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In this paper, sliding mode control is used to develop two passive fault tolerant controllers for an AscTec Pelican UAV
quadrotor. In the first approach, a regular sliding mode controller (SMC) augmented with an integrator uses the robustness
property of variable structure control to tolerate partial actuator faults. The second approach is a cascaded sliding mode
controller with an inner and outer SMC loops. In this configuration, faults are tolerated in the fast inner loop controlling
the velocity system. Tuning the controllers to find the optimal values of the sliding mode controller gains is made using the
ecological systems algorithm (ESA), a biologically inspired stochastic search algorithm based on the natural equilibrium of
animal species. The controllers are tested using SIMULINK in the presence of two different types of actuator faults, partial
loss of motor power affecting all the motors at once, and partial loss of motor speed. Results of the quadrotor following a
continuous path demonstrated the effectiveness of the controllers, which are able to tolerate a significant number of actuator
faults despite the lack of hardware redundancy in the quadrotor system. Tuning the controller using a faulty system improves
further its ability to afford more severe faults. Simulation results show that passive schemes reserve their important role in
fault tolerant control and are complementary to active techniques.
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1. Introduction

Under-actuated systems are those with the number of
control inputs less than that of their degrees of freedom.
Quadrotors are an example of under-actuated systems
that have six degrees of freedom and only four control
inputs. Moreover, quadrotors are subjected to complicated
aerodynamic situations and high disturbances; they need
robust controllers to overcome all these difficulties and
ensure safe flight. Recent research focuses on the design
of controllers that ensure safe flight for quadrotors while
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suffering actuator damage. Robustness to modeling
errors, parametric uncertainties, and external disturbances
is an inherent property of sliding mode controllers
(SMCs).

Das et al. (2011) developed a cascaded controller
with inner feedback linearizing the control loop and
the outer SMC loop for quadrotor control. The outer
one controls the position for the quadrotor while the
inner control loop is responsible of stabilizing altitude
and attitude values. Despite the presence of external
disturbances, results based on simulation show the

abdelrazzac10@yahoo.fr
hnoura@uaeu.ac.ae
francois.bateman@club-internet.fr


562 A.-R. Merheb et al.

efficiency of the proposed controller. Adigbli (2007)
investigates the performance of three control algorithms
designed using a simplified model of a four-rotor flying
robot. Simulation and experimental results show that
backstepping control and sliding mode control laws both
exhibited robustness in the stabilization and the setpoint
tracking of a complete UAV model more than the feedback
control law.

Mnasri and Gasmi (2011) presented an integral
sliding mode controller for a class of uncertain systems in
the presence of mismatched uncertainties, norm-bounded
nonlinearities, and external disturbances. A sufficient
condition for the quadratic stability of the sliding mode
is established in terms of linear matrix inequalities.
An adaptive fuzzy integral sliding mode control law is
used to eliminate the chattering of the sliding mode
and to estimate the norm bounds of uncertainties. The
efficiency of the proposed controller is investigated using
a sixth-order uncertain mechanical system.

Li et al. (2012) investigate the fault-tolerance
property of sliding mode controllers. Both passive
and active FTCs were tested. In passive FTC, the
inherent robustness property of the SMC is used for fault
tolerance. On the other hand, the active SMC switches
to different pre-designed controllers whenever a fault
is detected. Simulation and experimental results using
the Qball-X4 system model emphasize the effectiveness
and robustness of both algorithms, but still active FTC
is more robust and shows better tracking performance
in the presence of faults. The faults addressed are
small actuator faults or propeller damage, and they are
kept small in the experimental tests because of the lack
of hardware redundancy in the system. A detailed
comparison emphasizing the advantages, disadvantages,
and limitations of each type is given.

A neural network based adaptive sliding mode
controller is designed and presented by Boudjedi et al.
(2012). This approach offers a solution to chattering and
dynamical model uncertainties problems. Moreover, no
prior knowledge about the dynamic model and external
disturbances is required. Simulation results pointed out
the efficiency of the new controller despite the presence
of parametric and external disturbances.

Zhang and Chamseddine (2012) present different
fault tolerant control algorithms applied to quadrotors
with partial actuator failures. FTC algorithms are tested
and compared based on simulation and experimental
results using the Qball-X4 testbed. Sliding mode control
(SMC), backstepping control (BSC) (both are of passive
type), gain-scheduled PID, model reference adaptive
control, and model predictive control (active type) are
all used to control the quadrotor with partial loss in
the control effectiveness of one or more actuators. The
SMC based fault tolerant controller shows good results by
compensating rapidly the damage in Propeller 4.

Hao and Yang (2013) use a matrix full-rank
factorization technique to design a new sliding mode
surface for a novel fault tolerant control sliding
mode controller. By updating online the gain of
the discontinuous part of the SMC using flexible
design parameters, system faults resulting from model
uncertainties and disturbances as well as input faults
resulting from actuator outage, the loss of effectiveness
and stuck, were all compensated. The main contribution
of the new approach is that it does not require a fault
detection and isolation (FDI) scheme, and that it is able
to compensate some total actuator failure under a special
actuator redundancy assumption.

Wu et al. (2008) design a fault tolerant controller for
a class of uncertain systems with time-varying state-delay
based on a sliding mode control scheme. The main idea
of the design is to include the delay in the condition
of the existence of the sliding surface. The proposed
controller applied to a linear model of an aircraft exhibits
good performance by tolerating parametric uncertainties,
actuator faults, and external disturbances.

Tang and Patton (2012) propose the design of a
robust sliding mode controller for the highly nonlinear
Machan UAV. The inner loop of the controller is
based on the online feedback linearization technique for
linearization and decoupling of the nonlinear system into
three SISO second order sub-systems. The linearized and
decoupled system is then controlled using three sliding
mode controllers. The SMCs are developed using a simple
and effective phase modulation method that rectifies the
controller structure and parameters, and guarantees robust
performance and robust stability. Numerical results show
that the new controller improves the system response
against disturbances and chattering, showing promising
fault tolerant control scheme for UAV systems.

