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Introduction of fly-by-wire and increasing levels of automation significantly improve the safety of civil aircraft, and result in
advanced capabilities for detecting, protecting and optimizing A/C guidance and control. However, this higher complexity
requires the availability of some key flight parameters to be extended. Hence, the monitoring and consolidation of those
signals is a significant issue, usually achieved via many functionally redundant sensors to extend the way those parameters
are measured. This solution penalizes the overall system performance in terms of weight, maintenance, and so on. Other
alternatives rely on signal processing or model-based techniques that make a global use of all or part of the sensor data
available, supplemented by a model-based simulation of the flight mechanics. That processing achieves real-time estimates
of the critical parameters and yields dissimilar signals. Filtered and consolidated information is delivered in unfaulty
conditions by estimating an extended state vector, including wind components, and can replace failed signals in degraded
conditions. Accordingly, this paper describes two model-based approaches allowing the longitudinal flight parameters of a
civil A/C to be estimated on-line. Results are displayed to evaluate the performances in different simulated and real flight
conditions, including realistic external disturbances and modeling errors.
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1. Introduction

1.1. Industrial context. The development of electrical
flight control systems (FCSs), known as fly-by-wire
(FBW), and the increasing levels of automation have
contributed to the improvement of the safety of civil
aircraft. These technological steps have allowed new
means for detecting, protecting and optimizing A/C
guidance and control to be developed (Traverse et al.,
2004). However, this higher complexity requires the A/C
states to be available and reliable, some of them becoming
key parameters to ensure a nominal behavior of the FCS,
such as the angle of attack (AoA) and the calibrated air
speed (CAS). By increasing their availability, the number
of switches to degraded control modes can thus be limited
during the flight. This paper illustrates some research
studies intending to evaluate new concepts for the control
and guidance of future A/C, focusing on the augmentation
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of control laws’ availability. Actually, both monitoring
and consolidation of sensor signals appear to be a major
issue in achieving the expected autonomy, by extending
the availability of the key parameters used by the control
laws and the flight envelope protections. To cope with
the occurrence of faulty measurements, the most natural
and usual solution consists in introducing many redundant
sensors to enlarge the way those parameters are measured
(classical hardware redundancy). Another alternative
consists in benefiting from the physical and dynamical
relationships linking some A/C states.

Adaptive schemes, which make use of fault detection
and diagnosis (FDD) methods, can thus be developed
and can provide the FCS with the ability to automatically
accommodate to potential failures. The theoretical
aspects of FDD have been studied since the 1970s and
are well mastered today (Kavuri et al., 2003). However,
the advanced methods developed by the academic
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community are not fully accepted by the aerospace
industry yet (Zolghadri, 2012). This results in a gap
between the current know-how in FDD and the industrial
practice implemented aboard the planes (Goupil, 2011).
Two main reasons can explain this gap: the low
TRL of the academic works, and the certifications
issues involved in A/C systems (Traverse et al., 2004).
That is why the recent projects commonly led by
industry and academy on those topics, e.g., ADDSAFE
(addsafe.deimos-space.com) and RECON-
FIGURE (reconfigure.deimos-space.com),
involve functional engineering simulators to address more
realistic implementation issues. Indeed, FDD systems for
Airbus A/C respect very stringent requirements in terms
of safety, availability and reliability.

Common Airbus practice for designing and
validating fault tolerant architectures was fully described
in previous contributions (Goupil, 2011). On most
civil/military FBW A/C, the usual strategy for sensor
FDD consists in point consolidation of like signals.
Majority voting mechanisms were comparably patented
by Boeing and Airbus, which rely on multiple sensing
channels (triplex or more) and assume that a faulty
situation will result in inconsistent signals. Therefore,
each parameter is measured by independent sensors,
allowing a reference consolidated signal to be computed
by the management system, which also monitors the set
of sensors simultaneously.

Hence, the FDD architecture involves two layers.
The first one relies on hardware redundancy using several
sensors of the same type, and is also applied to the
computing devices: three different ADIRU (air data
and inertial reference unit) computers manage all the
signals issued from anemometric and inertial sensors
(Fig. 1). Another way to achieve higher availability
of the parameters consists in introducing technology
dissimilarity; new measurement devices are studied such
as Lidar UV/IR for air data parameters. The second
layer is a pure software one and constitutes the heart of
the consolidation process, based on BITE (built in test
equipment), cross and consistency checks with voting
mechanisms. As shown on the top of Fig. 1, consolidated
signals are computed from three ADIRUs which deliver
three sets of signals coming from sensors located at
different A/C positions. A comparison between the
different measurements, followed by the selection of
a consolidated flight parameter, is performed by that
processing unit.

Such a hardware and technological redundancy
requires many sensors to be installed and maintained,
which means penalties in terms of weight, power/fuel
consumption, space requirements, and supporting
services. Instead of adding new (types of) sensors to
improve the parameter availability, another solution relies
on benefiting from the so-called analytical redundancy.

Fig. 1. Consolidation scheme using a virtual probe.

This solution makes a global use of all or part of the
sensor data available, supplemented by a model-based
simulation of the flight mechanics, and delivers an
estimation of the useful parameters. The resulting
estimates can be processed in parallel with the real
(measured) signals, hence contributing to extension of
the way the flight parameters are consolidated (bottom
of Fig. 1). This approach is referred to as a virtual
probe. Several schemes allow that extra information to
be introduced in the FDD architecture: processing the
virtual sensor just like the real sensors, using it only
in duplex or simplex modes (after one or several faults
already occur), or using it to form an (n+1)-plex sensing
channel (e.g., quadruplex in the case of three available
sensors). The concept of analytical redundancy for FCSs
is not new (Frank, 1996), as opposed to virtual sensors
studied more recently (Oosterom and Babuska, 2000).

Up to now, analytical redundancy has only been
used on A380 for early detection of specific oscillatory
failures (Goupil, 2010). To fill the fore-mentioned gap
between theory and practice, any advanced FDD needs
first to demonstrate an added value from the industrial
point of view, offering better performance or/and better
robustness in all conditions. This is the purpose of the
realistic evaluations performed in Section 5 all along
flight path profiles. Moreover, the candidate solution
should ideally be compatible with the existing system
architecture: model-based FDD should not substitute for
physical redundancies, but should supplement them in
case of failure, for instance (Fig. 1).

To say a word about failures, most of the time they
result from environmental phenomena (such as lightning
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Fig. 2. Solid-type and liquid-type failures.

or icing), impacts of external objects, or maintenance
misuses. As a result, several types of signal disturbances
can happen such as stuck values, biases or drifts induced
by solid-type or liquid-type failures (Fig. 2).

1.2. State of the art. Amongst the available methods,
FDD can be split into model-based and signal-based (or
model-free) approaches (Frank, 1996; Isermann, 2008;
Marzat et al., 2012). In this paper, we will focus on
model-based techniques permitting the missing states to
be reconstructed as soon as a sensor fault occurs and
is detected, but also to predict the A/C behavior over a
long term horizon. Hence we are not only concerned
with monitoring and diagnosing sensor faults: extra and
dissimilar signals should be created to supplement the
physical sensors and to provide a virtual sensing of the
key parameters. We will also keep in mind the stringent
implementation constraints on aboard computers.

