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∗ Faculty of Applied Informatics and Mathematics
Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

e-mail: beata.zduniak@wp.pl

∗∗Faculty of Mathematics, Informatics and Mechanics
University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number
of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter
electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into
consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological
modes. Usage of certain values for feedback and delay parameters allows simulating the heart action when an accessory
conducting pathway is present (Wolff–Parkinson–White syndrome).
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1. Introduction

The paper is related to the research on an electrical
conduction system of the human heart. This system
contains a sino-atrial node (SA), an atrio-ventricular node
(AV) and the His–Purkinje system (Johnson, 1997). The
two nodes can be modeled by a modified van der Pol
oscillator (Żebrowski et al., 2008), while the His–Purkinje
system can be treated as a passive delaying element. This
model allows rendering phenomena observable in clinical
experiments like Holter recordings.

Based on the van der Pol equation, we study
the influence of feedback which occurs in the normal
heart action mode as well as in pathological modes.
Particularly, it is important to introduce time delay
into this feedback. Properties of the modified model
with delay are examined. Delay values used in
our research correspond to those which occur in an
electrical conduction system, for example, in the case
of an accessory conducting pathway, the so-called
Wolff–Parkinson–White syndrome. In the conduction
system of the heart the only correct electrical conduction
pathway between atria and ventricles is the bundle of His.
Part of the population has abnormal accessory pathways
through which electrical pulses are directly conducted

from atria to ventricles. The atrio-ventricular node in a
healthy heart ensures delay of electrical pulses generated
in the sino-atrial node. The presence of an accessory
conducting pathway may be the reason for AV nodal
reentrant tachycardia occurrence. This pathway is called
the bundle of Kent and conducts electrical pulses quicker
than the atrio-ventricular node. In that case the wave of
depolarization goes from atria to ventricles through the
accessory path and returns to atria through the bundle of
His. Such a wave of depolarization is called “reentry” and
is the reason for tachycardia.

Atrio-ventricular nodal reentrant tachycardia
(AVNRT) occurs when there are dual AV pathways
conducting electrical impulses from atria to ventricles.
The pathways join at two points within the AV node
so as to form a circle. One pathway conducts impulses
quickly but has a long refractory period. The other
conducts impulses slowly but recovers quickly from
depolarization. Because of the existence of the accessory
conducting pathway outside the AV node, a flutter wave
starts to circle. In our paper, the result of introducing
feedback to the modified van der Pol system is creation
of a wave similar to the initial wave—action potential,
only delayed. It can be assumed that such feedback can
be treated as an external, periodic excitation of the wave.
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The analysis of periodic orbits of various
modifications of the van der Pol model has been the
aim of many papers (Giacomin and Neukirch, 1997; Palit
and Datta, 2010). Moreover, the model with delay and
often with a term including the coupling coefficient
has been considered in many articles (e.g., Erneux
and Grasman, 2008; Jiang and Wei, 2008; Yu and
Cao, 2005; Zhou et al., 2011). However, in these
papers there are no examples of application of this
model for recreating pathological behavior of the
electrical-conduction system of the human heart, and
therefore the ranges of parameters considered are wider
than those that can be used in medical applications.
Such wide ranges of the model parameters yield
interesting qualitative results, e.g., Hopf bifurcation,
Bogdanov–Takens bifurcation, transcritical and pitchfork
bifurcations, but also solutions which are stable can
be found. Erneux and Grasman (2008) showed that
progressively stronger feedback for the weakly nonlinear
oscillator leads to a large perturbation of the amplitude
and possibly to a successive Hopf bifurcation. Bifurcation
analysis was obtained by center manifold theory and
the normal form method for functional differential
equations (Jiang and Wei, 2008; Yu and Cao, 2005; Zhou
et al., 2011). The van der Pol equation provides rich
dynamical behavior which we would like to exploit in the
modeling of the heart action.