Edwards et al. (2012) use the sliding mode technique
to develop an observer for fault detection and fault
tolerant control of aerospace systems. Both first-order
and cascaded observer schemes are discussed and checked
in simulation using the ADMIRE model. A fault
tolerant controller using fault information from the
sliding mode observer is developed based on the control
allocation method. Results on the SIMONA motion flight
simulator show a successful real-time implementation of
the proposed fault tolerant control scheme.

Jain et al. (2012) use the concept of system
interconnection to develop a model-free reconfiguration
mechanism for fault tolerant control using a PI controllers
bank. A function evaluates the closed-loop performance
of the system based on the input-output trajectories
information. Whenever some undesired behavior is
detected, an appropriate interconnection is achieved so
that the control objective is satisfied. Simulations on
aircraft during the landing phase show that the real time
fault tolerant control reacts successfully and switches to
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the fault-case controller when the complete loss of one of
the control surfaces is detected.

Xu et al. (2012) propose two different methods to
estimate actuator faults of a class of nonlinear systems.
A robust sliding mode observer is designed based on
a Takagi–Sugeno (T–S) fuzzy model, where an inverse
system method is used to estimate the actuator fault.
The new methods presented in this paper are easy to
implement compared to adaptive and other sliding mode
methods. The efficiency of the proposed techniques is
demonstrated using two numerical examples.

Cascaded SMCs are developed by Mahjoub et al.
(2011) and Yu et al. (2010). The controllers are designed
using multi-layer interlaced sliding surfaces and used
respectively in the control of a 2DOF under-actuated
manipulator and a bicycle robot. The robustness
and effectiveness of both algorithms are shown using
simulation results. Merheb et al. (2014) propose an
active fault tolerant sliding mode control for the AscTec
Pelican quadrotor. A sliding mode observer is used as
a fault detection and identification unit that estimates
online fault magnitudes. Two adaptive schemes based
on addition and scaling are used to update the SMC of
the quadrotor whenever a fault is detected. Simulation
based experiments show promising results of the proposed
controller.

In this paper, two passive fault tolerant controllers
are developed for the AscTec Pelican quadrotor suffering
partial loss of effectiveness in its motors. Stability
analysis of the controllers is provided, and the controllers
are upgraded with an integral term to compensate for
the small remaining error. The controllers are then
tuned using the faulty quadrotor system to extend their
fault tolerant capabilities. Finally, a comparison is made
between the passive FTC SMCs developed here and the
active FTC SMC of Merheb et al. (2014). The comparison
shows that despite passive fault tolerant schemes are
static and the correction is not made according to the
fault magnitude, they can be matched (under specific
conditions) to active fault tolerant schemes if the design
is unconventional (cascaded SMC) or the tuning is
unconventional (tuning under a fault). The work done in
this paper differs from that of Das et al. (2011) in that both
controllers control the altitude and attitude values of the
quadrotor, while a simple PD controller is used to control
the position of the UAV. Unlike in the work of Das et al.
(2011), here both the loops of the cascaded SMC tackle
faults and better fault tolerance is achieved. The cascaded
controller designed in this paper also differs from those
by Mahjoub et al. (2011) and Yu et al. (2010) in that
four control inputs are generated for the system, and the
same control input is not used for all the states. Moreover,
instead of using multiple layer interlaced sliding surfaces,
two sliding manifolds are designed separately for the
position and velocity control (respectively outer and inner

loops).
The rest of the paper is organized as follows,

Section 2 presents the quadrotor dynamic equations and
illustrates the design of regular and cascaded sliding mode
controllers. Section 3 explains the tuning process of
the controllers and provides a detailed explanation of
the ecological systems algorithm. Section 4 provides
the stability analysis of the controllers for a scalar case
where the stability of each state is analyzed individually.
Section 4 gives information on the experiments conducted
to check the capabilities of the controllers. Equations
of the path followed and equations of the position PD
controller along with the gains used are given, and
fault types injected are defined. Moreover, tuning the
controllers using a faulty system to extend their fault
tolerant capabilities is discussed in that section. Results
of different experiments are also provided there. Finally,
Section 5 provides concluding ideas and hints for further
future improvements.

2. Quadrotor model and sliding mode
controllers design

2.1. Quadrotor model. Quadrotors are under-actuated
rotor-crafts that use four propellers rotating in an opposite
pairs direction configuration to move in space (Fig. 1).
The dynamic model of a quadrotor is found by applying
Newton’s second law on the forces and torques the
quadrotor is subjected to. A typical quadrotor model is
represented by the following equations (Bouadi et al.,
2007):

ẍ =
U1

m
(sinψ · sinφ+ cosψ · sin θ · cosφ)

− Kftx

m
ẋ, (1)

ÿ =
U1

m
(− cosψ · sinφ+ sinψ · sin θ · cosφ)

− Kfty

m
ẏ, (2)

z̈ =
U1

m
cos θ · cosφ− Kftz

m
ż − g, (3)

φ̈ =
Iy − Iz
Ix

θ̇ψ̇ +
Irotor

Ix
θ̇γ − Kfax

Ix
φ̇2 +

lU2

Ix
, (4)

θ̈ =
Iz − Ix
Iy

φ̇ψ̇ − Irotor

Iy
φ̇γ − Kfay

Iy
θ̇2 +

lU3

Iy
, (5)

ψ̈ =
Ix − Iy
Iz

φ̇θ̇ − Kfaz

Iz
ψ̇2 +

U4

Iz
, (6)

where Kftx = Kfty = 5.5670e−4 N/m/s, and Kftz =
6.3540e−4 N/m/s are the translation drag coefficients,
and Kfax = Kfay = 5.5670e−4 N/rad/s, and
Kfaz = 6.3540e−4 N/rad/s are the friction aerodynamic
coefficients. Ui, i = 1, 2, 3, 4 are respectively the
position, roll, pitch, and yaw controls, and γ is a
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disturbance due to rotor speed imbalance (Bouabdallah,
2007). Here x, y, and z are the coordinates of the
quadrotor in the base frame; the roll, pitch, and yaw angles
of the quadrotor are respectively φ, θ, and ψ. Ix,y,z
are the quadrotor moments of inertia with respect to the
corresponding axes, m is the mass of the quadrotor, g is
the gravitational constant, b and d are the thrust and drag
factors of the propellers, and l is the distance between the
center of the quadrotor and the center of each propeller.
The quadrotor parameters are shown in Table 1.

