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Automatic detection of voice pathologies enables non-invasive, low cost and objective assessments of the presence of
disorders, as well as accelerating and improving the process of diagnosis and clinical treatment given to patients. In
this work, a vector made up of 28 acoustic parameters is evaluated using principal component analysis (PCA), kernel
principal component analysis (kPCA) and an auto-associative neural network (NLPCA) in four kinds of pathology detection
(hyperfunctional dysphonia, functional dysphonia, laryngitis, vocal cord paralysis) using the a, i and u vowels, spoken at
a high, low and normal pitch. The results indicate that the kPCA and NLPCA methods can be considered a step towards
pathology detection of the vocal folds. The results show that such an approach provides acceptable results for this purpose,
with the best efficiency levels of around 100%. The study brings the most commonly used approaches to speech signal
processing together and leads to a comparison of the machine learning methods determining the health status of the patient.
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1. Introduction

Despite the highly developed digital technology used in
acoustic analysis, there is still the problem of extracting
useful information about the state of a patient’s health.
Voice is dynamic and complex, whilst speech can be
conducted in different languages, intonations and with
different emotions. In the last few years, voice pathology
detection has been studied intensively in the signal
processing research community using various digital
signal processing methods (Arroyave et al., 2012; Fong
et al., 2013). Because of this, the reliability of the
developed software which is currently being used to
automatically detect pathology in the vocal folds and
the underlying variability of speech has increased (Fraile
et al., 2009). It depends on the language analysed and the
kind of pathologies and techniques used in the analysis.
The researchers are still working on the development of
different tools for automatic evaluation of pathological
voices. Due to this fact, the calculations in this work are
provided separately for women and men.
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In speech clinical practice, the patient’s voice quality
is assessed using sustained vowel phonations and/or
conversational speech. Sustained vowels are particularly
useful because they circumvent linguistic artefacts and
are thus considered sufficient for many voice assessment
applications (Tsanas, 2013). During speech examination,
the patient is asked to maintain the phonation of sustained
vowels for as long as possible and as steady as possible
(in terms of pitch and amplitude).

In order to make quantitative voice evaluation,
acoustic, aerodynamic, endoscopic, perceptual or
patient-self assessment examination may be needed.
If the diagnosis is not ambiguous, the methods can
be combined (Godino-Llorente et al., 2006b). There
are different acoustic features being analysed, with
a different focus. Closer attention can be given to
measuring instabilities in the voice signal or the
noise content and general articulatory problems.
The most commonly used measures are fundamental
frequency (Manfredi et al., 2000), jitter (frequency
perturbation), shimmer (amplitude perturbation) (Farrus
et al., 2007; Lieberman, 1963; Horii, 1980; Steinecke
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and Herzel, 1995), harmonic-to-noise ratio (Yumoto
et al., 1982) and mel-frequency coefficients (Rabiner
and Juang, 1993; Godino-Llorente et al., 2006a;
Godino-Llorente and Gomez-Vilda, 2004; Steinecke and
Herzel, 1995; Jothilakshmi, 2014; Saldanha et al., 2014).

The detection of voice impairments in vocal fold
pathology reviews the excitation of the signal (Wong
et al., 1979). Non-parametric approaches use a magnitude
spectrum of speech, where short-term mel-frequency
cepstral coefficients (MFCCs) are used for representing
the magnitude spectrum. It is still a challenge to
attain high accuracy and an automatic, robust and
inexpensive approach in voice pathology detection and
classification. Automatic detection of voice pathologies
enables non-invasive, low cost and objective assessment
of the presence disorders and speed-up, and improves
the process of diagnosis and clinical treatment given to
patients.

In the past few years, researchers have paid a lot of
attention to automatic systems assessing voice disorders
due to their non-invasiveness and low cost implementation
compared with traditional diagnostic approaches. The
accuracy detection levels of voice and speech disorders
has increased during the last few years (Arroyave et al.,
2012). Unfortunately, no universal solution has yet
been found to detect the condition of the voice. Most
of the features and algorithms are trained using limited
databases, including few types of disorders. One hundred
percent of accuracy in voice pathology detection was
achieved by Eadie and Doyle (2005) using long-term
average spectral measures, glottal noise measures, and
measures based on linear prediction modelling, which in
turn formed the inputs into conditional logistic regression
analysis. This research included only 24 patients.