2. Construction of the model

A prototype of nonlinear oscillators, which was originally
devised as a model in electronic circuit theory, may be
described by the well-known van der Pol equation (Kaplan
and Glass, 1995),

ẍ + a(x2 − 1)ẋ + x = 0, a > 0, (1)

where f(x) = 1
2a(x2 − 1) is a damping coefficient being

a function of the x variable, which is negative for |x| < 1
and positive for |x| > 1. Negative damping corresponds
to the situation when energy is added to the system and
the amplitude of oscillations grows, whereas positive one
corresponds to the reduction of energy and the oscillation
amplitude. This is a relaxation oscillator, which is very
useful for description of the heart dynamics, because it
easily adjusts its frequency to excitation frequency. The
dynamics of Eqn. (1) are well known in the literature. This
equation belongs to a wider class of Liénard’s equations,

ẍ + F (x)ẋ + G(x) = 0, (2)

where G is odd and F is even. Liénard’s theorem gives
sufficient conditions for the existence and uniqueness of
a stable limit cycle (Palit and Datta, 2010).

Define Φ(x) =
∫ x

0 F (ξ)dξ. Then these conditions
are as follows:

1. G(x) > 0 for x > 0;

2. lim
x→∞Φ(x) = ∞;

3. there exists x̄ > 0 such that Φ(x) < 0 for 0 < x < x̄,
Φ(x) > 0 for x > x̄ and Φ is increasing.

It is obvious that Eqn. (1) is of the form (2). Moreover,
it has only one steady state x1 = 0, which is obviously
unstable (a focus or a node depending on a), and all
solutions are attracted by the limit cycle formed around
this steady state. Two examples of the phase space portrait
in the (x, ẋ) coordinates for a = 5 and a = 0.5 are
presented in Fig. 2. The van der Pol model needs some
changes in order to reproduce actual features of an action
potential. Giacomin and Neukirch (1997) introduced
modifications that maintain the required structure of the
phase space. More precisely, the authors substituted
a linear term by a nonlinear cubic force called the Duffing
term,

ẍ + a(x2 − μ)ẋ +
x(x + d)(x + 2d)

d2
= 0, (3)

where a, μ, d are positive control parameters.

Fig. 1. Three steady states of the modified van der Pol oscilla-
tor: N—stable node, S—saddle, F—unstable focus sur-
rounded by a limit cycle (Giacomin et al., 1997).

This model can be treated as an SA or AV node
model. The mutual interaction of a limit cycle present
around an unstable focus with a saddle, and a stable node
is the main property of a modified relaxation oscillator,
see Fig 1. As a result, the refraction period and nonlinear
phase sensitivity of an action potential of node cells are
reproduced correctly. A solution of this equation in
time presents the action potential, whereas a solution in
velocity allows obtaining a very important phase portrait.
We can easily see that the main qualitative difference
between Eqns. (1) and (3) is the appearance of two
additional steady states, x2 = −d and x3 = −2d. As
before, x1 = 0 is an unstable node or a focus surrounded
by a stable unique limit cycle, x2 = −d is a saddle
and x3 = −2d forms a focus or a node and can be
either stable or unstable, depending on the sign of 4d2 −
μ. In the case considered by Postnov (Giacomin et al.,
1997) the first steady state is an unstable focus, while
the third one is a stable node which attracts all solutions
starting on the left hand-side of the stable manifold of
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Fig. 2. Phase space portraits in (x, y) = (x, ẋ) coordinates for a = 5 (a) and a = 0.5 (b). We see that for small a the velocity ẋ does
not change as much and as rapidly as for large a. However, a = 5 is a biologically relevant value used in a description of the
heart action in our analysis.

the saddle x2. However, in the examined model (3) it
is difficult to regulate the location of steady states in the
phase space, so to reproduce the heart behavior a new
parameter e is introduced. Notice that this modification
has no influence on the phase portrait, whereas we have
the opportunity to modify the location of steady states
for parameter values (5). In order to simplify frequency
regulation and obtain the proper timescale, the ed factor
in the denominator is substituted with an independent
coefficient f corresponding to a harmonic oscillator’s
frequency (Palit and Datta, 2010).

As we are mainly interested in phase space analysis,
we present the final version of the model in its two variable
first order form that reads

ẋ = y,

ẏ = −a(x2 − 1)y − fx(x + d)(x + e).
(4)

The selection of appropriate parameters was done after
a verification of the model by Grudziński (2007). The
aim was to recreate physiological properties of the
biological model using mathematical equations. The
setup of particular parameters and acceptable variability
ranges are briefly presented below. This information is
essential for examining the stability of our setup because
without such limitations the system could have completely
different properties and would not recreate physiological
properties.