By taking X = [z, φ, θ, ψ]T as the state vector
and u(t) = [U1 U2 U3 U4]

T as the control input, the
dynamics of the quadrotor can easily be expressed in the
state space form,

Ẍ = f(X) + g(X)u(t) (7)

Fig. 1. Quadrotor schematic and the AscTec Pelican quadrotor
at UAE University.

Table 1. Variables used in quadrotor modeling.
Variable Value Variable Value

Ix 8.1e−3 N m s2 b 54.2e−6 N s2

Iy 8.1e−3 N m s2 l 0.24 m
Iz 14.2e−3 N m s2 d 1.1e−6 m s2

Irotor 104e−6 N m s2 g 9.8m s−2

m 1 kg

where

f(X) = diag([f1(X), f2(X), f3(X), f4(X)])

with

f1(X) = −g,
f2(X) =

Iy − Iz
Ix

θ̇ψ̇ +
Irotor

Ix
θ̇γ,

f3(X) =
Iz − Ix
Iy

φ̇ψ̇ − Irotor

Iy
φ̇γ,

f4(X) =
Ix − Iy
Iz

φ̇θ̇,

g(X) = diag

([cos(φ) cos(θ)
m

,
l

Ix
,
l

Iy
,
1

Iy

])
.

The controllers in this paper are designed according
to the AscTec Pelican quadrotor testbed available at UAE
University, and values taken from the real quadrotor
are used to set some bounds and restrictions on the
design. The velocities of the motors are measured using
a tachometer and found to be between 1200 rpm and
5000 rpm (125–523 rad/sec); these values are used to
bound the calculated angular velocities needed to find γ.
The maximum thrust of the quadrotor is given by the
constructor as 15.7 N (used to bound U1 control), and φ,
θ, and ψ angles are within the −18◦ and +18◦ interval
(−0.31 to +0.31 rad). The maximum motor voltages are
12 V. The relation between the controls and the speeds of
the motors is⎡
⎢⎢⎣
U1

U2

U3

U4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b b b b
0 −b 0 b
−b 0 b 0
d −d d −d

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Ω1
2

Ω2
2

Ω3
2

Ω4
2

⎤
⎥⎥⎦ . (8)

The faults used in this paper are partial loss of motor
power affecting all the motors instantly, and partial loss of
effectiveness of one motor. The faults affect rotor speeds
resulting in a sudden decrease in the speed of the faulty
motor(s). The faulty control vector can then be found as

uf(t) = Fau(t), (9)

where Fa is a 4 × 4 diagonal matrix containing the fault
magnitude between 0 and 1 (1: no fault, 0.5: 50% faults,
0: 100% faults).
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2.2. Regular SMC design. In sliding mode control,
the intention is to drive the state trajectory of the nonlinear
system to a pre-specified linear manifold and to maintain
the state trajectory on this manifold. The design of a
sliding control law then requires two steps: the design
of a sliding manifold such that the system presents the
desirable behavior when trapped on, and the design of
a switching control law that drives the plant state to the
manifold and maintains it on the surface for all the future
time. The SMC law will have then two components, the
equivalent and the discontinuous control law,

u = ueq + udis. (10)

From a control point of view, good behavior of the
system can be interpreted by a decrease in the state error.
In other words, if the state error is changing in its negative
direction, we say that the error between the desired and
actual states is disappearing. If e = Xd − X is the
state error vector, with X and Xd respectively the actual
and desired state vectors, then good system behavior is
defined by ė = −ce. The sliding manifold is then
chosen as s = ė + ce, and when the system states are
on this manifold we have s = 0. The matrix c is the
manifold slope which affects the conversion speed of the
state error to zero, defined for the quadrotor as c =
diag([cz , cφ, cθ, cψ]). To find the equivalent controller
responsible for maintaining the system on the manifold,
V = (1/2)s2 is chosen as a Lyapunov function, and its
derivative V̇ = sṡ = s(ë + cė) = s(Ẍd − Ẍ + cė)
is calculated. By setting V̇ equal to zero, the equivalent
control is found to be

ueq = g−1(X)
[
Ẍd + cė− f(X)

]
. (11)

Since the system states may start at any position in
the plane, there is a need for a controller that brings the
states to the manifold. This controller pulls the states up
if they are located below the sliding manifold, and pushes
them down if they are above it. A suitable controller could
be formed using the signum function, or the saturation
function if we intend to avoid discontinuities,

udis = −ksat(s), (12)

where k = diag([kz , kφ, kθ, kψ]) is a positive gain
affecting the conversion speed of the discontinuous
control, and the saturation function is defined as

sat(s) =

⎧⎪⎨
⎪⎩
1, if s > 1,

s, if |s| ≤ 1,

−1, if s < −1.

(13)

The sliding mode controller is then

u(t) = g−1(X)
[
Ẍd + cė− f(X)

]
− ksat(s) (14)

Tests on the proposed controller show that the
responses of the θ and ψ angles exhibit a small remaining
error (less than 5% with 55% faults) when one or more
motors are affected by faults. This remaining error rises
only in faulty cases, and no error is seen when the
quadrotor motors work normally. To compensate for the
remaining error, the SMC is augmented with an integrator

u(t) =g−1(X)
[
Ẍd + cė− f(X)

]
− ksat(s)

+ ki

∫
e(τ)dτ, (15)

where ki = diag([kiz, kiφ, kiθ, kiψ]) is the integrator gain
matrix. Note that the term g−1(X) always exists for the
control variables. For φ, θ, and ψ, g−1(X) is respectively
Ix/l, Iy/l, and Iz , which always have defined values. For
the altitude variable

g−1(X) =
m

cos θ cosφ
,

which also exists since both φ and θ are within the −18◦

and +18◦ interval (−0.31 to +0.31 rad) as given by the
manufacturer. Note that, by assuming that the desired
values change slowly, the acceleration of the state vector
Ẍd is taken as zero.