Hadjitodorov and Mitev (2002) also report the level
of 100% accuracy in the detection for well-manifested
voice pathologies, and 96,1% accuracy of weakly
manifested pathologies were achieved for the K-nearest
neighbours using turbulent noise in voice signals
(turbulent noise index, TNI) and for breathy voice
characterization (normalized first harmonic energy,
NFHE). The database contained 744 patients, of whom
638 suffered from various functional and organic larynx
disorders. Usage of a few parameters (mel-frequency
cepstral coefficients, harmonics to noise ratio, normalised
noise energy and glottal to noise excitation) and principal
component analysis ensured an 89.3% accuracy level
in pathology detection of only one disease—asthenia
(Saenz-Lechon et al., 2006). The accuracy of
93,4% was achieved with the use of an adaptive
time-frequency transform algorithm and several features,
such as the octave max, octave mean, energy ratio,
length ratio and frequency ratio, which were classified
using linear discriminant analysis (Umapathy et al.,
2005). An identification accuracy of 96% was achieved

using a neural network: a multilayer perceptron
and learning vector quantization fed using short-term
vectors calculated according to mel-frequency coefficients
(Godino-Llorente et al., 2006b).

In the literature, there are different ways of
classifying vocal disorders for clinical applications. One
of the most commonly used is principal component
analysis (Saenz-Lechon et al., 2006), which helps in
extracting the most useful information regarding the
signal and reduces the number of parameters. Reduction
in parameters may cause a smoothed distribution of voices
with an inferior classification (Matassini et al., 2000).
Goddard et al. (2009) present reduction in dimensionality
for visualization of normal and pathological speech data
using PCA and kernel PCA methodology. Another
method used for reducing the dimensionality is non-linear
PCA based on a neural network. It has been
demonstrated that NLPCA, which minimizes the mean
square reconstruction error from a reduced dimensionality
space, can be very effective for representing the data
which lie in a curved subspace, and may be very effective
in voice pathology detection (Hu and Zahorian, 2008).

Moreover, there are studies combining acoustical
signal and imaging of the vocal folds. There are already
techniques available such as kymography and high-speed
digital videoendoscopy (HSV) that enable the clinician
to record the oscillating vocal folds in real time during
the phonation. What is more, HSV enables one to
visualise and quantify pathologies that affect the dynamic
behaviour of the vocal folds (Skalski et al., 2008).
Acoustic analysis and a system visualizing vocal fold
vibrations enable direct correlations to be established
between acoustic parameters and measurements of glottal
closure and vibratory symmetry (Mehta et al., 2010).

In this paper we tackle the pathology detection
challenges, by creating a feature vector made up of 28
different parameters derived from voice signal analysis.
The parameters are used for analysis, because they are
increasingly being adopted and understood by physicians
due to the adjunctive programs used in the diagnosis
making process. Other parameters, such as mel-frequency
cepstrum coefficients, formants or zeroth-, first-, second-,
and third-order moments, are used due to their wide
functionality (Rabiner and Juang, 1993; Imai, 1983).
Based on the vector made up of 28 parameters, we
compare pathology detection accuracy, precision and
specificity using machine learning methods such as
principal component analysis, kernel principal component
analysis and an auto-associative neural network. This
provides a conceptual basis for the development of the
current state of biomedical speech signal processing
and mathematical methodology, highlighting the most
clinically valuable information from the recorded speech
signals which may not be adequately quantified using
the currently available algorithmic tools contained in the
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Table 1. Number of pathological patients taken under examina-
tion.

name of the pathology women men

hyperfunctional dysphonia 165 45
functional dysphonia 75 36

laryngitis 56 82
vocal cord paralysis 138 74

literature.
This paper is organised as follows. Section 2

contains the description of the material used in this work,
Section 3 presents the description of the pathologies that
are analysed, Section 4 showcases the methodologies
used in the examination of all results, whose validation
is presented in Section 5. Section 6 presents the final
results and Section 7 contains a conclusion of all the work
featured in this paper.