A modification of the value of parameter a increases
time intervals between pulses but also changes their
shapes, as shown in Fig. 2. Such behavior is inconsistent
with physiological observations. This disadvantage of
the vdP oscillator is related to the phase space structure.
A modification of the e parameter of the node location
influences the distance between consecutive potential
needles without changing their shapes. This means that
the mutual position of a saddle and a node influences

the time of spontaneous depolarization, which is one of
the physiological mechanisms of regulation of the action
potential generation frequency. The dependence of the
oscillator considered on the parameter e is nonlinear
(Grudziński, 2007). Saturation of the curve is consistent
with physiological observations because of the fact that
the heart’s ability to increase the rhythm frequency
decreases for higher rhythm frequencies.

Parameter values for mvdP were chosen such that the
oscillation’s frequency corresponds to a real frequency of
SA and AV nodes. The parameter e plays a major role
in the validation process of the model. The parameter
a is in the range [0.5, 6], the parameter e belongs to the
interval [7, 12] and the parameter f may change only in
the small range [2.5, 3]. However, the reference model
has the following parameter values:

a = 5, f = 3, d = 3, e = 7, (5)

which were used by Grudziński (2007).
Notice that the phase space portrait is qualitatively

the same as for Eqn. (3). We present this portrait together
with the sketch of the vector field in Fig. 3.

For the specific parameter values (5) we are able
to calculate an invariant set containing the trivial steady
state. This set has boundaries described by the following
equations:

y = 2(x + 3), x ∈ [−3,−2],
y = 6(x − 2) + 2, x ∈ [−2, 1],
y = −4.8x + 20 , x ∈ [1, 1.2],
y = −8.7(x − 1.2) + 19.04 , x ∈ [1.2, 1.4],
y = −13.7(x − 1.4) + 17.3 , x ∈ [1.4, 1.6],
y = −20.8(x − 1.6) + 14.56 , x ∈ [1.6, 1.8],
y = −33.1(x − 1.8) + 10.4 , x ∈ [1.8, 2.0],
y = −86.4(x − 2) + 3.78 , x ∈ [2.0, 2.05],
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Fig. 3. Sketch of the vector field defined by Eqns. (4) (a) and the phase space portrait for the model parameters defined by (5) (b). The
grey line is a null-cline for y and the thick black line is a null-cline for x. Null-clines divide the phase plane into seven regions
A,B, . . . ,G. In each of these regions both functions x(t) and y(t) are monotonic.

x = 2.05 , y ∈ [−13.315, 0],
y = 5.7x − 25 , x ∈ [0, 2.05],
y = 5x , x ∈ [−0.6, 0],
y = 2.2(x + 0.6) − 28 , x ∈ [−1,−0.6],
x = −1 , y ∈ [−29,−28.88],
y = −1.2(x + 1) − 29 , x ∈ [−1.3,−1],
y = −4.7(x + 1.3) − 28.64 , x ∈ [−1.6,−1.3],
y = −9.1(x + 1.6) − 27.23 , x ∈ [−1.9,−1.6],
y = −14.3(x + 1.9)− 24.5 , x ∈ [−2.2,−1.9],
y = −20.4(x + 2.2)− 20.21 , x ∈ [−2.5,−2.2],
y = −27.4(x + 2.5)− 14.09 , x ∈ [−2.7,−2.5],
y = −32.6(x + 1.3)− 8.61 , x ∈ [−2.96412,−2.7],
y = 0 , x ∈ [−3,−2.96412].

This allows us to conclude that due to the instability of the
trivial steady state there exists a limit cycle located inside
these boundaries.

In this paper we focus on the investigation of
properties of the modified van der Pol equation with
feedback and delay. Setting the problem in this
way is important in the study of multi-diseases, e.g.,
the WPW syndrome and AVNRT. Pathology in action
and conduction of the node in these illnesses is described
in Introduction. In the model we study the feedback
describes the situation when the output from the system
influences the input and modifies the system action. In
electronic engineering, in which mostly linear four-poles
are considered, we can distinguish positive (in which
a signal is amplified) and negative feedback loops. In
nonlinear dynamics, feedback does not have to behave
like that. Nonlinearity has a very serious impact on
the behavior of a system (e.g, Maccari, 2001; Xu and
Chung, 2003; Reddy et al., 2000; Liu et al., 2013).