2.3. Cascaded SMC design. A cascaded SMC
consists of two SMC based control loops: an outer loop
controlling the control variables z, φ, θ, and ψ, and an
inner loop controlling the velocities. As an example, the
cascaded SMC of the quadrotor height is shown in Fig. 2.

The design of a cascaded SMC starts by choosing the
sliding manifold of the inner loop which has velocities as
the input,

s(inner) = ev + c(inner)

∫
ev(τ) dτ, (16)

ev being the velocity error vector or ev = ė = Ẋd −
Ẋ = u(outer)−Ẋ , and c(inner) representing a positive design
diagonal matrix. Similar to the design of a regular SMC,
the equivalent control is found by defining a Lyapunov
function and verifying the reachability condition,

ueq(inner) = g−1(X)
[
Ẍd + c(inner)ev − f(X)

]
. (17)

Fig. 2. Cascaded SMC control of the height.
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The discontinuous control of the inner loop is
designed using the saturation function,

udis(inner) = −k(inner)sat(s(inner)). (18)

The control input of the quadrotor is then u = ueq(inner) +
udis(inner). This control input contains the term ev =
u(outer) − Ẋ that needs to be designed in the outer loop
using the sliding mode technique. Similarly to the inner
loop controller design, the outer loop controller design
requires the design of a sliding manifold,

s(outer) = e+ c(outer)

∫
e(τ) dτ, (19)

where e = Xd − X , and c(outer) is a diagonal matrix
with positive elements. The Lyapunov function is chosen
similar to the inner loop case, and the equivalent control
is found as

ueq(outer) = Ẋd eq = Ẋ − c(outer)e (20)

while the discontinuous outer control is chosen as

udis(outer) = Ẋd dis = −k(outer)sat(s(outer)). (21)

The control input of the outer loop is then

u(outer) = Ẋ − c(outer)e− k(outer)sat(s(outer)). (22)

Finally, the control input of the quadrotor is

u(t) =g−1(X)
[
Ẍd + c(inner)ev − f(X)

]
− k(inner)sat(ev + c(inner)

∫
ev(τ) dτ) (23)

with ev = u(outer) − Ẋ . Here also the acceleration of
the state vector Ẍd is taken to be zero. Note that these
equations contain the velocity matrix Ẋ which might be
difficult to obtain practically in the presence of noise
and disturbance. Either filters or other mathematical
techniques could be used to estimate derivatives. The
reader is directed to the works of Fliess and Join
(2013), Fliess et al. (2008), and Mboup et al. (2009) for
more information on the differentiation of noisy signals.

3. Tuning the controllers

Sliding mode controller design requires a good choice
of design parameters to ensure the reachability condition
which is defined by V̇ = sṡ ≤ −η|s|, where η is a
strictly positive real constant determining the convergence
speed of the trajectory to the sliding surface. Both
the sliding surface slope matrix c and the discontinuous
control convergence matrix k should be chosen carefully
so that the reachability condition holds. Classic design
approaches solve the reachability condition equations

ending with constraints on the c and k values, and then
matrices are chosen randomly while respecting these
constraints. Matrices chosen using this method ensure
the stability of the controller but might not be the “best”
values that have the minimum conversion time. This
method requires good mathematical skills and careful
solution.

A new trend in engineering is to use artificial
intelligence based algorithms to solve mathematical
problems. These problems vary from finding optimal
PID controller gains of an industrial system to finding
the shortest path of a navigating robot. In our case, we
can use a search algorithm to find the optimal values
of the matrices c and k of regular and cascaded SMCs.
We choose a novel biologically inspired algorithm called
the ecological systems algorithm (ESA) (Merheb and
Noura, 2012) that imitates the equilibrium in nature to
tune our controllers. The algorithm, as shown in Fig. 3,
suggests random values for the matrices c and k and
checks whether these values are optimal (produce a small
response error). The matrices are then updated using
ecological rules and checked again. The last step is
repeated iteratively until matrices giving the least error
values are found. It is important to emphasize that it is
easy to solve the reachability condition for the regular
SMC case by hand. This means the reachability condition
of the cascaded SMC is an equation with four variable
matrices (c and k for inner and outer loops), with each
matrix having four elements corresponding to the four
controlled variables (z, φ, θ, and ψ). This means that the
number of reachability condition equations is 16 in the
cascaded SMC case, which makes it hard to solve using
conventional methods.

3.1. Ecological systems algorithm. To explain how
the ESA finds the optimal values, we will use two insect
species: the aphid species (agent) which feed on plant
liquid, and ladybug species (predator) which eat aphids.
For simplicity, only two species are considered in the
ESA; in nature, however, thousands of species interact,
forming an ecological system. Aphids move randomly in
the environment searching for places with a high nutrient
density. If the nutrient in a place is high, all the individuals
of an aphid swarm exhibit an increase in their health.
In consequence, every individual gives birth to a new
“baby” in the swarm. On the other hand, if the nutrient
is scarce, all the individuals suffer from malnutrition, all
have their health decreased, and some die if their health
drops below the vital threshold. Note that every individual
in the swarm has a limited life time or a predefined number
of iterations to perform. When a search individual dies,
other search individuals along with the new born “babies”
continue their search until optimal values are found or all
the individuals die. If we put an aphid group with such
properties in an environment, we realize that after some
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time all the aphids are gathered in the high nutrient density
place as healthy individuals give birth to new generations
in the plenty regions, and individuals in the poor regions
die.