Amongst model-based methods, many techniques
are available: observers, parity spaces, state estima-
tors (Patton and Chen, 1994; Garcia and Frank, 1997).
Regarding state estimation, Kalman filtering (KF) refers
to a stochastic system and delivers estimates by means of a
Bayesian approach. Accordingly, state and measurement
noises are assumed to be Gaussian, and the first/second
moments of their distribution known. As a result, the
innovation sequences should be white noises with zero
mean and known covariances, which can be monitored by
statistical tests for FDD purposes.

Banks of filters can also be used to model different
behaviors, e.g., faulty/unfaulty (MMAE (Hanlon and
Maybeck, 2000)), as well as the probability of switching
(IMM (Ru and Li, 2003)). Actually, standard KF
achieves successive approximations since computing the
pdf when the state/output equations are nonlinear is
intractable in practice. In consequence, expected values
and higher-order moments should be determined. To cope
with nonlinear filtering, primary solutions were sketched
out in the 1970s; they differ by the way the linearization
of the model equations is performed. The extended KF
(EKF) is the most widely used method. It involves
recursive estimation of the state mean and covariance by
linearizing around the current mean estimate (Chang and
Chen, 1995), i.e., a first-order Taylor approximation of
the state equations. In practice, local linearization using

a numerical technique can raise problems with strong
nonlinearities, and severely degrade the performances. In
the last decade, a number of derivative-free alternatives to
the EKF have been published (Van der Merwe and Wan,
2001), some consistently outperforming the Bayesian
processes. More sophisticated algorithms have also been
proposed that generally improve estimation accuracy at
the price of further complexity in the implementation, and
drastically increase the computational burden.

The unscented KF (UKF) is an improved derivative
free approach that delivers a third-order approximation
assuming that stochastic perturbations are Gaussian. The
UKF selects sample points (sigma points) defined from a
square-root decomposition of the prior state covariance.
They are propagated without any approximation through
the true nonlinear modeling, before a weighted sum is
used to compute the mean and the covariance of the
state (Julier and Uhlmann, 2004). A similar propagation
of the process/measurement noise signals is also possible.
Otherwise, particle filters (PFs) are another alternative
to numerical approximations of the pdf (Arulampalam
et al., 2002). The basic idea is to represent the posterior
pdf by a set of random samples with associated weights,
and to compute estimates from these samples. Different
versions were proposed to avoid problems like sample
degeneracy. They are very flexible and easy to implement,
but obtaining accurate estimation of the pdf may require a
large number of particles, and that is why most successful
applications have been restricted to low-dimensional state
spaces. Apart from nonlinear or non-Gaussian systems,
PFs also favor statistical characterization of discrete states
which represent operating conditions or fault modes in
a dynamic system (De Freitas, 2002). Moreover, when
the physical model is Gaussian and linear for a given
operating condition, the PF can be restricted to the discrete
variables associated to the operating states; the algorithm
involves a bank or mixture of interacting KF, known as the
Rao–Blackwellized PF (Chen and Liu, 2000).

Practically, a major obstacle to an operational use
of those algorithms springs from their implementation in
real time and especially from the computational burden
of the associated schemes. That is why only two simpler
methods were selected and compared in this paper (see
the AMI and the AEKF in Section 1.3). The latter
(the most complex) is being used as a reference but
requires future simplifications to be implemented, and the
former (rather simple) is directly usable as it is without
further investigation. Otherwise, analytical redundancy
is challenging since its robustness and performances
should be guaranteed in the presence of potential
modeling errors and uncertainties, noise and unknown
disturbances. Fortunately, as we will see in the sequel,
the selected approaches will directly encompass some
of these aspects.
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1.3. Selected approaches. Regarding model-based
FDD, a new aerodynamic model inversion (AMI)
approach was evaluated by Hardier and Seren (2013) to
achieve an estimation of longitudinal flight parameters,
namely, the AoA and CAS. This first approach permits
all the existing sensors (and possibly future ones) to be
exploited with a prior knowledge of the A/C dynamics,
modeled through flight mechanics equations. The original
and efficient scheme is also consistent with the manifold
goals: optimizing and consolidating information in
nominal conditions, and making up for erroneous signals
in faulty conditions. Its main advantage relies on the fact
that the complexity of the algorithmic scheme remains
quite low regarding on-board implementation.

A second alternative consists in exploiting the ca-
pabilities offered by the well-proven EKF that permits
all available data to be merged while enhancing
the measurements through a modeling describing the
expected A/C behavior (Seren and Hardier, 2013). There
are many pros for using this approach: on the one hand, to
deliver filtered and consolidated information in nominal
conditions (unfaulty) by estimating an extended state
vector (including wind components, modeling errors, and
measurement biases, etc.), and, on the other hand, to make
up for failed signals in degraded conditions to improve the
availability of the flight parameters. In return, attention
should be paid to some potential problems.

The first issue requires ensuring that the filter
will not use faulty data to update its internal state
when the conditions are no longer nominal after a
failure. A straightforward solution consists in using
external information coming from the monitoring block
to reconfigure the estimator according to the available
sensor data. Herein, another solution is applied using
internal information related to the filter residuals and
results in an adaptive EKF-based (AEKF) scheme for
filter reconfiguration. The second issue concerns the
robustness regarding modeling errors and uncertainties.
Following a failure, the filter predictions become highly
dependent on the reliability of the internal model encoded
into the estimation scheme. To achieve the required
performances, this issue can be tackled in both ways.
A preliminary and usual identification step results in a
fine tuning of the flight dynamics model exploited by the
filter (Bucharles et al., 2012). Secondly, residual local
errors can be continuously estimated during the nominal
phase, and hence used to improve the model accuracy
during the prediction stages. It is worth noting that
the general formulation of the AEKF and AMI permits
an easy extension to other applications (e.g., UAVs), by
requiring only some changes in the modeling components.

The remainder of the paper is organized as follows.
Section 2 describes the way an accurate but simplified
model can be obtained by means of surrogate modeling
(SM) for representing the aerodynamics and engine thrust

effects. The theoretical development of the proposed
estimation methods is dealt with in Section 3 (AEKF
scheme which makes use of an FDD technique), and in
Section 4 (inversion of the aerodynamic relationships after
a preliminary forces reconstruction). Finally, Section 5
depicts the performances of both approaches in realistic
flight conditions corresponding to both simulated and real
data.

2. Aerodynamics and propulsion modeling

2.1. Representation of nonlinearities via surrogate
modeling. The AEKF and AMI share the same type
of A/C modeling, including simplified representations of
both aerodynamic and thrust forces and moments exerted
on the airplane (Sections 3 and 4). These approximated
models permit an on-line use of the flight mechanics
relationships to be contemplated for FDD and estimation
purposes, while being consistent with the implementation
constraints of the FCS. Actually, the use of SM becomes
widespread among many scientific domains to replace the
system or the reference model when it is too restrictive
for achieving some tasks like optimization, modeling,
parameter identification (Bucharles et al., 2012; Hardier
et al., 2013). Hence, a wide range of methods has
been developed for building SM efficiently, i.e., with
both accuracy and parsimony. For example, neural
networks (NNs) are recognized nowadays as an efficient
alternative for representing complex nonlinear systems,
e.g., including aerodynamic coefficients issued from CFD
computations, wind tunnel or flight testing (Bucharles
et al., 2012).