Moreover, small delays are observed in the

WPW syndrome and AVNRT. The time when a wave
goes along uncontrolled in order to return to the node
(the time of flutter waves passing) is reflected by the delay
which is added to the feedback part. We are interested
in the range of delays which can occur at the existing
accessory conducting pathway. We demonstrate that the
feedback added to system in this way allows modelling
real behavior of the heart in these kinds of pathologies.

Therefore, including the time delay in the feedback,
we obtain the final version of our model that reads

ẋ = y(t) + k
(
x(t − T ) − x(t)

)
,

ẏ = −a
(
x2(t) − 1

)
y(t)

− fx(t)
(
x(t) + d

)(
x(t) + e

)
,

(6)

where k is a coupling coefficient, T is a delay and other
parameters are defined by (5).

3. Analysis of Equations (6)

At the beginning we prove the existence and uniqueness
of solutions.

Theorem 1. Let ϕx, ϕy be arbitrary continuous functions
defined on the interval [−T, 0]. Then there exists a unique
solution of Eqns. (6) defined on [0, +∞).

Proof. We use the step method (Hale and Lunel, 1993)
and study Eqns. (6) as a system of non-autonomous
ordinary differential equations (ODEs) on the intervals of
the delay length. Let us consider Eqns. (6) with an initial
time-point t0 = 0 and a continuous initial function ϕx

defined on [−T, 0]. Hence, the system considered may be
solved on the interval [0, T ] as ODEs. Then, if the solution
on [0, T ] exists, we can calculate it recursively for other
intervals [nT, (n + 1)T ]. More precisely, on [0, T ] the
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system reads

ẋ = y(t) + k
(
ϕx(t − T ) − x(t)

)
,

ẏ = −a
(
x2(t) − 1

)
y(t)

− fx(t)
(
x(t) + d

)(
x(t) + e

)
.

(7)

We easily see that local solutions exist and are
unique, as the autonomous part of the right-hand side is
polynomial while the non-autonomous term kϕx(t − T )
is continuous. We shall show that solutions exist on the
whole interval [0, T ]. Therefore, we need to exclude
a blow up, that is, the existence of t̄ ∈ [0, T ] such that
the solution tends to ∞ when t → t̄−. Assume that such
t̄ exists. If x is bounded, then y → ∞, but this implies
ẋ → ∞, which contradicts the boundedness of x. If we
set up that y is bounded, then

x(t) = x0(0) e−kt +

t∫

0

(y(s) + kϕx(t − T )) ek(s−t) ds

is bounded as well. Hence, it suffices to show it
is impossible that limt→t̄ x(t) = limt→t̄ y(t) = ∞.
However, looking at the right-hand side of Eqns. (7), it
is easy to see that

• if x > 0 and y > 0 sufficiently large, then ẏ < 0,
and therefore y cannot tend to +∞;

• if x < 0 and y < 0 with sufficiently large absolute
values, then ẏ > 0, and therefore y cannot tend to
−∞;

• if x < 0 and y > 0 with sufficiently large absolute
values, then ẋ > 0, and therefore x cannot tend to
−∞;

• if x > 0 and y < 0 with sufficiently large absolute
values, then ẋ < 0, and therefore x cannot tend to
+∞.

Hence, unique solutions exist on the whole interval [0, T ]
and can be prolonged to ∞ using the step method. �

Now, we turn to the analysis of steady states.
Examination of stability is essential for this kind of
systems. For the specific parameters (5) it is possible
to check stability using the Mikhailov criterion (Foryś,
2004).

Theorem 2. (Mikhailov criterion) Let a function
W : C → C be of the form

W (z) =
m∑

k=0

Ak(z) e−hkz,

where 0 = h0 < h1 < · · · < hm, Ak(z) =
∑nk

j=0 ajkzj ,
ajk ∈ R, n0 ≥ 1 and nk < n0, for k = 1, . . . , m. If

W (z) has no zeros on the imaginary axis, then all roots
of W lie in the open left half-plane of the complex plane
if and only if Δ = n0π/2, where Δ denotes the change in
the argument of W (iω) when ω increases from 0 to ∞.