Using only aphid species is enough to find an optimal
foraging region, so why using the ladybug species? Most
of the search algorithms suffer from local minimum
problems where good results are found but the optimal
values are missed. In our algorithm, the aphids might
have found a place with very high nutrient density but
did not find the best location. In such situations, there
is a need for an external factor that drives the aphids out
of the “good” place to a better one. Ladybugs move
randomly in the environment searching for aphids to eat
and attack any close prey. When a ladybug attacks an
aphid individual, if the ladybug is healthier, it manages
to eat its prey, its health increases and it gives birth to a
ladybug baby. On the other hand, if the aphid is healthier,
it manages to escape rapidly in a random direction but
with injuries, which results in the decrease of its own
health. The ladybug individual that is not able to forage
in an iteration suffers from malnutrition and has its health
decreased. With the ladybug species introduced, we notice
that the algorithm becomes faster, and its chance to find
“the” optimal place is higher. Note that the introduction of
the ladybug species is not an ultimate solution for the local
minimum problem. Actions taken by aphid and ladybug
individuals are shown in Figs. 4 and 5.

3.2. Tuning the controllers. To tune the regular SMC
of the quadrotor using ESA, we use one search space
with aphid (agent) and ladybug (predator) groups for

Fig. 3. Tuning the controllers using the ESA.

each control variable (z, φ, θ, and ψ). Figure 6 shows
the search space of the height controller with aphid and
ladybug individuals. Aphid individuals move in the search
space by changing their coordinates randomly according
to a predefined step size. These coordinates are taken
respectively as the cz and kz gains. To measure the
efficiency of the gain matrices, they are used to control the
z, φ, θ, and ψ variables of the quadrotor with step function
inputs as shown in Fig. 6. Errors between the actual and
desired variable values are calculated and used to validate
a mean squared error based fitness function (Eqn. (25)).

The more this fitness function gives high value, the

Fig. 4. Aphid individual actions.



568 A.-R. Merheb et al.

more efficient the new c and k are:

Fitnessi =
1

MSE i + 0.1
(24)

with

MSE i =
1

size(Ei)

tf∑
t=0

e2it, (25)

where i is the control variable (z, φ, θ, or ψ), and eit
is the deviation of the variable i from its desired value
at time t. To tune the regular SMC, four agent groups
search four different spaces simultaneously, and the c and

Fig. 5. Ladybug individual actions.

k matrices each with four elements are loaded and their
fitness values are checked. This iteration continues until
the optimal matrices c and k (with a minimum error) are
found. For the cascaded SMC, we have two matrices c
and k, one for each control loop (inner and outer). This
means that the algorithm searches for 16 different values
at once. During the tuning process, the controller is used
to control the quadrotor performing a motion defined by
a step function of 1 m for the height, and step functions
of 0.3 rad for the three remaining variables φ, θ, and ψ.
The position error is then calculated and used to find the
fitness function.

To fasten the tuning of the cascaded SMC, we first
tune it only for attitude variable gains. Errors of only
angle variables are used to construct the fitness function.
Once the best angle controller gains are found, they
are used in the tuning process of the cascaded height
controller. This method reduces the tuning time of the
cascaded controller remarkably. Table 2 shows the best c
and k matrix element values for both regular and cascaded
SMCs.

The tuning of the regular SMC is accomplished using
the unfaulty quadrotor system without the integrator part
of the controller. The integrator gain matrix ki used to
compensate for the remaining error which appears only
in faulty cases is found by a trial-and-error procedure
while testing the control law in the presence of faults.
The integrator gain matrix has all its elements equal to 2.
Note that tuning the controllers is made offline, and in
some scarce cases the algorithm search individuals extinct
and the search process fails to find the appropriate gains.
The search process is then repeated to find the optimal

cz_0 cz_1 cz_2 cz_3 cz_4

kz_0

kz_1

kz_2

kz_3

kz_4

cz

kz

Search space of the height SMC controller

 

 
Ladybug individuals
Aphid individuals

Fig. 6. Search space of the height SMC.

Table 2. Best matrix element values found using the ESA.
z φ θ ψ

c 16.56 6.84 8.14 4.37
k 155.5 0.916 7.86 2.68
c(inner) 16 10 11 7
k(inner) 15 13 13 10
c(outer) 26 7 1 3
k(outer) 4 4 4 1
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gains. Tuning the controllers using the ESA simplifies
and fastens the design since the ESA takes between
12 to 55 seconds to converge using a 2.4 GHz dual
core computer with 3 GB RAM. Moreover, conventional
design strategies give only an interval to choose the gains
and not the optimal gain values. On the other hand, ESA
gives the best gain values found within the search interval.

3.3. ESA parameters. All the search spaces are
bounded, and any individual choosing a step exceeding
the boundaries is directed towards the space by negating
the last step direction. The initial agent and predator
population, their initial health values and step sizes, and
the minimum distance that a predator can detect its prey
are all set before starting the search. When an agent
individual forages, its health increases by a factor of AugA
(3 in regular SMC tuning, 25 in cascaded SMC tuning), it
decreases by DecA (0.98 in regular, 0.999 in cascaded)
when it does not eat, and by a factor Dec (0.8 in regular,
0.99 in cascaded) when it suffers from injuries after a
predator attack. Similarly, the predator health increases
by factor Aug (1.2 in regular and cascaded) if it forages,
and decreases by DecP (0.8) when it does not manage to
find a prey. Each individual has a life of 10 iterations and
a health threshold value equal to 20. When the health
of an individual falls below the health threshold value,
it dies immediately. A fitness value of EpsF (0.01) is
the minimum accepted value to increase the health of an
aphid individual, and a population of 4 is the minimum
accepted aphid population for the algorithm to continue
its execution.

Tables 3, 4, and 5 show respectively the parameters
used in the ESA to tune the regular and the cascaded
SMCs of the quadrotor. The parameters of the algorithm
are chosen carefully by a trial-and-error procedure. A
very high value of the AugA factor, for example, causes
slow elimination of the individuals found in bad regions,
resulting in low algorithm conversion speed. Contrarily,
if this factor is kept low, all the agent individuals will die
before the algorithm converges.

Table 3. Variables used in the ESA to tune regular SMC vari-
ables.