2. Material

Experiments have been performed on the Saarbrucken
Voice Database, which was published online by the
Institute of Phonetics of the University of the Saarland.1

This database holds a collection of voice signals from
more than 2000 healthy and pathological German
speakers. Each of the recording sessions contains
recordings of the sustained phonation of the a, i, u vowels
spoken at four different pitches: high, normal, low and
high-low-normal. The voice recordings were sampled
with a frequency of 50 kHz and 16-bit resolution. The
length of the recordings with sustained vowels lasts from
1 to 4 seconds. For the purpose of this work, all the vowels
were used at a high, normal and low pitch. Recordings
that were incomplete or damaged were excluded from
the database. In our work we use the female and
male recordings of four pathologies: hyperfunctional
dysphonia, functional dysphonia, laryngitis and vocal
cord paralysis. The number of pathological patients in the
database who suffered from exact pathology is presented
in Table 1. The number of healthy patients selected for
examination was the same as for pathology cases.

3. Pathologies

Functional dysphonia (FD) is an enigmatic and
controversial voice disorder that is frequently encountered
in multidisciplinary voice clinics. Functional dysphonia
occurs predominantly in women, commonly follows
upper respiratory infection symptoms, can be transient
and varies in its response to treatment (Morrison
et al., 1986; Roy, 2003). FD is often regarded as a
disorder on a continuum of severity and it implies

1 www.stimmdatenbank.coli.uni-saarland.de.

phonation is preserved but disordered in terms of
quality, pitch, or loudness. There are two types of
functional dysphonia, namely, disorders of hypofunction,
with inadequate apposition of the vocal cords, and
hyperfunctional dysphonia, in which accessory laryngeal
muscles are used in voicing.

Hyperfunctional dysphonia is the most frequently
occurring kind of dysphonia, which is a result of the voice
organ failure with an excessive muscle tensioning inside
and outside the larynx during the phonation (the so-called
hard attitude voice). It is usually observed in people
using their voice at work, and comes across as hoarse
with limited resonance. Hyperfunctional dysphonia is
characterised by strained vocal folds, congested due to
the hyperkinetic mechanism of phonation (Belafsky et al.,
2002; Jiang et al., 1998). In the advanced stage of
hyperfunctional dysphonia, the vocal folds are hidden
under the atrial folds, which take over the function of the
vocal folds in the pathological phonation, or the so-called
vestibular phonation.

Vocal fold paralysis causes a loss of vocal cord
abduction and adduction. It may also influence phonation,
respiration and deglutition, hence food and fluids may be
easily aspirated into the trachea, resulting in pain in the
throat when speaking, and a reduction in vocal volume. In
unilateral paralysis the voice can be hoarse and breathy.
In bilateral paralysis the voice is in a good condition, but
with limited intensity. The airway is inadequate, which
results in stridor and dyspnea with moderate exertion as
each cord is drawn to the mid-line glottis by an inspiratory
Bernoulli effect (Jiang et al., 1998; Sulica and Blitzer,
2006; Maran, 1983).

Laryngitis is an inflammation of the mucous
membrane lining the larynx and mostly results from
viral infection (viral laryngitis). Laryngitis is usually
associated with hoarseness or a temporary loss of
speech and is often accompanied by an upper respiratory
infection. In laryngitis, the tissues below the level of
the epiglottis are swollen and inflamed. This causes
swelling around the area of the vocal cords, which hinders
their normal vibration (Mathieson et al., 2009; Nicolosi
et al., 2004).

4. Methods

This study was carried out in order to assess the
accuracy of classification methodologies in the detection
of pathological speech. Each method was used with
a reference to correct and pathological speech samples
for both women and men separately. In the first
step of this examination, the focus was on preliminary
transformations of speech waveforms into a set of 28
parameters. Those parameters represented a dataset for
a diagnosis of the patient’s disease.