Usually, these data are only available in the form of
look-up tables that are not very convenient for on-board
implementation; hence analytical and differentiable
approximations are contemplated for on-line estimators,
with lower memory requirements, too. Actually, NNs can
be advantageously exploited to design grey-box models,
e.g., for representing the aerodynamic forces/moments
which appear in the longitudinal flight mechanics. Such
NNs allow the physical readiness and modeling structure
of aerodynamics to be preserved, as illustrated by the
following relation for the pitching moment Cm in clean
configuration:

Cm
l P̄d

= CmNN
0 +(xg− xcNN)CzNN

α α

+ ηNN
NL ×ΔCmNN

NL . . . ,

(1)

where α, M, S and l refer to the AoA, the Mach number,
the reference area, the mean aerodynamic chord, and
xg/xc are the longitudinal abscissae of the center of
gravity/aerodynamic center. {CmNN

0 , xcNN,CzNN
α }=f(M),

ηNN
NL =f(Pd,M) and ΔCmNN

NL =f(α,M) are rigid-body
aerodynamic and static aeroelastic neural approximations
(as indicated by the NN exponents) of the different
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nonlinear effects, which contribute to Cm. To simplify
(1), we have also denoted by P̄d = 0.5ρ S V2 = S Pd a
scaled value of the dynamic pressure.

The tool used for building those NN-type models
has been developed by ONERA (Bucharles et al.,
2012; Hardier et al., 2013; Seren et al., 2011) for
A/C modeling and identification, and is named KOALA
(kernel optimization algorithm for local approximation).
This tool relies on the use of local models, such as
radial basis function networks (RBFNs). As opposed
to global models, such as multi-layered perceptrons
(MLPs), local models help to keep the aerodynamic model
readable and make it easier to perform identification
only from partial data (relative to limited portions of
the flight domain). Besides RBFNs, other types of
local models are usefully implemented, like LLMs
(local linear models) which gave rise to the famous
LOLIMOT (local linear model tree) algorithm (Nelles
and Isermann, 1996). LLM networks generalize RBFNs
by replacing the RBF linear weightings, denoted by w
in the sequel, by an affine expression depending on the
model inputs (Fig. 3). It is thus expected that fewer
kernels will be required to achieve the same accuracy
in most applications. In practice, KOALA performs a
joint optimization of the whole set of RBFN parameters
(linear and nonlinear ones), hence achieving structural
and parametric optimizations jointly for different types of
regressors with local basis.

2.2. Principles of KOALA. First, it is noteworthy
that a nonlinear model can be either linear, nonlinear,
or both with respect to its internal parameters. For
NNs, the latter case corresponds to MLPs, but also
to RBFN when the centers and the radii of the radial
units are optimized (Hardier, 1998). However, the joint
optimization of the whole set of model parameters (linear
+ nonlinear ones) practically results in ill-posed problems,
and thus in convergence and regularization issues. That
is why linear-in-their-parameters (LP) models are often
adopted, allowing simpler and more robust algorithms
to be developed. By taking advantage of their features,
structural identification, i.e., determining the best set of
regressors from the available data, becomes possible in
addition to parametric estimation.

For LLMs, the generic formulation used to represent
LP models is

ŷk =

m∑

j=1

(
n∑

i=0

wjix
i
k

)
rj(xk)

=

m(n+1)∑

l=1

wlr
#
l (xk),

(2)

where rj(xk) represents the kernel value of the j-th
regressor function, and xi

k (∀i ∈ [1, n]) is the value of the

i-th input variable for the k-th data sample, extended with
x0
k = 1 to include the constant terms of the local affine

modeling into the second sum. This relationship permits
recovering a standard LP formulation with an extended
set of regressors r#l . To adapt the constructive algorithms
to the kernel functions r#l , the group of regressors sharing
the same kernel rj needs to be considered as a whole when
adding or substracting terms, and no more separately
as was the case for RBFNs (Chen et al., 2004) or
polynomials (Morelli and DeLoach, 2003).

To choose the unknown regressors (i.e., the radial
units also named kernels), KOALA is based on forward
selection, starting with an empty subset and adding
them one at a time in order to gradually improve
the approximation. To speed up that constructive
process, a preliminary orthogonalization technique is
used (OLS), permitting the individual regressors to be
evaluated regardless of those previously recruited for the
modeling (Chen et al., 2009). In the case of local
models like RBFNs, choosing each regressor amounts to
optimizing the kernel parameters in the input space, i.e.,
the ellipsoid centers c and radii σ related to the radial units
(Fig. 3). For this step, a global method is best suited, and
KOALA uses a new evolutionary metaheuristic known as
particle swarm optimization (PSO) (Clerc, 2006).

Fig. 3. RBFN/LLM-type surrogate models used by KOALA.

The PSO particles are associated with vectors of R2n

gathering the kernel parameters for the n explanatory
variables. The coupling of a PSO algorithm with the
OLS constructive technique (Seren et al., 2011) allows
structural and parametric optimizations to be performed
jointly for different types of regressors with local basis.
The performance of this approach is strongly dependent
on the type of PSO algorithm, e.g., Chen et al. (2009) use
a basic and very simple version of PSO. After a thorough
literature analysis, the most promising techniques have
been selected and implemented in the part of the
KOALA code (PSO internal library) used to optimize
the regressors’ positioning (see the work of Seren et al.
(2011)) and the references therein for more details). As a
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result, the final performance of KOALA results from two
complementary aspects: applying efficient OLS-based
forward selection and separable nonlinear least squares
optimization to powerful modeling (LLM) and, on the
other hand, implementing a new PSO algorithm which
outperforms the standard ones. Some details and
a limited version of the software are also available
at w3.onera.fr/smac/?q=koala for a peculiar
application in the framework of rational modeling. To
give a rough idea, the use of KOALA results in a
model comprising only five radial units in the benchmark
case available at that address, whereas a more standard
algorithm (Chen et al., 2009) requires not less than 15
RBF units to achieve the same level of approximation.

2.3. Examples of aerodynamic A/C modeling. In the
sequel of this paper, a generic commercial A/C (A340-600
type) is considered to evaluate the proposed approaches.
First, an illustrative aerodynamic coefficient drawn from
this model was selected to display the results of the
modeling process obtained with the KOALA tool. The
reference lattice corresponding to the tabulated coefficient
is plotted in Fig. 4 on a 50 × 50 fine validation grid, in
terms of the two explanatory variables (AoA and Mach
number). The approximated LLM network obtained with
KOALA only required 12 radial regressors for a maximum
local error close to 0.03. It is noteworthy that this type of
neural modeling also permits physical shape constraints to
be set in the optimization process (see the work of Seren
et al. (2011) and the references therein).
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Fig. 4. Approximated coefficient (left) and error (right).