Now, we use this theorem to check the stability of
the steady states of Eqns. (6). Let Ai = f

(
xi(xi + e) +

xi(xi+d)+(xi+d)(xi+e)
)
, Bi = ai(x2

i −1) i = 1, 2, 3,
and x1 = 0, x2 = −d, x3 = −e. The characteristic
quasi-polynomial for Eqns. (6) for the steady state (xi, 0)
has the following form:

W (λ) = λ2 +
(
Bi + k

)
λ + Ai + kBi

− k
(
λ + Bi

)
e−λT .

(8)

The curve drawn by the vector W (iω) =(
Re(W (iω)), Im(W (iω))

)
in the complex plane as

ω increases from 0 to ∞, is called the Mikhailov
hodograph. The change in the shape of Mikhailov
hodographs with increasing T for x1 is shown in Fig. 4,
while for x3 in Fig. 5.

For both the steady states the shape of hodographs
becomes more and more looped, but the total change in
the argument of W (iω) remains the same. However, for
x1 it is equal to −π, implying instability, while for x3 it
is +π, implying stability independently of the magnitude
of the delay. As the steady state (x2, 0) is a saddle, it does
not change stability with increasing delay.

On the other hand, we are also interested in the
possible change in stability for other parameter values,
and below we formulate a stricter result.

Theorem 3.
(i) The steady state (0, 0) of Eqns. (6) is an unstable focus
for T = 0. If

|B1|
8A1

(
4A1 − B2

1

)
< k <

A1

2|B1| , (9)

then stability switches can occur, that is, there may ex-
ist k ≥ 0 and a sequence of numbers 0 < T1 < T2 <
· · · < T2k−1 < T2k such that the steady state (0, 0) is
locally asymptotically stable for T ∈ (T2j−1, T2j), j =
1, 2, . . . , k, and is unstable for T ∈ (0, T1) ∪ (T3, T4) ∪
· · · ∪ (T2k, +∞). If

k <
|B1|
8A1

(
4A1 − B2

1

)

or

k >
A1

2|B1| ,

then the steady state (0, 0) is unstable independently of
T ≥ 0.

(ii) The steady state (−d, 0) of Eqns. (6) is unstable inde-
pendently of T ≥ 0.

(iii) The steady state (−e, 0) of Eqns. (6) is stable inde-
pendently of T ≥ 0.
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Fig. 4. With increasing delay T the shape of Mikhailov hodograps for x1 becomes more and more looped. However, the total change in
the argument remains the same and equals −π, independently of the value of the delay, that is, T = 0, 0.5, 1 (a) and T = 1.5,
2.5, π (b).
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Fig. 5. With increasing delay T the shape of Mikhailov hodograps for x3 becomes more and more looped. However, the total change in
the argument remains the same and equals +π, independently of the value of the delay, that is, T = 0, 0.5, 1 (a) and T = 1.5,
2.5, π (b).

Proof. The Mikhailov criterion implies that, if a steady
state is a saddle point for T = 0, then it does not change
stability with increasing delay (Bielczyk et al., 2012).
Therefore, the part (ii) is proved.

Now, we study the steady states (0, 0) and (−e, 0),
that is, an unstable focus and a stable node for T = 0.
We use the method presented by Cooke and van den
Driessche (1986). If we rewrite the characteristic
quasi-polynomial (8) in the form

W (λ) = P (λ) + Q(λ) e−λT , (10)

and define the auxiliary function

F (ω2) = ||P (iω)||2 − ||Q(iω)||2
= ω4 + (B2

i − 2Ai)ω2 + A2
i + 2kAiBi, (11)

then, if F has no positive zeros, any change in stability
is impossible. On the other hand, if F has at least one
positive zero and each one is single, then stability changes

may occur. Moreover, there exists T ∗, such that the
characteristic quasi-polynomial is unstable for all T > T ∗

and when T changes from 0 to T ∗ the number of stability
changes is finite.

The change of stability may occur if

I. A2
i + 2kAiBi < 0,

II. A2
i + 2kAiBi > 0 but B2

i − 2Ai < 0 and Δ =
(B2

i − 2Ai)2 − 4(A2
i + 2kAiBi) = B4

i − 4AiB
2
i −

8kAiBi > 0.