Preliminary signal processing and registration by

www.stimmdatenbank.coli.uni-saarland.de
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itself does not make it completely useful for the process
of identifying and assessing changes in the deformation
and pathology. Thus one needs to develop and explain
phonetic recordings using set parameters and an accurate
classification method. In this paper, the analysis of
the speech signal is performed with the use of 28
parameters, namely, fundamental frequency, jitter and
shimmer coefficients, energy, zeroth-, first-, second-,
third-order moment, kurtosis, power factor, 1-, 2- and
3-formant amplitude, 1-, 2- and 3-formant frequency,
maximum and minimum values of the signal and 10
mel-frequency ceptrum coefficients (MFCCs). The latter
are commonly used in speech recognition because they
simulate the subjective human perception of voice pitch
by enhancing audible frequency and are less sensitive
to noise (Rabiner and Juang, 1993). Cepstral analysis
was used to estimate the fundamental frequency and was
performed using a Fourier transformation of the sound
spectrum.

In order to facilitate the extraction of the main
components of the spectrum, before the transformation
from the time domain to the frequency domain, the
signal was subjected to the windowing operation using a
Hamming window. In this paper we use a window with a
width of w = 384 samples. Hence, knowing the position
of the maximum frequency means, we can determine the
basic frequency of the analysed sound using the following
formula:

f0 =
lsz

wm
, (1)

where ls is the number of elements of the spectrum,
z is the audio sample rate, w is the width of the
analysed window (number of samples) and m represents
the position of maximum cepstrum.

The sounds of laryngeal stimulation should have a
relatively constant amplitude and frequency of the basic
tone. When there are pathological changes to the larynx,
the level of signal and its fundamental frequency change.
Jitter (relative) is the average absolute difference between
consecutive periods, divided by the average period, and
is expressed as a percentage. The jitter coefficient (J) is
calculated using

J =

1

N − 1

N−1∑

i=1

|Ti − Ti+1|
1

N

N−1∑

i=1

Ti

100%, (2)

where Ti are extracted F0 period lengths and N is
the number of extracted F0 periods. The amplitude
perturbation known as shimmer (relative) S is defined as
the average absolute difference between the amplitudes
of consecutive periods, divided by the average amplitude,

expressed as

S =

1

N − 1

N−1∑

i=1

|Ai −Ai+1|
1

N

N∑

i=1

Ai

100%, (3)

where Ai is the extracted peak-to-peak amplitude data
and N represents the number of extracted fundamental
frequency periods. A measure of the energy carried by
the signal x is achieved by integrating the square of the
signal Ex:

Ex =

∫ t1

t2

x2(t) dt (4)

Ex =

n2∑

n=n1

x2(n), (5)

where n1 and n2 are the boundaries of intervals of time,
x(n) means the signal value of the n-th moment of time,
i.e.,

x(n) = x(nΔt). (6)

Having defined the signal time-frequency domain
G(t, f), the shape of the signal spectrum can be described
as the zeroth-order spectral moment (Fujinaga, 1996):

M0(t) =

∞∑

i=0

G(t, fi), (7)

where G(t, f) represents the time-frequency spectrum
considering the centre frequency of the i-th band
highlighted in frequency analysis.

The first-order moment is the centre of gravity of the
spectrum (frequency-weighted average),

M1(t) =

∞∑

i=0

G(t, fi)fi

M0(t)
(8)

The second-order moment is defined as the square of
the spectrum width,

M2(t) =

∞∑

i=0

G(t, fi)[fi −M1(t)]
2

M0(t)
. (9)

The third-order moment is described as the
asymmetry of the spectrum and means skewness,

M3(t) =

∞∑

i=0

G(t, fi)[fi −M1(t)]
3

M0(t)
. (10)

Due to correlation, the standardised higher-order
spectral moments are less suitable. Further calculations
were made to obtain kurtosis, which is interpreted as
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flattening the spectrum measurement (Joanes and Gill,
1998):

kurtosis =
M4(t)

M2(t)2
. (11)

The next parameter calculated was the so-called
coefficient of relative power, which means the ratio of the
power of the signal in the desired frequency wide-band
f ∈ [fd, fg] to signal power across the bandwidth [f0,
f∞] (Engel et al., 2007),

Wm(t) =

tg∑

t=tb

fg2∑

f=fd2

G(t, fi)

tg∑

t=tb

fg1∑

f=fd1

G(t, fi)

, (12)

where fg1, fd1 represent the lower and upper frequencies
of the power wide-band, fg2, fd2 are the upper and lower
frequency ranges of the selected frequency wide-band and
tb, tg are the beginning and the end of the recorded voice
sample. The power factor was calculated for the first
power coefficient describing the ratio of signal power in
the first band to the overall signal power.