3. Adaptive extended Kalman filtering

3.1. Principles of the estimator. In Section 3, the
estimation of the relevant flight parameters, i.e., the
AoA and CAS, relies on EKF theory. A state space
representation of a nonlinear A/C model, denoted by
MNL, is derived from both kinematic relationships
and longitudinal flight mechanics equations (see Seren
et al., 2011) for more details). Following Section 2,
the most relevant rigid-body aerodynamics, as well as

propulsion and static aeroelastic effects, are modeled
using LLMs. Such a dynamic modeling can be
mathematically formulated as follows:

MNL

{
Ẋ(t) = f(X(t),U(t),Ym(t),Θ

NN) + υ(t),

Y(t) = g(X(t),U(t),Ym(t),Θ
NN) + ω(t),

X=(αg υg Vg q θ h Tb bnx bny Wx Wy Wz bCz bCm)
T.

(3)
In (3), U(t) is the input vector gathering the

deflection of the control surfaces (ailerons, spoilers,
rudder, elevators and horizontal stabilizer). Ym(t)
(subscript m will refer to measurements in the following)
is a vector of measurements including time histories
of several parameters, and especially those of the
longitudinal/lateral variables which are not modeled in
X(t). X(t) and Y(t) designate the state and output vectors
of the nonlinear state-space representation. The vector
ΘNN contains all the grey-box NN approximations used
to model the aerodynamic lift force (FzNN

aero) and pitching
moment (CmNN), as well as the total static mean gross
thrust (TbNN

stat), which appear in the detailed analytical
expressions of both nonlinear functions f and g.

Vectors υ(t) and ω(t) are process and observation
Gaussian white noises. They are introduced to model
errors in both modeling MNL and measurements Ym, and
are involved in the estimation process (EKF prediction
and correction steps). It is assumed that they are
characterized by zero-mean, uncorrelated and mutually
independent processes (covariance matrices denoted by
Q and R, respectively). Some intermediate calculations
permit reconstruction of the aerodynamic AoA (α), the
aerodynamic sideslip (β) and the true airspeed (V) from
the ground AoA (αg), the ground velocity (Vg), its lateral
component in body axes (υg s.t. sin−1(υg /Vg)=βg the
ground sideslip), and the three wind speed components in
the Earth axes which are considered as state components
of X(t). The nonlinear flight dynamics exploited in the
AEKF scheme allow the longitudinal parameters to be
simulated [(αg, α) (Vg,V) q θ h Vz nz], as well as a
few lateral ones [(βg, β) (υg, v)]. Here q and θ refer to the
pitch rate and angle, and h is the altitude.

A dynamic representation of the A/C gross thrust
Ṫb is also added to MNL since no accurate thrust
measurement is available on board. As described by Seren
et al. (2011), the propulsion equation relies also on an
SM as for aerodynamics. At each time step, this model
outputs a total static mean gross thrust TbNN

stat which is used
as the reference input of a first-order filter characterized
by its pulsation ωTb. The time response fully determines
the thrust state Tb. Moreover, an observability analysis
reveals that it is possible to estimate both the biases
(bnx, bny) on the accelerometers (nxm, nym) and the wind
speed components (Wx,Wy,Wz), expressed in the Earth
axes. Aerodynamic SM errors are also addressed by the

w3.onera.fr/smac/?q=koala
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proposed scheme owing to the variables (bCz, bCm) with
dynamics assimilated to filtered random walks.

Thanks to the accuracy and parsimony properties
of the designed NN, such a flight dynamics model can
be implemented on board, and integrated into an EKF
algorithm to estimate the AoA and CAS on-line. Besides,
the local features of the neural regressors and the readable
grey-box structure chosen for modeling (as depicted for
CmNN in Section 2.1) still allow this SM to be adjusted
(aerodynamics and even propulsion parts), especially
when unsatisfactory estimates (α̂, V̂) are obtained under
some flight conditions. Additive low-parametrized neural
corrections can be optimized off-line by using relevant
flight data to locally minimize the estimation errors at
the corresponding points of the flight envelope. Such a
procedure aims at extending the operating domain of this
model-based approach by increasing the overall model
accuracy, without requiring a new learning stage starting
from scratch.

3.2. Theoretical background of the AEKF.
According to the well-known principles of KF
theory (Jategaonkar, 2006), the nonlinear flight dynamics
introduced in Section 3.1 and detailed by Seren et al.
(2011) are linearized about the current estimated state
vector X̂(t|t). This one is calculated as the state
prediction X̃+ ≡ X̃(t+|t), directly provided by MNL and
corrected by an innovation term weighed by a gain matrix
K+ ≡ K(t+) so that:

X̂+ = X̃+ + K+[Ym − g(X̃+,U(t),Ym(t),Θ
NN)], (4)

where X̂+ ≡ X̂(t+|t+). This gain is derived from the
estimation error covariance matrix, which is a solution of
a Riccati equation depending on the linearized functions
[∂f/∂X̂(t|t) ∂g/∂X̂(t|t)] and the noise covariances Q/R,
such that the EKF delivers optimal estimates (α̂, V̂). As
stated before, both AoA and CAS data are essential for
flight envelope protection and control laws. On-line
estimation of these longitudinal flight parameters aims
at developing a backup system for producing reliable
information. When sensor faults occur, these elaborated
data can replace any faulty measurement for short or long
periods, hence improving the A/C performance.

However, this approach assumes noisy, but healthy,
measured signals (among them α and V) to estimate
(α̂, V̂) accurately. This becomes unsuitable on its
own in faulty cases. To reduce the estimation
errors induced by those wrong measurements and to
recover acceptable performances, a self-adaptive EKF
reconfiguration method has been designed to monitor
the measured signals from sensors. This accomplishes
both detection and isolation of specific single or multiple
abrupt faults (constant bias, stuck value, strong drift of
Fig. 2) before adjusting the gains K(t) by modifying

Fig. 5. Block-diagram of the AEKF.

Q/R and the state error covariance matrix. Hence,
minimizing the effects of sensor faults on the estimated
flight parameters is achieved through on-line adaptations
of the EKF. Actually, a unique time-invariant tuning
of the covariance matrices Q/R would not meet the
requirements as it would imply similar confidences in
both healthy and faulty measurement signals. Hence a
recursive reconfiguration algorithm was developed, based
on a statistical method (see Fig. 5) periodically assessing
the reliability of sensors. This aims at (i) detecting
and isolating unexpected sensor faults characterized
by a high frequency (HF) content beyond the A/C
dynamics bandwidth, (ii) modifying the specific EKF
covariance terms defined and used so far. These stages
are accomplished thanks to several signal processing
operations which consist in extracting the HF components
from the time-varying data considered (i.e., measurements
and residuals) (Samara et al., 2008). Then, a statistical
analysis of the resulting HF residuals based on a
probability hypothesis test compares a given reference
variance (characteristic of a healthy signal) with a
time-varying one (calculated over a sliding window),
and permits the states of AoA and TAS sensors to be
determined (healthy or not).

The first stage of the algorithm comprises three steps:
nonstationarity and serial dependency removals, plus
statistical decision making. The second stage achieves
parameter tuning of some covariance terms by switching
the current EKF setting to a new set of predefined
covariance values, depending on the healthy/faulty state
of the signals. Three setting sets are defined a priori and
cover the following degraded situations:

• aerodynamic AoA (α) or true airspeed (V) single
faults,

• multiple faults when simultaneous or successive
errors occur for α and V sensors.