For the third steady state with x3 = −e we have A3 =
fe(e − d) > 0 and B3 = a(e2 − 1) > a(d2 − 1) > 0.
It is a stable node for T = 0. Hence, B2

3 − 4A3 > 0
in this case, and therefore neither the condition I nor the
condition II of stability switches can be satisfied for this
state.

For the first steady state with x1 = 0 we have
A1 = fde > 0 and B1 = −a < 0. Notice that
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for T = 0 its characteristic equation takes the form
λ2 + B1λ+ A1 = 0 and since we require this steady state
to be an unstable focus, there must be B2

1 < 4A1. Notice
that, if A2

1 + 2kA1B1 < 0, then F has a unique positive
root ω2

0 > 0 and F ′(ω2
0) > 0. Thus, eigenvalues cross

the imaginary axis from left to right (Cooke and van den
Driessche, 1986) and stability switches are impossible.
Therefore, only the condition II can be taken into account,
and in this case B2

1 < 2A1 < 4A1, yielding that the
condition for focus is satisfied.

Thus, the necessary conditions to stabilize the steady
state x1 = 0 are

(C1) A2
1 + 2kA1B1 > 0;

(C2) B2
1 − 2A1 < 0;

(C3) Δ = (B2
1 − 2A1)2 − 4(A2

1 + 2kA1B1) = B4
1 −

4A1B
2
1 − 8kA1B1 > 0.

Notice that for k = 0 we have Δ = (B2
1−4A1)B2

1 <
0 due to the condition (C2). Moreover,

Δ > 0 ⇐⇒ Δ̃(k) = B2
1 − 4A1 − 8

A1

B1
k > 0 .

In our case B1 < 0 and this implies that the function
Δ̃(k) is increasing. The condition (C1) is satisfied as long
as k < −A1/(2B1). Hence, the condition of stability
switches for x1 is given by the inequalities (9). It can be
easily seen that for any A1 > 0 and B1 < 0 the inequality

|B1|
8A1

(
4A1 − B2

1

)
≤ A1

2|B1|
is satisfied, and therefore the condition (9) defines
a non-empty set. �

Theorem 3 implies that for some parameter values
stability switches may occur. The critical value of T for
which a stability switching is possible can be calculated as
follows. Let ωj > 0 be a solution of (11). Then, following
Cooke and van den Driessche (1986), critical values of T
fulfil

cos(Tωj)

= −Re(P (iωj))Re(Q(iωj)) + Im(P (iω))Im(Q(iωj))
Re(Q(iωj))2 + Im(Q(iωj))2

sin(Tωj)

=
Re(Q(iωj))Im(P (iωj)) − Re(P (iωj))Im(Q(iωj))

Re(Q(iωj))2 + Im(Q(iωj))2
,

where

P (iωj) = Ai + kBi − ω2
j + i · ωj(B + k),

Q(iωj) = kB + i · kωj.

Thus, for the steady state (0, 0), we arrive at

cos(Tωj) = −kω2
j + B1(A1 + kB1)

k(ω2
j + B2

1)
,

sin(Tωj) =
ωj(ω2

j + B2
1 − A1)

k(ω2
j + B2

1)
,

j = 1, 2, and we require that Tωj ∈ [0, 2π).
For parameters values given in (5) the inequalities (9)

are fulfilled for k ∈ (kmin , kmax ), where kmin =
1135/504 ≈ 2.25 and kmax = 6.3. It turns out that for
these values of parameters there exists a small interval of
T for which the trivial steady state can gain local stability.

In Fig. 6 we present the graphs of the critical value
of T . The solid line denotes the critical value of T for
which eigenvalues cross the imaginary axis from right to
left, while the dashed line denotes critical values for which
eigenvalues cross the imaginary axis from left to right.
In Fig. 8 we present sample solutions for the case when
stability switches occur. However, if we change the value
of a or f , the interval (kmin , kmax ) changes. The upper
end of the interval, kmax , is a decreasing function of a and
an increasing function of f . The dependence of kmin on
a and f is more complicated. It is an increasing function
of f . The lower end of the interval, as a function of a, has
a maximum for ā = 2

√
fde/3. In fact, for a = 0.5 we

have kmin = 1007/4032 ≈ 0.25 and kmax = 63. For
a ≈ 2.04 (and the rest of parameters as in (5)) we have
kmin < 1, and several stability changes may occur for
k ≈ 1, which is presented in Fig. 7.