Other computed parameters were the formants.
Formant frequencies reflect the size and shape of
the supraglottal filter system, whereas the formant’s
amplitudes provide information pertaining to vocal
intensity levels as well as coupling between the
supraglottal cavities and subglottal spaces (Rachida and
Amar, 2009). In order to determine the formant
parameters, we needed spectral envelope, which was
computed using linear predictive coding (LPC). It is a
speech signal analysis technique which consists in the
presentation of the speech signal as a response to the
all-pole filter on the signal pitch (Atal and Hanauer, 1971).
Linear prediction treats the signal as if it were generated
by a signal of minimum energy, which was passed through
a purely recursive IIR filter. An important thing when
calculating formant frequencies from the filter is to find
the locations of the resonances that make up the filter. To
do this, we adopted the filter coefficients as a polynomial
and solved the roots of the polynomial (Makhoul, 1975).

The formant amplitudes are influenced by the
intensity of the signal source, frequency and damping
within the vocal folds. Formants can be defined from
the envelope which can be drawn to smoothly embrace
the harmonics within the spectral maximum, i.e., the
sound pressure level in dB of the envelope peak. The
formant’s frequency is related to the frequency position
of the envelope maximum (F1, F2, F3, respectively).
The formants calculated for five women, of whom four
suffered from four voice pathologies and one was a
healthy individual are presented in Fig. 1. Many authors
show interest in cepstral factors in diagnostic evaluation
of pathological changes in the glottis (Huber et al., 1999;
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Fig. 1. Formant representation of five women: one suffering
from functional dysphonia (age 41), one suffering from
hyperfunctional dysphonia (age 48), one suffering from
laryngitis (age 59), one who had vocal fold paralysis (age
54) and a healthy individual (age 21).

Fong et al., 2013; Brinca et al., 2014). The cepstrum is
defined as the power spectrum of the logarithm of the
power spectrum. It has a strong peak corresponding to the
pitch period of the voiced-speech segment (Noll, 1967).
The cepstral coefficients in this project are extended
to the so-called Melow filtration, which consists of an
additional non-linear frequency scale signal spectrum
transformation. As a result, we achieved 10 MFCCs.

Since the feature vector was composed of a large
number of parameters, we needed to use a method that
would extract the most significant information. In order to
perform reduction in the number of essential parameters
we needed to organise their features according to the
discriminant ability and in the final analysis obtain stable
and consistent results, which better reflected the overall
system performance.

The first method used for preserving the most
relevant information from the data was the mathematical
technique called principal component analysis (PCA).
The significance of PCA has been discussed by Oja
(2002) and Bishop (2006). It is a powerful tool for
feature extraction based on minimizing the mean square
error between original data vectors and other data vectors
that could be estimated from the reduced dimensionality.
PCA has two distinct versions: linear and non-linear.
The objective of linear PCA is to find t orthogonal
vectors (principal components) from the set of data in
a lower dimensional data space that exhibit the largest
variance. PCA has been proved to be the optimal linear
transformation of the dataset and provides for efficient
reduction of the initial dataset.

Theoretically, non-linear mathematical techniques
have the potential to be more “efficient” than linear
methods as they provide better representations with
fewer dimensions. Non-linear transformation methods
presented in this paper are non-linear PCA (NLPCA)
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(Scholz et al., 2008) and kernel PCA (kPCA) (Schölkopf
et al., 1999). The aim of NLPCA is to minimize the
mean square error between the features estimated from
the reduced dimensionality featured and the original ones.
In other words, NLPCA determines a non-linear mapping
function that projects N -dimensional features onto
their corresponding highly informative M -dimensional
representation (Tadeusiewicz et al., 2013; Makki et al.,
2010; Zahorian and Hu, 2011).