The estimation residuals, also involved in the
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reconfiguration, are not concerned by the first two steps
of Stage 1 but only by the third and last one, assuming
that these latter satisfy a Gaussian white noise hypothesis.

1. Nonstationarity removal. This simple operation is
achieved by means of a high-pass digital filtering FHP

on the measurements. The filter bandpass is chosen
beyond the A/C bandwidth so that nonstationarity due
to time-varying maneuvers is suppressed in the output
signal. Therefore, the abrupt sensor faults and their HF
signatures still remain observable in the time series of the
post-processed data. No confusion with flight dynamics
or low-frequency phenomena is possible. The resulting
stationary signal is denoted by s(t).

2. Serial dependency removal. A stochastic inver-
se filtering (equivalent to a signal whitening operation)
is then applied to s(t) to remove the serial dependency
which affects s(t) after the previous high-pass processing.
Actually, the values of the random process s(t) at two
consecutive instants are not statistically independent,
and the objective is to whiten s(t) by applying an
appropriate inverse auto-regressive (AR) discrete filter.
AR representations are usually implemented as linear
predictors to model various physical phenomena. This
operation requires both the filter order and the regression
coefficients to be determined. For a given representation
of order n, the coefficients of such LP models can be fully
estimated using the Burg method (Kay and Marple, 1981),
which aims at minimizing both the forward and backward
mean-squared prediction errors. For high dimensional
AR representations (n�1), this standard method can
be computationally improved by using the Levinson
recursivity, which results in the optimal coefficients
corresponding to an order n being conveniently expressed
from the ones related to the order n−1. Accordingly, the
estimation of the AR coefficients relies on the well-known
Yule–Walker equations. Analytical expressions are
obtained with respect to the minimization of the mean
power of the zero-mean normally distributed residual used
as the AR filter reference input (Seren et al., 2011).

As usual in identification processes, a major concern
is the determination of the regression order n, and
this issue must be addressed prior to the parameter
estimation. Here, this order is defined a priori from
typical realizations of the noisy stochastic signal time
history s(t), and optimized with respect to the Akaike
information criterion dedicated to finite sample sizes. This
corrected criterion not only rewards the goodness of fit,
but also penalizes and discourages overfitting so that the
trade-off between model accuracy and parsimony is dealt
with (Seren and Hardier, 2013). Once the optimal order
n� has been defined, the Levinson–Burg algorithm is
applied to estimate the n coefficients of the AR filter

exploited to whiten the signal s(t). The resulting Gaussian
white noise random process ξ(t), which theoretically
follows a normal distribution N (0, σ2

ξ ) in the nominal
cases (healthy measurements), is then involved in the
statistical decision making.

3. Statistical decision making and EKF tuning.
Abrupt sensor faults strongly modify signal dynamics, and
result in an increase of the ξ residual variance. Assuming
that sensors are initially healthy, and that no fault occurs
for a short period of time (first N0 samples), an estimated
residual variance σ̂ξ0 can be calculated and used as a
reference for healthy sensors. As ξ(t) is assumed to be
normally distributed, the variable σ̂2

ξ0
follows a chi-square

law. A statistical hypothesis testing problem, called
F -test, may be formulated in order to constantly monitor
the reliability of the measurement signals (αm,Vm). This
test compares the successive estimates of the theoretical
residual variances (characterizing the sensor states) with
the reference ones σ̂2

ξ0
which define a healthy sensor.

Previous time dependent estimates, denoted by σ̂2
ξ1
(t), are

calculated using a sliding window of length N1.
Similarly to σ̂2

ξ0
, the random process σ̂2

ξ1
(t) also

follows a chi-square stochastic distribution. Practically,
the number of samples chosen for the window lengths
N0 and N1 needs to be paid attention to. This must be
carefully determined since too small values of N0 may
lead to an incorrect reference variance σ̂2

ξ0
estimation,

and too large values of N1 may significantly reduce
the method sensitivity for tracking potential changes
which may arise in the post-processed residual variance.
Hence, standard window lengths have been selected
and implemented to perform a global evaluation of
the self-adaptive estimation scheme. Following the
previous definitions, a probabilistic test is then achieved,
considering the random process variable F (t) defined by

F (t) = σ̂2
ξ1(t)/σ̂

2
ξ0 ∼ F(N1−1)⊗(N0−1). (5)

F (t) is characterized by a Fisher–Snedecor
distribution (F -distribution F(N1−1)⊗(N0−1)), with N1−1
and N0−1 degrees of freedom, since it corresponds to a
chi-square statistics ratio. Usually, F -tests are performed
to check if two data sets share an equal standard deviation.
This hypothesis testing can be formulated in both one
or two-tailed versions. In our framework, the one-tailed
F -test form would only determine if σ̂ξ1(t) is greater
or lower than σ̂ξ0 , whereas its bi-directional variant will
inform about any inconsistent variation of σ̂ξ1(t) towards
σ̂ξ0 (increasing and/or decreasing variance). As the
behavior of sensor faults is unexpected by nature, the
two-tailed F -test version has been chosen. Consequently,
the statistical test is defined at each time as follows: the
hypothesis that the deviations σ̂ξ1(t) and σ̂ξ0 are equal (or
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quasi-equivalent) is rejected if

∥∥∥∥
F (t) > Fu = F1−τ/2,(N1−1)⊗(N0−1),
F (t) < Fl = Fτ/2,(N1−1)⊗(N0−1),

(6)

where Fu is the upper critical value (lower for Fl,
respectively) of the F -distribution, calculated for a τ risk
level which can be interpreted as a false alarm rate. These
characteristic values are frequently available through
tables in the literature, but are computed numerically in
our self-adaptive scheme since the pdf of F can be derived
analytically.

As soon as a sensor is declared faulty on the
basis of the F -tests results, an adaptation of the EKF
setting is automatically carried out. This consists in
turning a predefined set of covariance parameters to
another one, and switching Ym(t) to Ŷ(t) (i.e., αm

and/or Vm to α̂ and/or V̂) in MNL expressions, so
that the faulty measurements are ignored for prediction.
Moreover, in order to avoid nonobservability when faulty
measurements are detected, both wind speed components
(Wx and/or Wz) and modeling errors (bCz and/or bCm) are
reset to zero whereas the accelerometer biases are fixed to
their last estimated value until the wrong measurement(s)
is (are) declared healthy again.

4. Aerodynamic model inversion

4.1. Outline. Usual schemes, such as the EKF of
Section 3, can provide estimates of the flight parameters
both in unfaulty and faulty conditions. Accordingly,
they can be used for FDD purposes if a diagnosis and
decision making logic is added to the estimator. On
the other hand, to prevent the filter from using faulty
data to update its internal state after a failure occurs, an
adaptation mechanism is required to modify the tuning
of the filter internal parameters. This mechanism can
be activated either by an external detection signal issued
from the monitoring block, or by processing the internal
information stored in the estimator (Section 3.2).