Summarizing, in all cases we do not observe changes
in the stability of a solution for the mvdP model for
biologically relevant parameter values, as k ≈ 1 is
physiological. This means that the mvdP model with
a given range of parameters values has very stable
dynamics. It is very important in a dynamical system
which describes a real medical problem, because the
parameters of realistic models have observational errors.
The model’s stability also means that errors of the
floating-point computations would not have a significant
impact on the result.

4. Numerical analysis

For a numerical analysis of the discussed system,
a numerical model was created using Dynamics Solver
and a program in C++ was written. A Dormand–Prince 8
integration algorithm was used. This method is
a modification of the explicit Runge–Kutta formula with
a variable integration step. Results were confirmed and
plots were made with the Matlab dde23 solver. For the
single node model of an electrical conduction system with
no feedback, a periodic potential and the corresponding
limit cycle (with a transient state) are obtained like in
Fig. 9. The potential period equals 1.4.
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Fig. 6. Dependence of the critical value of the delay on k. The solid line denotes the critical value of T for which eigenvalues cross
imaginary axes from right to left, while the dashed line denotes critical values for which eigenvalues cross imaginary axes from
left to right. The shaded area is a stability region.
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Fig. 7. Dependence of the critical value of the delay on k for a = 1.5 and the rest of parameters as in (5). The solid lines denote the
critical value of T for which eigenvalues cross imaginary axes from right to left, while the dashed lines denote critical values
for which eigenvalues cross imaginary axes from left to right. The shaded area is a stability region.

After including feedback with k = 1 and delay T =
0.5, time series look like on the given charts presented
in Figs. 9. A solid line presents the modified model
with the feedback and delay equal to 0.5. For T = 1,
results are very similar. We can see that in the modified
model the oscillation amplitude is reduced and the resting
potential raised. This is caused by the delay, because the
feedback itself does not influence the amplitude. Similar
results were obtained (Atay, 1998) for a simple van der
Pol oscillator with feedback.

In the case above the oscillation period is shortened
and the limit cycle is decreased—the trajectory in one
period is shorter, as shown in Fig. 9. We can see that the
trajectory around the saddle moves slightly further from it
and has a smoother shape. This means that the attraction
by the stable manifold of the saddle point has decreased.
Also the oscillation period is shortened. For the basic
model (without feedback) the period equals 1.4, whereas
when feedback and delay are included the period equals
0.8 or 0.9.

In order to verify the influence of the feedback we

set a small delay. For k = 1 and T = 0.001, results
are the same as for the modified van der Pol model. For
k = 1 and T = 0.01 we can observe, from a certain
moment, a change in the period and with displacement
of the oscillations to right compared with the basic one.
Small feedback and delay parameter values do not modify
the system’s behavior much, but allow us to find out that
types of fixed points do not change and the trajectory
changes insignificantly. This means that for such small
delay the feedback trajectories in the (x, y) space remain
the same and look the same as for the modified van der
Pol equation. For k = 0.5 and k = 2 and delays like in
the previous case we can observe insignificant influence of
feedback. For a bigger feedback value there is a transient
change in the period length which slightly disturbs the
oscillator’s action, but these changes are not big enough
to modify its properties in long time.

The result of introducing feedback to the system is
creation of a wave similar to the initial wave—the action
potential, only delayed. It can be assumed that such
feedback can be treated as an external, periodic excitation
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Fig. 8. Periodic potential for the single node model without feedback (dashed line with a bigger period) and for the model with feedback
(solid line with a smaller amplitude) for k = 2.545 and T = 0.5 (upper line) and T = 0.7 (lower line) (a), (c). Corresponding
phase portraits (b), (d).
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Fig. 9. Periodic potential for the single node model without feedback (dashed line with a bigger period) and for the model with feedback
(solid line with a smaller amplitude) for k = 1 and T = 0.5 (line with a smaller amplitude) (a), phase portrait for the model
without feedback (exterior line), with feedback k = 1 and T = 0.5 (interior line) (b).

of the wave. Period lengths of the model with feedback
are constant. This model’s behavior was analyzed by
time series. We verified changes in the period length for
relatively small delay values. The obtained results are
regular and the period length of the oscillation does not
change. The conclusion is that regular excitation may
evoke a regular answer.

