parameters. The initial solution will
be evaluated by appending the nearest unvisited neighbor
with respect to the minimum sum of the negative root
squared error. The process repeats until all the neighbors
are visited.

Neighborhood. Like the nearest neighbor search, the
neighborhood of our tabu search algorithm is also based
on a 2-opt exchange. In this paper, the 2-opt operation
is adopted to expand the search space by exchanging
information between two solutions.

Tabu criteria. The tabu criteria, if applied
unconditionally, sometimes reject worthwhile candidates.
To avoid this situation, an aspiration criterion is used
to override the tabu restriction. When a tabu neighbor
has a cost lower than the lowest status, a tabu move is
permitted. If all candidate solutions are part of the tabu
list and they all fail to meet the criterion, the candidate
with higher permanency time in the Tabu list is selected
for the move.

Termination. In this paper, the search continues until
RMSEn − RMSEn−1 < 0.0001 or the number of
generation reaches the maximum number of generations
Tmax.

2.3. Applying the SVM for freeway incident de-
tection. The input data are to be fed to the SVM to
identify the relation between the input and the output.
Thus, it is important to normalize the input data. In
freeway incident detection, the traffic conditions like
weather or time-of-day have more influence on the traffic
flow. Furthermore, the upstream and the downstream,
the upstream occupancy, upstream volume, downstream
occupancy, downstream volume and segment can describe
the state of traffic along the freeway. Therefore, weather,
time-of-day, occupancy and volume of the upstream and
downstream are selected as the input data which are easy
to reflect the variation of the incidents. The number of
the segment selected for prediction is assumed as t. The
prediction window m is used to describe the influence of
the m-th segment far from the current segment t (Fig. 1).
Thus, the proposed SVM model is the structure shown in
Fig. 2. The input vector (x) consists of weather (x1),
time-of-day (x2), segment (x3), the upstream occupancies
(x1) on the segments t, t − 1, t − 2, . . . , t − m, the

downstream occupancies on the segments t + 1, t +
2, . . . , t + m, the upstream volumes on the segments
t, t − 1, t − 2, . . . , t − m, the downstream volumes on
the segments t + 1, t + 2, . . . , t + m. The outputs (y) of
the models are the incident detection results of the target
segment.

3. Case study

The SVM model for freeway incident detection is tested
with the data of the Shenda freeway and the Heda freeway
in the Liaoning province. The Shenda freeway leads
from Shenyang city to Dalian and is the first freeway
in China mainland. The total length is 400 km. The
Heda freeway leads from Jixi to Mudanjiang and its total
length is 1390 km. In the numerical test, one section of
the Shenda freeway (from Dalian city to Pulandian city)
and one section of the Heda freeway (from Dalian city to
Zhuanghe city) are taken as the test bed. The lengths of
the two sections are 88 km and 174 km, respectively. The
routes of the two sections are shown in Fig 3.

3.1. Data collection and processing. To acquire the
loop detector data at the two sections, we conducted
an experiment on the two sections simultaneously, from
April 16 to 20, 2012. There are double lanes in one
direction, the vehicle speed is assumed as 60 km/h, and
the vehicle flow is about from 1500 to 2000 vehicles/h.
The interval between two test points is from 500 to
700 m. The loop detector data about the time-of-day,
weather, segments, occupancy about all the segments

Fig. 1. Prediction configuration of the routes.

Fig. 3. Information on the two freeways.
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Fig. 2. Framework of the proposed SVM model.

and all the volumes from all the tested segments were
collected at 30-second intervals. The data collected from
all the lanes at a station were fed into the SVM models.
There are 140 incidents and 164 incidents from the two
sections in the whole process of the experience. Easy
data are divided into three sub-sets, which represent
training samples, testing samples and inspection samples,
respectively. There are about 70% samples for training,
30% samples for testing and the remaining samples are
for inspection.

3.2. Determination of the prediction window m.
The prediction window m is selected to reflect the
influence from the m-th segment far to the current one.
The choice of the prediction window m is typically a
compromise between the ability to track changes in the
input data. A long horizon m is used when the learning is
in the steady state and there is no obvious model variation,
while a small one is used which will lead to large errors.
Thus, a too large and a too small prediction window m
will affect the prediction accuracy. To determine the value
of the prediction window m based on the data of the
two sections, the prediction errors from the SVM with
different m are shown in Figs. 4 (a) and (b).

From Fig. 4, it can be found that the horizon m is
5–8, and the RMSE of the SVM model is almost the
same. This indicates that lengthening the horizon m again
cannot improve the prediction accuracy. Thus, the horizon
m = 5 is selected in this paper.