In order to provide dissimilar estimates which could
be used by the consolidation process in addition to the
sensing channels, the latter option should be preferred,
but this increases the algorithm complexity and could
be detrimental to its robustness. Accordingly, an
alternative solution is proposed, that fulfils the following
requirements: (i) the scheme should not need to be
reconfigured after a failure, as it is the case with the
EKF since estimation of the wind components cannot be
pursued in the case of a partial or a total loss of air data;
(ii) that new approach should not make any use of the
measurements issued from the sensors to be monitored,
in order to ensure a real dissimilarity. Actually, when
the anemometer information is no longer available, the
merging of the complementary inertial/air data cannot be

Fig. 6. Block-diagram of the AMI estimator.

achieved to infer an estimate of unmeasured states like the
wind speed according to

Vwind = Vg −V . (7)

As a result, the schemes relying on state estimation
must be degraded after a fault is detected, e.g., by freezing
the wind state components to their last estimated values.
By contrast, the estimation method proposed in Section 4
intends to reconstruct the faulty information from another
form of knowledge encoded into the aerodynamic forces
exerted on the aircraft. To give an intuitive insight of
this idea, in the cruise condition, for example, the aircraft
flies in equilibrium, hence the lift counterbalances the
weight as well as the engine thrust with the draft, and
the pitching moment is zero. Consequently, if the weight,
thrust, etc. are known or if their values can be derived from
other measurements, the air data components α, V can
be inferred indirectly from the aerodynamic coefficients
Cz(α,V), Cm(α,V) and Cx(α,V).

In theory, performing this inversion only requires
one-to-one relationships, or a possible indetermination
to be cleared up thanks to some external or physical
considerations. In practice, other difficulties may arise,
e.g., due to measurement noise in the reconstruction
process. The proposed scheme, called AMI and illustrated
by Fig. 6, achieves such an aerodynamic model inversion
to estimate the couple (α,V). In the sequel, we will
assume that both α and V are missing, but it should be
mentioned that the AMI process also works properly if
only one is missing, and that even better performances are
achieved in that simpler case (see Section 5). Moreover,
most of the conditioning issues discussed in Section 4.3
only arise when both parameters need to be estimated
together.

To cope with dynamic flight conditions, the
AMI method is combined with a standard technique,
commonly used for identification purposes, permitting the
aerodynamic forces and moments exerted on the airplane
to be reconstituted from accelerometer sensors (Bucharles
et al., 2012). For identification, the air data are available
and the goal is to estimate the model parameters, whereas
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the model is assumed to be known in the present case,
and the goal is conversely to estimate the missing flight
parameters. Practically, the reconstitution process makes
use of the load factors to estimate the aerodynamic forces,
e.g., on the vertical axis, as

Fzaero = mg nzm − F̂zeng, (8)

where Fzaero, F̂zeng represent the lift force and the vertical
component of the thrust, estimated via engine modeling
feeded by the measured engine controls (Section 2).
Another pro would result from being totally insensitive
to wind effects since the aerodynamic forces basically
do not depend on them. Unfortunately, to improve the
robustness of the optimization procedure required for the
model inversion, some extra information like the vertical
speed will be used, which is partially sensitive to gust
disturbances. A trade-off between the wind decoupling
and the conditioning of the problem will thus be looked
for. Otherwise, contrary to the linear ones, the angular
accelerations are not available via the ADIRUs. To
reconstruct the aerodynamic moments (here, the pitching
one), a pseudo-derivation of the measured angular rates
is required (here, q̇) before using them in the flight
mechanics equations. Thus, a low-pass filtering H(z)
is implemented to reduce the noise effects in the time
derivatives as ˆ̇q(kΔt) = H(z)qm(kΔt).

4.2. Principles of the method. Simply denoting by
Cz and Cm the previous coefficients of interest, by Fxeng,
Fzeng, Mqeng the engine forces and the pitching moment,
and by n̄xm, n̄zm the load factors on x-z axes (scaled by the
term mg), the expressions used by the longitudinal AMI
estimator are (Boiffier, 1998)

Pd[Cz+ bCz]

= F̂m
a

= (n̄zm + Fzeng) cosα− (n̄xm + Fxeng) sinα,

l Pd[Cm+ bCm]

= M̂m
a

= Iy ˆ̇q−Mqeng + zg n̄xm +(Ix − Iz)pmrm

+ Ixz(p
2
m−r2m),

(9)

where the constants are m (mass) and Ix, Iy, Iz, Ixz (xyz
and x-z cross axis inertia). As the coefficients Cz, Cm
depend on several flight parameters: Cz ≡ Cz(α,M, Pd)
and Cm ≡ Cm(α,M, Pd), this leads us to considering the
relationships with respect to the TAS V: Pd = 0.5ρV2

and M = V /(γRT )1/2 with γ � 1.4, R � 287.053,
T being the static outside air temperature (available from
sensors).

From now on, we will assume that a standard
atmosphere model is used to compute the variables

ρ(Zpm), T (Zpm) from the pressure altitude measurement
Zpm. The two biases bCz, bCm possibly permit the
modeling errors on Cz and Cm to be taken into account.
This option might be useful in the case of coupling
between the AMI and AEKF schemes (after occurence of
a failure). Those biases will also serve to highlight the
way modeling errors take part in the estimation process.
By scaling the reconstructed force-moment at time kΔt
as:

{
F̂ �
a (k) = 2F̂m

a (kΔt)/[ρ(Zpm(kΔt))S],

M̂�
a (k) = 2M̂m

a (kΔt)/[ρ(Zpm(kΔt))S l],
(10)

the AMI optimization process comes down to minimizing
a standard least-squares cost function given by (11).
A summation operator is also introduced for the sake
of generality, in case the optimization would involve a
moving time window of K samples for a better filtering
of some noisy components:

(α̂k, V̂k) = arg min
(α,V)∈R2

J(α,V), (11)

where

J(α,V)

=

k∑

i=k−K+1

{λz [(Cz(α,V) + bCz)V2 −F̂ �
a (i)]

2 + . . .

+ λm[(Cm(α,V) + bCm)V2 −M̂�
a (i)]

2},

with the weights (λz , λm) used to balance the terms of the
criterion. Though that problem seems to be well-posed
(involving exactly two parameters for two equations),
many difficulties may arise in practice. Actually, the
importance of the modeling errors is quite different in
the two terms of (11), for the aerodynamic part as well
as for the engine effects. The latter have a weak effect
on the first term, even if the forces (Fxeng, Fzeng) entail
large uncertainties, since those effects are only involved
by means of Fzeng cosα and Fxeng sinα terms with usually
weak values of α and Fzeng. On the other hand, the
modeling error in the pitching moment Mqeng has direct

influence on the estimated M̂m
a in the second term.