After examining the influence of excitation with
the mvdP oscillator wave, we analyzed the behavior of
the mvdP oscillator with feedback excited with a single
rectangular pulse. In this way two excitations coexist in
the system—the wave brought by the oscillator’s feedback
and the one from the external pulse.

The pulse is defined by a step function H for the
amplitude A = 4 and the pulse length L = 0.05, and
is applied to the oscillator with k = 1 and T = 1. The
function H is defined as

HA,L(t) =

{
A if 0 < t < L,

0 otherwise.
(12)

The influence of the pulse is treated as an appearance of
the accessory current in our system. For this purpose, this
pulse is introduced to the equation describing potential
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changing (the x variable):

ẋ = y(t) + k (x(t − T )− x(t)) + HA,L(t − tp),

ẏ = −a
(
x2(t) − 1

)
y(t)

− fx(t)(x(t) + d)(x(t) + e),

where tp denotes the time moment when the pulse starts.
The influence of the pulse, which results in a period

length change, depends on a phase of oscillations in
which it is applied. As mentioned before, the excitation
influences the system having regular behavior.

A numerical solution of the system with feedback
(k = 1, T = 0.5), excited with the rectangular pulse, is
presented in Fig. 10. The dashed line corresponds to the
mvdP with feedback, whereas the solid one reflects the
mvdP with feedback, which is additionally excited with
the rectangular pulse.

29 29.5 30 30.5 31 31.5 32 32.5 33 33.5 34

−3

−2

−1

0

1

 

 

without excitment
excited with a puls
a puls

Fig. 10. Numerical solution of the system with feedback (k =
1, T = 0.5), excited with the rectangular pulse where
A = 4 and L = 0.05. The thin grey line indicates
when the pulse given by HA,L is applied.

In this case, application of the external pulse does not
influence the oscillator’s period length and the oscillations
are stable. There are phase ranges for which oscillations
are sensitive to a disturbance. Phase response curves for
the mvdP system without feedback and for two cases with
feedback (k = 1, T = 1 and k = 1, T = 0.5) which
are excited with the rectangular pulse (A = 4, L = 0.05)
are shown in Fig. 11. A phase response curve is a graphic
presentation of the influence of excitation of oscillation
phases of the mvdP system. Its shape depends on the
phase of oscillation on which the excitation is put. This
curve describes the dependence between the change in
the length of one cycle of oscillation and the excitation
phase φ. For example, the application of excitation when
the system abides in refraction state does not change its
behavior.

The system is phase sensitive and that excitation,
depending on the phase, may change the potential
period length. Results of this analysis were confirmed
experimentally. Models with feedback are much less
phase sensitive, Fig. 11. Feedback strongly modifies
properties of the mvdP model.

Fig. 11. Phase response curves for models with the rectangular
pulse.

5. Conclusions

The human heart rhythm with feedback for the AV node
is low-varying. The results of this study were consulted
with a medical doctor from the Institute of Cardiology in
Anin near Warsaw, who confirmed that a very stable heart
rhythm is typical for patients with “AV nodal reentrant
tachycardia”. For many systems, feedback may stabilize
oscillations. It is interesting that the nonlinear system
starts to behave like a linear four-pole after applying
feedback. Using only one feedback parameter k may
be questionable since the electrical pulse goes through
different structures which have varying thicknesses. That
is why the model with two different k values was
considered (the pulse going through two different tissues).
The obtained result was insignificantly different from
the one for one k value. As a result of feedback and
delay, the oscillation amplitude decreases and the resting
potential (potential minimum) raises. This is caused
by the delay only, and feedback does not affect that.
Applying feedback and delay (large k and T ) results in
changes in the phase portrait. Our model reconstructs
correctly pathologies of the heart action like AVNRT or
one of the WPW syndrome types. The system keeps local
stability which is very important for mathematical models
used for a description of medical phenomena.
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