Variable Value

φ, θ, ψ intervals x ∈ [1 20], y ∈ [30 200]
z intervals x ∈ [1 20], y ∈ [30 200]

Angles step sizes x : 0.5, y : 5
z step size x : 0.2, y : 0.2

Prey population 80
Angles attack distance 0.05

Predator population 5
Initial health 20

4. Stability test of the proposed controllers

In this section, the stability of the proposed controllers
is checked for scalar case (i.e., each state is checked
individually).

Proposition 1. The regular sliding mode controller de-
signed in (14) is stable if the discontinuous controller con-
stants are chosen according to the following conditions:

kφ ≥ 0.562, (26)

kθ ≥ 0.562, (27)

kψ > 0 and kz > 0. (28)

Proof. Proving the proposition above requires examining
the sliding condition using the Lyapunov method. Let
V = (1/2)s2 be a positive definite Lyapunov function. To
satisfy the sliding condition, elements of diagonal matrix
k have to be chosen so that V̇ is negative semi definite.
Since

V̇ = sṡ = s(ë+ cė) = s(Ẍd − Ẍ + cė),

by replacing Ẍ with the state space equations, we get

V̇ = s(Ẍd − f(X)− g(X)u+ cė).

We replace the control with its equivalent and
discontinuous parts so that the derivative of the
Lyapunov function becomes V̇ = s(−kg(X)sign(s)) =
−kg(X)|s|. With k being a positive matrix,

Table 4. Variables used in the ESA to tune cascaded SMC an-
gles variables.

Variable Value

Prey population 20
Attack distance 0.3

Step size 0.2
Predator population 2
φ(inner) intervals x ∈ [1 20], y ∈ [1 20]
φ(outer) intervals x ∈ [1 10], y ∈ [1 10]
θ(inner) intervals x ∈ [1 20], y ∈ [1 20]
θ(outer) intervals x ∈ [1 5], y ∈ [1 5]
ψ(inner) intervals x ∈ [1 10], y ∈ [1 15]
ψ(outer) intervals x ∈ [1 5], y ∈ [1 5]

Table 5. Variables used in the ESA to tune cascaded SMC
height variables.

Variable Value

Prey population 100
Attack distance 0.1

Predator population 5
Step size 0.5

z(inner) intervals x ∈ [1 30], y ∈ [1 70]
z(outer) intervals x ∈ [1 30], y ∈ [1 5]
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V̇ = −kg(X)|s| is negative only if g(X) is a positive
function. This is true for

gφ(X) =
l

Ix
,

gθ(X) =
l

Ix
,

gψ(X) =
1

Ix

since gangle(X) = diag([gφ(X), gθ(X), gψ(X)]). This
means that the angle controllers are stable, but what about
the height controller?

For the height,

gz(X) =
cos(φ) cos(θ)

m
,

which can take positive and negative values since
−1 ≤ cos ≤ 1. The manufacturer of the AscTec Pelican
quadrotor, however, limits the values of its angles φ, θ, and
ψ by −18◦ and +18◦ interval (−0.31 to +0.31 rad). This
constraint always makes gz(X) positive, which means
that the sliding condition is satisfied if all the elements
of matrix k are chosen positive.

Because it is impossible to measure the speeds of
the quadrotor motors during flight, the term γ (Eqns. (4)
to (6)) cannot be performed in the controller equations.
We introduce the term f̃(X) which is identical to f(X)
with no γ multiplier term, which will replace f(X) in
the controller equations. The derivative of the Lyapunov
function becomes

V̇ = s(f(X)− f̃(X)− kg(X)sign(s))

= s(f(X)− f̃(X))− ksg(X)sign(s))

= s(f(X)− f̃(X))− kg(X)|s|).
(29)

If we can find a positive function F (X) with |f(X) −
f̃(X)| ≤ F (X), then we can ensure the stability of the
quadrotor by choosing

k ≥ F (X) + η

g(X)
,

which leads to sF (X) − kg(X)|s| ≤ −η|s|. F (X) is
found by subtracting f(X) and f̃(X), so all its elements
are zero except

Fφ(X) =
Irotor

Ix
φ̇γ

Fθ(X) = −Irotor

Iy
θ̇γ.

The minimum accepted value of k is found by
replacing its formula (k ≥ (F (X) + η)/g(X)) with the
maximum value of F (X) (g(X) is constant). We have

γ = Ω1 − Ω2 + Ω3 − Ω4 so its maximum value is
γmax = 2.Ωmax = 1046 rad/sec. The minimum value
of kφ is then

kφ ≥
Irotor

Ix
γmaxφ̇

l

Ix

=
Irotorγmaxφ̇

l
= 0.4532φ̇.

If we take the maximum possible angle change, we
can say that no angle of the quadrotor will change from its
minimum value to its maximum (−0.31 rad to +0.31 rad)
in half a second. This means that the maximum possible
rate of change of angles is φ̇ = 0.62/0.5 = 1.24 rad/sec;
kφ is then kφ ≥ 0.562, which is identical to what will be
found for kθ . Note that, because Fz(X) and Fψ(X) are
zero, it is sufficient to choose kz and kψ positive to ensure
the stability of the controller as shown previously. �

For the cascaded SMC, the stability test of the inner
loop results in similar constraints as that of the regular
controller. For the outer loop, the stability test follows the
same steps as in the regular SMC.

Proposition 2. The cascaded sliding mode controller
is stable if the constants of the outer discontinuous con-
troller are chosen positive.

Proof. We have

V̇ = s(outer) ˙s(outer) = s(outer)(ė + c(outer)e)

= s(outer)(Ẋd − Ẋ + c(outer)e).

By replacing Ẋd with its equivalent and
discontinuous values, we end up with s(outer) ˙s(outer) =
s(−k(outer)sign(s(outer))) = −k(outer)|s(outer)| which is
negative definite if k(outer) is chosen positive. The values
of the matrices c and k shown in Table 2 ensure the
stability of the regular and cascaded controllers because
they are within the constraints calculated in this section.
Moreover, the k values found by the ESA not only ensure
the stability of the controller, but also are the optimal
values giving the minimum possible error. �

To study the stability of the controllers under a fault,
the faulty control vector in (9) is used in the stability test.
Following the procedure above with uf(t) = Fau(t),
the derivative of the Lyapunov function is found as V̇ =
s(Ẍd − f(X)− g(X)(uFa) + cė).