It is worth noting that residual errors can be estimated
in normal unfaulty conditions in addition to the A/C
states (cf. the AEKF in Section 3), thus merging into
the estimated bias bCm the uncertainty on Mqeng with
the aerodynamic modeling errors. In practice, the
previous optimization expressed by (11) can also lead
to inaccurate solutions, though numerically consistent.
Owing to the modeling nonlinearities, two couples of
solutions, (α1,V1) and (α2,V2), could yield similar
equation errors with values (α1, α2) and (V1,V2) being
significantly different from each other. Moreover, this
phenomenon could be reinforced by the coupling of
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successive estimates (the previous one being used for
intializing the next search), leading to divergence. To
circumvent that issue, the optimization procedure must
be regularized somehow. Various ways were evaluated
during preliminary studies (alternate optimization of α
and V, multistart, weighted increments), but the most
satisfactory one consists in using an implicit form of
regularization by adding another informative piece of data
to the cost function of (11). This signal, less sensitive to
the modeling uncertainties, is the vertical speed Vz; it is
related to other flight parameters via a simple kinematics
relationship (Boiffier, 1998):

Vz = Vg[cosβg(cosαg cos θm . . .

− sinαg cos θm cosϕm)−sin βg cos θm sinϕm]

� V(cosα sin θm − sinα cos θm cosϕm),

(12)

the approximation being derived by assuming that βg � 0
and by equating ground with air values (which amounts to
consider that αwind � α and Vwind � V).

Finally, the AMI process comes down to minimizing
the extended cost function (omitting the dependencies on
α and V):

J(α,V) =

k∑

i=k−K+1

{λV[Vz−Vzm]2 + λz [·]2

+ λm[·]2}.
(13)

The first term of (13) permits the level of residual
errors between the estimated Vz provided by (12) and its
measured counterpart Vzm to be constrained. Otherwise,
some preliminary attempts proved that bCz and bCm cannot
be updated in addition to the flight parameters. Hence,
three different options can be implemented for operating
the AMI estimator: (i) to get the latest bias estimates
provided by another scheme before failure (the AEKF
of Section 3 if implemented), (ii) to compute an initial
estimate at the time of failure, by subtracting the modeled
forces from the reconstructed ones (using the latest known
values of α, V), (iii) to set the bias values to zero, which
looks sensible for long-term estimation, since the initial
modeling errors are unlikely to remain the same in varying
flight conditions. Whatever the option chosen, the biases
are then frozen at their initial values before failures. The
last option was successfully evaluated, and has also the
benefit of resulting in an autonomous procedure, fully
decoupled from other (AEKF-type) filtering schemes.

4.3. Optimization technique. At each time step,
as the optimization is initialized with suitable estimated
values issued from the latest step, a classical local
method can be applied (second-order type). A simple
analytical formulation is the result, which allows a real
time algorithm implementation to be contemplated while

being consistent with the present limitations of onboard
computers (putting aside the certification issues). To
apply such a Newtonian procedure, it is just required
to get expressions for the gradient vector g and the
Hessian matrix H from the cost given by (13). To
avoid numerical sensitivity computations in real time, a
Gauss–Newton approximation of the Hessian proves to
be accurate enough for such a simple problem (Dennis
and Schnabel, 1996). Some trivial calculations lead to the
following expressions (assuming K = 1, to simplify):

g=
[
g1=

∑

u∈{V,z,m}
λuεuε

α
u g2=

∑

u∈{V,z,m}
λuεuε

V
u

]T
, (14)

H=

⎛

⎜⎝
H11=

∑
u∈{V,z,m}

λu(ε
α
u)

2 H12=
∑

u∈{V,z,m}
λuε

α
uε

V
u

H21 = H12 H22=
∑

u∈{V,z,m}
λu(ε

V
u)

2

⎞

⎟⎠ . (15)

In (14), the residuals are given by εV =
Vz−Vzm, εz = V2(Cz+ bCz) − F̂ �

a , etc., while
the error sensitivities are derived straight from εαz =

V2C
α
z, εV

z= V2C
V
z+2V(Cz+ bCz), etc., and those

related to Vz are simply issued from (12), e.g.,
εαV = −V(cosα cos θm cosϕm + sinα sin θm). Thanks
to the analytical and differentiable formulation of the
nonlinear SM implemented onboard, of RBFN type
or another (Bucharles et al., 2012), the sensitivity

derivatives C
α
z, C

α
m, C

V
z, C

V
m, can be analytically

computed with a low computational burden (Seren and
Hardier, 2013). From (14) and (15), the parameter
increments finally obey (setting Δ = H11H22 − H2

12):

[δα δV] =
1

Δ
[H12g2 − H22g1 H12g1 − H11g2] (16)

Implementing an optimization algorithm in a real
time unsupervised process requires the utmost possible
care for guaranteeing accurate solutions. Despite
involving only one or two parameters and being
regularized by the first term of (13), convergence is not
definitely certain and spurious minima are likely to be
achieved from time to time. These failures will occur
for numerical reasons, related to the model nonlinearities,
measurement noises, and so on. Hence, a post-processing
of the results is required to improve the robustness of the
procedure in case of abnormal solutions.

The rate of parameter increments can be saturated in
terms of physical constraints, but the estimates can also be
replaced by a prediction issued from the flight mechanics
model. Actually, the state-space equations related to α
and V allow the state derivatives to be computed without
any extra calculations as

{
ˆ̇αg(k) = F(Cz, F̂eng,Xm(k)),
ˆ̇Vg(k) = G(Cz, F̂eng,Xm(k)),

(17)
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where Xm represents the vector of measured A/C states
and F , G are analytical functions involved in the
state-space modeling (Boiffier, 1998; Seren et al., 2011).
Hence, a one-step ahead first order integration of (17)
leads to predicted values (disregarding the wind effects
over one sampling time). This approximated prediction
is accurate enough (over a few steps), since it is sensitive
to the dynamical effects resulting from the deviation of
the control surfaces. It is noteworthy that this operation
is slightly similar to KF principles: the model predictions
are merged with the measurement based AMI results, but
only when the result is considered somewhat too noisy.
Otherwise, in addition to that post-processing, it is wise
to improve the robustness of the optimization process by
adding also an explicit regularization term in the criterion,
to penalize the amplitude of the parameter increments
with respect to their initial values. Practically, as far as a
Newtonian formulation is concerned, this simply implies
to add a scalar μ on the diagonal of the Hessian matrix.

When the Hessian is nearly singular, the conditioning
can thus be improved by increasing the value of the
weight μ. As the new matrix remains symmetric and
positive definite, a value μ of can always be found,
which ensures the convergence. The resulting algorithm
is the Levenberg–Marquardt version of the Newton
procedure (Dennis and Schnabel, 1996). To limit the extra
computational burden, the following trick is commonly
used, requiring the Hessian in a diagonal form first:

H = PDPT with D = diag{di/i ∈ [1, dim(H)]}, (18)

and PPT = I. Hence, during the μ search subiterations,
the inverse matrix is efficiently determined:

H−1 = P diag{(di + μ)−1/i ∈ [1, dim(H)]}PT . (19)

As dim(H) = 2, an analytical derivation is straight-
forward by susbtituting Hii + μ for Hii, i ∈ [1, 2] in (15).
The size of μ must be evaluated relatively to the smallest
eigenvalue of H, also available through

λmin =
1

2
(H11+H22− [(H11−H22)

2+4H2
12]

1/2). (20)

Remark 1. The estimators considered in this paper
provide estimates of α and true air speed V. For
an operational use by the crew or by the FCS, the
calibrated air speed Vc should be delivered preferably.
The conversion from V̂ to V̂c can be achieved thanks to the
expression derived from the equations in (Davies, 2003):

V̂
2

c /(5γRT0)=
([

(1 + V̂
2
/(5γRT ))3.5−1

]
p̄+1

)1
3.5

−1,

(21)
where p̄ = p/p0 is a scaled static pressure (T0 = 288.15◦K
and p0 = 1013.25 hPa being the ground values). This
relation is supplemented by the values of static pressure p

and temperature T in International Standard Atmosphere
(ISA) at any pressure altitude Zpm (Davies, 2003), which
make use of the gradient ∂T/∂Zp (about −6.5◦/km) and
of the scalar ΔISA = T − TISA:
{

T = T0 +ΔISA +(∂T/∂Zp)Zp,

p̄ = ([T0 + (∂T/∂Zp) · Zp]/T0)
g/[R(∂T/∂Zp)].