One significant potential parametrization of NLPCA
is based on auto-associative multilayer neural networks.
Generally, an auto-associative neural network is a cascade
subnet responsible for compression and decompression
of data, as shown in Fig. 2. The values of
output data from the auto-associative neural network
algorithm are the same as the values of input data.
In the middle of the network there is a layer that
works as a bottleneck in which the dimension of the
data is reduced. This bottleneck-layer provides the
component values. This method is patterned after PCA.
For the purpose of this work we chose hierarchical
non-linear PCA. It forces the non-linear components
to have the same hierarchical order as the linear
components of the standard PCA, which yields a more
significant meaning for individual components (Scholz
et al., 2008). The algorithm used in this work was
proposed by Scholz and Vigário (2002), and it ensures
optimal non-linear subspace spanned by components and
restricts the non-linear components to have the same
hierarchical order as the linear components in the standard
PCA. Hierarchical NLPCA removes complex non-linear
relationships between components. The auto-associative
mapping is based on a 28-m-m-m-28 network, where
m is the number of features that was calculated using
PCA. PCA pre-processing and linear weight initialisation
are used to start NLPCA with the linear solution of
PCA. Figure 3 shows that the data set has non-linear
characteristics.

The second method is referred to as kernel PCA.
The goal of the non-linear transformation is to map the
input space into a feature space via a non-linear map and
then compute the principal components in that feature
space. kPCA may compute the principal components in
higher-dimensional feature space, which is non-linearly
related to the original input dataset (Bishop, 2006). For
the calculations of kPCA, the Gauss kernel function was
used. The kPCA method was implemented using the
algorithm created by Wang (2012). One of the most
important factors for kernel PCA is parameter selection.
In the case of a Gaussian kernel which is used in this work,
it is σ in a kernel function described by

K(�x) = exp
(
− (�x− �̃x)2

2σ2

)
, (13)

where �x is the vector data containing points, and �̃x equals

data to compress

compressed
representation

of data

reconstructed data

Fig. 2. Diagram of an auto-associative neural network perform-
ing non-linear PCA.

the mean value of �x.
In general, if we want to separate different classes in

the new feature space, the parameter σ should be smaller
than the inter-class distances, and larger than inner-class
distances in the parameters domain (Wang, 2012). In this
work, σ is selected in an experimental manner separately
for female and male data. As a selection criteria the mean
accuracy was from a function depending on the number of
features and σ (Table 2), for the i vowel for all analysed
pathologies. The vowel i was chosen due to the best
results in relation to the other vowels. The results for
vowel i for women and men are presented in Figs. 4 and
5. The calculation was made based on the data which did
not enter the database used to validate the algorithms. For
male signals, the maximum value of σ was achieved for
28 features and the σ = 16.75. The maximum value for
women was also achieved for 28 features and σ = 20.25.
These values were selected and used in the subsequent
experiments.

5. Validation

To validate the calculated feature vector, a quality
estimation of the classification operator was carried
out using cross-validation. The classification operator
consisted of results from the analysis for each patient.
10-fold cross-validation was used, where the data set was
divided into k = 10 subsets. In this way, one of the
subsets containing 10% of the data was used as a test set,
with the 90% representing a training set. The analysis was
carried out k times, where the voice samples belonged to
random groups. The analysis was completed individually
for each vowel at different intonations, separately for
men and women for each pathology and each vowel at
a different pitch. The confusion matrix, which is the
classification standard tool, was used to summarise the
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Table 2. σ value which characterised the highest accuracy result for each vowel.

vowel a i u

gender women men women men women men

number of features 28 28 28 28 28 28
σ 20,5 17,5 20,25 16,75 21,25 18,00

Fig. 3. Hierarchical non-linear PCA applied to a 28-feature vec-
tor for women for the vowel a at a low pitch suffering
from laryngitis showing non-linear behaviour. The first
three non-linear components are visualised in the space
of the first three PCA components, where the grids repre-
sent the new coordinate system of the component space.

results of the work. To achieve a quality assessment,
parameters such as accuracy, precision and specificity
for healthy and pathological detection were calculated.
Sensitivity relates to the test’s ability to detect positive
results, whereas specificity relates to the identification of
negative results. Definitions of the parameters placed in
the proposed confusion matrix are shown in Table 3 and
Eqns. 14–16.