Using the faulty SMC law and ensuring the
reachability condition, the constraint on k to guarantee the
controller stability under a fault is found as

k ≥ s(1 − Fa)(Ẍd − f(X) + cė) + η

g(X)Fa|s| . (30)

Finding the constraint on k requires finding a maximum
value of the function Ẍd − f(X) + cė and use it
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in Eqn. (30). Seeking simplicity and space, the fault
range that the controllers can afford will be given in
the following section, rather than in the solution of the
equation above. A detailed study of controllers’ stability
under a fault will be interpreted in future works. Figures 7
and 8 show the phase-plane of the faulty quadrotor system
controlled with both types of SMCs. The open discs in the
portrait show the first 50 points, and the cross sign is the
final point in the portrait. When faults are introduced, the
system phase portrait no longer converges to the origin but
to a close point in its vicinity (0.08 is the greatest value).
This is still acceptable since faults introduce performance
degradation to the system. The phase portrait shows that
the system error is not increasing; it is not zero either but
fixed at a constant value. This effect will be seen clearly
in the quadrotor response in the next section.

5. Experiments and results

5.1. Experiments. The SIMULINK environment is
used to check the fault tolerant performance of the
designed controllers. The quadrotor is set to follow a
continuous helix in the space and faults are injected to
motors at different instants. The equation of the helix path
is

xd = 10 cos(0.1t) + 10, (31)

yd = 10 sin(0.1t) + 10, (32)

zd = 0.1t. (33)

Both the sliding mode controllers designed in this
paper are used to control the attitude and altitude variables
(z, φ, θ, and ψ) of the quadrotor. To make the quadrotor
follow the desired path, a simple PD controller is used
to calculate the position error and give the essential
corrections. The output of the PD controller is then used
to generate the desired attitude values, as shown in the
equations associated with Eqn. (36):

φd = atan

(
−ÿ√

(ẍ2 + (z̈ + g)2)

)
, (34)

θd = atan

(
ẍ

z̈ + g

)
, (35)

ψd = 0. (36)

Here ẍ, ÿ, and z̈ are the outputs of the simple PD position
controller

ï = kip(id − i)− kid i̇, (37)

where i is x, y, or z, and kip = 2 and kid = 3 are
respectively the proportional and derivative gains chosen
by trial and error. It is important to emphasize that
the height output of the PD controller z̈ is used only
to generate the desired angles and not to control the
height of the quadrotor, which is done using the proposed
controllers.

5.2. Tuning controllers under a fault. In the previous
sections, regular and cascaded controllers are tuned in the
fault-free situation. These controllers can handle good
amount of fault as will be shown in the following section.

A natural question is as follows: Is it possible to
improve the fault tolerance property of the controllers
by tuning them with a faulty system? Can we embed
a number of faults in the design of the controllers and
have them more robust? To answer this question, the
tuning process is repeated using a quadrotor with one
faulty motor. The regular SMC is tuned with 10%, 20%,
30%, and 40% of faults injected at the start to the first
motor. It was recognized that the controller tuned with
a system with 30% and 40% faults exhibits the best
robustness. The cascaded SMC was re-tuned under a
quadrotor having 30% faults in its first motor. The best c
and k matrix element values for the controllers tuned with
faulty systems are shown in Table 6. Note that the ESA
constants used in the new tuning process are identical with
their values in the fault-free case (Tables 3–5). Finally, the
fault used during tuning process is partial loss of speed of
Motor 1.

5.3. Results. Once the system is made ready, we start
testing its robustness against actuator faults. Two partial
losses of efficiency faults are considered in this paper: the
first one is partial loss of speed for one or two motors, and
the second is partial loss in voltage supply affecting all
the motors at once. Faults are injected at different instants
while the quadrotor is set to follow the helical path. Faults
are injected by scaling down the faulty motor speed by
the error percentage in the case of partial speed losses,
and scaling down the supply voltage of all motors in the
case of a voltage supply fault. The motor speed drops
down when the load torque increases because of rust or
debris, or when the voltage across that motor changes
as the internal resistance of the motor decreases. Any
failure in the power supply or power unit will affect all
the motors, resulting in a sudden voltage drop across all
motors.

We first consider the regular SMC controlled
quadrotor performing the helical path in the space. The
regular SMC controlled system is able to handle a

Table 6. Matrix element values with controllers tuned under a
fault.

Variable z φ θ ψ

c 6.2161 14.3027 7.8565 2.2437
k 177.3498 2.1076 9.9953 1.3583

c(inner) 17.1833 12.3679 10.1933 5.9480
k(inner) 1.1050 11.0206 11.5236 8.0855
c(outer) 24.4676 14.9194 2.9162 2.7811
k(outer) 1.5966 1.0052 2.5191 3.0196



572 A.-R. Merheb et al.

−2 0 2 4 6 8 10 12 14

x 10
−3

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
E−Edot plane for the height SMC

Ez

E
zd

ot

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−2

−1.5

−1

−0.5

0

0.5

1
E−Edot plane for the roll angle SMC

Ephi

E
ph

id
ot

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
−1

−0.5

0

0.5

1

1.5

2

2.5
E−Edot plane for the pitch angle SMC

Etheta

E
th

et
ad

ot

−0.01 −0.005 0 0.005 0.01 0.015
−0.1

−0.05

0

0.05

0.1
E−Edot plane for the yaw angle SMC

Ephsi

E
ps

id
ot

Fig. 7. Phase plane of a regular SMC controlled faulty quadrotor (two faults of 55% and 54%).

maximum fault of 55% in Motor 1 occurring at instant
t = 40 s, along with a fault of 40% in Motor 2 at t = 20
s. This percentage rises remarkably when the controller
is tuned with a faulty system. The faults becomes 57%
and 56% for Motor 1 and Motor 2 respectively. The
response of the quadrotor controlled with the regular SMC
tuned under a fault is illustrated in Fig. 11. The quadrotor
exhibits a small deviation from the desired path when the
faults occurs. This deviation can be seen clearly in the
angles of the quadrotor but is compensated directly by the
controllers. Figure 9 shows respectively the motor speeds
(not used in the control law) applied during flight for
regular SMC tuned without faults. It can be clearly seen
that motor speeds are realistic and stay within the physical
limits of the quadrotor. One can recognize a sudden
change in motor speeds and controls as the quadrotor
compensates for the suddenly occurring faults. Moreover,
the figures show that fault compensation does not occur
directly at the fault injection instance (t = 20 s and t = 40
s) but after a short delay. This delay results in small
deviation in the path remedied directly when the controls
change.