(22)
ΔISA represents the discrepancy between the real

temperature and the expected one from a standard
atmosphere, but is not available onboard. Even if
the linear expression of T conveyed by (22) was fully
justified, it would be suitable to anticipate its evolution
during the flight, e.g., in terms of the ground temperature
variations (ocean, desert, etc.). That is why an adaptive
procedure was also developed to achieve an on-line
parametric identification of the parameters ΔISA and
∂T/∂Zp. In (22), it is based on piecewise constant values
on predefined altitude intervals, which are estimated by
processing (Zp, T ) data stored over sliding windows.

5. Results and discussion

The proposed AEKF and AMI approaches were evaluated
with flight data issued from both simulations and real
tests performed on an A340/600 A/C. Both types of data
correspond to a realistic flight path profile, comprising
climb, cruise and descent flight conditions with heading
changes (see the subplots of Fig. 7). To evaluate the
estimators, the simulated data present some additional
pros with respect to the real flight test since the reference
values of α, V are perfectly known (no noise, no biases)
and since several disturbances can be added to the flight
scenario (cf. Fig. 7): (i) a vertical wind gust for t ∈
[500, 600], (ii) turbulence for t ∈ [800, 1000], (iii) a large
deflection of airbrakes for t ∈ [2460, 2840] (which are not
modeled in MNL). Strong colored noises were also added
to all the measurements to check the process insensitivity
to noisy signals (Fig. 10).

The AEKF estimation scheme was fully evaluated
with both the types of data. The results gathered after
processing the simulated and real ones, both issued
from a long flight test (about 1 hour), are presented in
Figs. 8, 10, 11. The AoA or/and TAS faults (cons-
tant biases) are applied at t=20 sec and quickly detected
by the post-processing mechanisms used for monitoring
(time delay < 1 sec). The results show that the mixed
estimated/predicted flight parameters remain valid over
a long time horizon (more than one hour) in realistic
changing flight conditions after a single or a double failure
of the sensors. Regarding the real data, the residuals of
the key parameters to be reconstructed reach peak values
equal to 1◦ for the AoA and 15 kts for the CAS in the case
of a double failure (Fig. 11), whereas they remain less than
0.75◦ and 10 kts in the case of single faults (Fig. 8). The
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other disturbances have no significant effect on the quality
of the estimates.

The AMI approach was also evaluated with the
previous flight data issued from simulation and real
tests. The faults (single or double ones) are also
applied at t=20 sec for both scenarios. As expected, the
introduction of Vz for regularization purposes prevents
the computations from being totally decoupled from a
vertical gust, even though the aerodynamic forces do not
depend on the wind. Hence, a significant increase in the
estimation errors can be observed while the gust is acting
(Fig. 10), as is the case for the AEKF. Those reach their
peak values, i.e., 0.75◦ for α̂ and 40 kts for V̂c, whereas
they remain less than 0.5◦ and 10 kts otherwise during the
flight. Apart from that, the estimates reveal insensitivity
to the other disturbances. Otherwise, in the case of single
faults on αm or Vm (not displayed herein by lack of space),
the residual errors are much smaller and the gust effects
become insignificant.

Those conclusions remain valid for the real data,
and are depicted by the subplots of Fig. 9 (single faults
on αm and Vm), as opposed to Fig. 11 (double fault).
In both cases, accurate estimates are delivered over long
horizons (more than one hour) in realistic changing flight
conditions, after a single or a double failure of the sensors.
As shown by Figs. 9 and 11, the expected errors are much
less than 0.5◦ for α̂ and 5 kts for V̂c in the case of single
failures, whereas they are much less than 1◦ for α̂ and 15
kts for V̂c in case both data are missing.

It is worth noting that for both the AEKF and AMI
approaches the results obtained after processing the real
flight test data also prove their robustness with respect
to the modeling errors. Actually, the internal model
used by the two estimators corresponds to a simplified
one resulting from a neural representation of only a
subset of the aerodynamic coefficients. Moreover, several
effects (e.g., the lateral ones) were ignored (ailerons) or
approximated (spoilers). The engine model appears also
roughly modeled, resulting in errors on forces/moments
varying from 50% to 100% with respect to the theoretical
ones. Hence, the internal model only approximates the
best reference model that only approximates the real A/C.

6. Conclusion and prospects

This paper proposes two adaptive model-based
approaches which are able to deliver reliable AoA
and CAS estimates over long time horizons in both
unfaulty and faulty conditions when measurements
of those flight parameters are no more available on
board. In unfaulty conditions, contrary to the AMI
approach, the AEKF is able to provide useful extra
information by estimating the wind speed components,
the accelerometric biases and the modeling errors.
Moreover, thanks to the estimation residuals, the AEKF

technique can be fully exploited for robust detection. In
practice, the AEKF solution has shown good performance
in different flight scenarios but the practical applicability
of the method should be evaluated in future works. Its
complexity must be confronted with the computational
capabilities usually available on board, in order to design
an embedded algorithm which satisfies the trade-off
between performances and complexity.

For that purpose, several ideas have already been
identified to simplify the estimation scheme: (i) a Kalman
gain matrix depending on scheduled flight conditions, (ii)
an EKF estimation step based on constant gains, (iii)
model linearization performed at a slower rate, and so
on. Similarly, its numerical efficiency can be improved by
exploiting dedicated factorization techniques which allow
notably. (i) sequential measurement processing (Smidl
and Peroutka, 2012; Ghanbarpour Asl and Pourtakdoust,
2007), (ii) and scalar calculations (Lu et al., 2007) to be
performed in specific cases.

On the other hand, the AMI approach ensures a
continuous estimation of the AoA and CAS in any case
(unfaulty or faulty condition) since it does not make use
of any measurement of those flight parameters. This
potentially provides a dissimilar signal which can be
used within the consolidation process so that AMI can
contribute to any FDD process indirectly. In comparison
with the aforementioned AEKF, the AMI approach is
computationally much less costly. It results in a very
light computational burden since the whole method is
purely static and does not require any time integration
of differential equations. Regarding the prospects, it
is also expected to filter out the few remaining peak
errors, mainly observed during the dynamic stages, by
benefiting further from the predictive capacity provided
by the internal model, used by both the AEKF and AMI.
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