3.3. Tabu search algorithm for parameter iden-
tification. In this paper, the parameters of the tabu
search algorithm used for freeway incident detection are
as follows. The length of tabu is 5. The tabu search
algorithm was coded in Visual C++. Net 2003 and

executed on a PC equipped with 512 MB of RAM and a
Pentium processor running at 1000 MHz. The tabu search
algorithm continues running 10 times under the same
condition. The computation results for 10 times are shown
in Fig. 5. From Fig. 5, it can be seen that the prediction
error decreases fast before the 640-th generation, and then
it changes smoothly. The least prediction error appears
at about the 720-th generation, and then it remains almost
unchanged. It can be also found that the calculation results
for the ten times are almost equal. This suggests that
the tabu search algorithm has good convergence and the
results with the least prediction error correspond to the
optimization for three parameters, that is, C = 3.1042,
ε = 0.0032 and σ = 1.1732, for the freeway incident
detection model.

3.4. Computational results. The performance of an
AID model is often evaluated by the following three
indices (Srinivasan et al., 2005):

1. Detection Rate (DR), defined as the ratio of the
number of incidents correctly detected to the total
number of incidents known: DR = (no. of incidents
detected/total no. of incident cases) 100%.

2. False Alarm Rate (FAR), defined as the ratio of the
number of false alarm cases to the total number
of applications or decisions made by the algorithm.
FAR = (number of false alarms/total number of
incident-free input patterns) 100%.

3. Mean Time-To-Detect (MTTD) is the average time
an algorithm takes to detect incidents,

MTTD =
1
n

n∑

i=1

(tid − tio), (10)
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Fig. 4. Comparison of the prediction window m: section from Dalian to Pulandian (a), section from Dalian to Zhuanghe (b).

where tid is the time when the incident was detected,
tio is the time when the incident occurred and n is
the number of correctly detected incident cases.

4. MisClassification Rate (MCR) is the percentage of
misclassified patterns out of the total number of input
patterns. MCR = (number of wrongly classified
input patterns/total number of input patterns) 100%.

To test the effect of the support vector machine, a
standard three-layer artificial neural network is used for
predicting the freeway incidents. Before applying ANN
models, the input parameters of the ANN model need to
be determined using an experiment as SVM identification.
The combinations of the input parameters of ANN models
are the same as for the SVM experiment. The test results
of the ANN and SVM based on the two sections from two
freeways are shown in Tables 1 and 2.

From Tables 2 and 3 it can be found that the detection
speed of the neural network is slightly faster than that
for the support vector machine, but the detection rate,
the false positive rate and the misclassification rate of the
SVM are superior to those the artificial neural network.
A higher detection rate can effectively reduce negative
efficiency which is brought by a transportation incident.
A low false positive rate also saves the system operation
cost. Thus, the results suggest that our SVM model is an

Table 1. Performance of the SVM and the ANN on the section
from Dalian to Pulandian.

Method DR FAR MTTD MCR

SVM 96.2 4.24 73.4 3.52
ANN 92.9 5.08 71.2 4.63

Table 2. Performance of the SVM and the ANN on the section
from Dalian to Zhuanghe.
Method DR FAR MTTD MCR

SVM 95.7 4.82 72.6 3.50
ANN 93.6 4.96 70.7 4.71

effective method for freeway incident detection.
In addition, to examine the effectiveness of the

tabu search algorithm proposed in this paper, the
computational results of the SVM with the tabu search
algorithm (SVM-T) and the original SVM are compared.
Furthermore, the mean time-to-detect is used to be
computed and compared for the SVM model with the tabu
search algorithm and without it. The comparison results
are shown in Fig. 6.

From Fig. 6 it can be observed that, among the
three methods, the detection performances of SVM-T and
the SVM are better than that of MTTD. This can be
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Fig. 5. Fitness of each calculation by the tabu search algorithm.
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explained by the fact that the SVM uses the structural
risk minimization principle to minimize the generalization
error, while MTTD uses the average time to detect
incidents, which is not suitable for the input–output
non-linear relationship, especially for data of a relatively
small size. Furthermore, compared with the SVM and
SVM-T, it can be seen that the tabu search algorithm can
greatly improve the detection performance of SVM. This
is because the parameters optimized by the tabu search
algorithm are more suitable for the freeway incident
detection. Based on the results of Fig. 5, it can be attained
that the tabu search algorithm can improve the detection
performance of the SVM and the proposed SVM-T is
effective for freeway incident detection.

4. Conclusions

The paper attempted to use support vector machines for
freeway incident detection. To improve the prediction
performance of the SVM, a tabu search algorithm was
used to optimize the parameters for the SVM. The
prediction model was tested on the data of two freeways
in China to validate the feasibility and efficiency of the
model. The results show that the tabu search algorithm
has good convergence and relative stable performance.
Furthermore, to evaluate the prediction performance of the
proposed SVM, an ANN is used on the same data as the
SVM. The comparison results with the proposed SVM and
ANN suggest that the former provides a lower prediction
error and a longer time. This indicates that the proposed
SVM is a powerful tool for freeway incident detection.
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