Using the cascaded SMC tuned without a fault
improves fault tolerance. The quadrotor can now handle
up to 55% faults in Motor 1 occurring at instant t = 40 s,
along with 54% faults in Motor 2 at t = 20s is recognized
even though no integral controller is used. Moreover,
no deviation in the quadrotor path is recognized. This
reveals the importance of the cascaded SMC where faults
are compensated in the fast inner loop controlling the
velocity system before they affect the quadrotor position.
This analysis is supported by the figure showing the motor

speeds of the quadrotor (cf. Fig. 10). This figure shows
that changes in motor speeds happen at the time the faults
are injected (t = 20 s and t = 40 s), which means a fast
compensation of any fault. As in the regular SMC, if the
cascaded SMC is tuned under a fault, the system ability
to handle faults rises. The controller can now handle up
to 56% faults in both Motor 1 and Motor 2 occurring at
t = 40 s and t = 20 s, respectively. Here also fault
compensation is made quickly with no deviation in the
path, as shown in Fig. 12. Both regular and cascaded
controllers can handle a sudden decrease of 55% in all
the motor speeds at t = 40 s.

By comparing results found here with those of
active fault tolerant sliding mode controllers of Merheb
et al. (2014), one can recognize easily that passive FTC
schemes still hold an important place in fault tolerant
control. Active FTC of Merheb et al. (2014) outperforms
the passive FTC regular SMC of Merheb et al. (2013)
when one motor fault is considered. The maximum
tolerated amount of the loss of effectiveness is 35% for
passive and 55% for Active FTC. When passive FTC is
upgraded with an integrator, its performance is improved
and the amount of faults tolerated rises to 55%. Tuning
passive controllers with a faulty system pushes their fault
tolerant capacity to the limits. The passive FTC exceeds
the active FTC scheme and tolerates up to 57% faults in
one motor.

Note that the location of a fault in the tuning
process might affect controllers robustness. Controllers
can tolerate better the fault that was injected during their
tuning. In our experiment, controllers tuned under a
fault tolerate a considerable number of faults in Motor 1



Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory 573

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02
−0.6

−0.4

−0.2

0

0.2

0.4
E−Edot plane for the height SMC

Ez

E
zd

ot

−2 0 2 4 6 8 10 12 14 16

x 10
−3

−1

0

1

2

3

4
E−Edot plane for the roll angle SMC

Ephi

E
ph

id
ot

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
E−Edot plane for the pitch angle SMC

Etheta

E
th

et
ad

ot

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x 10
−3

−0.03

−0.02

−0.01

0

0.01

0.02

0.03
E−Edot plane for the yaw angle SMC

Ephsi

E
ps

id
ot

Fig. 8. Phase plane of a cascaded SMC controlled faulty quadrotor (two faults of 55% and 54%).

because they were tuned with this fault. The controller
response would be very different if the fault were in
Motor 4, for example. To solve this issue and improve
fault tolerance of controllers, an active fault tolerant
controller can be designed based on the passive FTC
controllers proposed in this paper. Controllers are tuned
under different fault locations and a bank of controllers is
formed. A fault detection and identification (FDI) unit
is used to detect any fault online. Whenever a fault is
detected, the appropriate controller is chosen from the
bank of controllers based on the fault location and its
magnitude.

6. Conclusion

In this paper, we proposed two different sliding mode
control (SMC) based passive fault tolerant controllers for
the AscTec pelican quadrotor. The first one is an integrator
augmented regular sliding mode controller designed and
tuned in a fault free-situation. The second one is a
cascaded sliding mode controller with an inner-loop SMC
responsible for fast compensation of faults in the velocity
loop, and an outer SMC loop controlling the height and
attitude angles. The controllers are passive-type SMCs
where no fault measurement or estimation is applied, and
the robustness inherent in sliding mode control is used to
compensate the faults.

Controller design is made easy by using the ESA, a
bio-inspired stochastic search algorithm applied offline in
fault-free and faulty situations to find the optimal values
of design parameters of both the controllers. Stability
analysis of the proposed controllers in a scalar and a

fault free case is provided. SIMULINK results show
good fault tolerant performance of the controllers despite
the under-actuated system used. With controllers tuned
without faults, the cascaded SMC outperforms the regular
SMC by compensating rapidly a higher fault percentage.
Tuning the controllers using a faulty quadrotor system
is seen to improve the fault tolerant capabilities of both
SMCs, and the regular SMC tuned with fault matches the
cascaded SMC tuned without a fault.

Using bio-inspired search algorithms is proved to be
very important in SMC design: instead of choosing the
discontinuous gain theoretically and arbitrarily following
the reachability condition, the algorithm chooses values
and tests them practically until an “optimal” value is
found. Comparison between the passive and active FTC
SMCs of Merheb et al. (2014) emphasizes the importance
of passive fault tolerant controllers that compete with
active schemes when unconventional techniques are used.

Future work should include the application of the
proposed controllers to a real quadrotor testbed, a detailed
study of controllers stability under faults, and the design
of an active fault tolerant SMC. Results shown in this
paper are believed to present the maximum fault value a
passive fault tolerant control SMC can handle. To tolerate
higher faults and severe actuator failures, over-actuated
UAVs such as octorotors should be used.
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ments (tuned with a fault).
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