An accuracy (ACC) is defined as the ratio of the
parameters from a test set that were properly classified
to all the parameters from a test set, as presented in
Eqn. (14). The accuracy of the results achieved using
the proposed confused matrix analysing each of the
mentioned voice pathologies is presented in Table 6.
Calculations were made separately for men and women:

ACC =
TP + TN

TP + FN + TN + FP
. (14)

In pattern recognition and data mining, precision is
the fraction of relevantly classified cases. It is defined
as the number of all the cases that were classified into a
particular class, and how many of them actually belonged
to that class. In other words, it is defined as the ratio of
cases that have been classified by the system correctly
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Fig. 4. Graph presenting the mean σ distribution in relation to
the number of parameters and detection accuracy for
vowel i for women after PCA.
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Fig. 5. Graph presenting the mean σ distribution in relation to
the number of parameters and detection accuracy for
vowel i for men after PCA.

to the corresponding class to all results taken into the
classification. Precision was calculated separately for
health

HD =
TP

TP + FP
, (15)

where TP and FP respectively mean true and false
positive, and pathology detection

PD =
TN

FN + TN
, (16)

where TN and FN respectively mean true and false
negative.

6. Experimental results

Recordings for 1342 patients from the Saarbruecken Voice
Database were used to evaluate the pathology detection
and classification models. After signal processing
analysis, the feature vector made up of 28 parameters
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Table 3. Confusion matrix used in the analysis

Results from classification
healthy pathology

D
ia

gn
os

ed he
al

th
y

true positive
(TP)

false positive
(FP)

pa
th

ol
og

y false negative
(FN)

true negative
(TN)

Sensitivity Specificity
=TP/(TP+FN) =TN/(TN+FP)

was created, (cf. Section 4). These parameters were
calculated automatically, by characterizing the clinically
useful properties of the speech signals. The objective
of our experiments is to compare the performance of 3
machine learning methods on 4 kinds of pathologies and
relate them to the origin feature vector. Performance
evaluation covers 5 main aspects: accuracy, healthy
and pathology precision and sensitivity in a healthy and
pathology state. The accuracy results of each method are
presented in Table 6.

In the overall analysis, PCA enabled dimension
reduction of up to 14 parameters from a 28-dimensional
space, depending on the vowel and its pitch, as presented
in Tables 4 and 5. The required number of parameters was
chosen to cover at least 90% of the information contained
in the signal, in order to make calculations faster (a lower
dimensional space). This method showed mostly the same
result as the initial 28-parameter vector, and in many cases
even improved the effectiveness of the detection.

In general, the highest pathology detection accuracy
rate is shown using the kPCA method and NLPCA, which
means that the analysed data are non-linear and both
methods deal with detection giving promising results,
as shown in Table 6. What is more, NLPCA ensured
dimension reduction to the same number of parameters
(Tables 4 and 5). Going further, usage of kernel
principal component analysis yielded a visibly higher
level of accuracy than the initial 28-parameter vector
and linear principal component analysis. There was no
result that was worse than that provided by principal
component analysis. The non-linear PCA based on an
auto-associative neural network also showed the same
trend as kernel PCA, and it enabled detection of voice
impairments at the same level as kPCA. The main
difference between kPCA and NLPCA is calculation time,
as kPCA was four times shorter than NLPCA.

After analysing the mean accuracy of women for all
the methods for all the vowels and their pitches, the best
result was achieved by kernel PCA, whereas for men it
was kernel PCA and non-linear PCA. While analysing

which vowel and pitch could detect with the highest
accuracy all the pathologies presented in this paper, it was
noted that there are vowel i at a normal pitch, u at a low
and normal pitch using the kernel PCA method, vowel
i at a low pitch and u at a normal pitch using kPCA,
and vowel u at a low pitch using NLPCA. The poorest
accuracy for all the analysed methods showed vowel a at
a low pitch. Keeping all the vowels and their pitches in
the analysis of laryngitis showed that the highest accuracy
of voice pathology detection was by the 28-parameter
feature vector, the PCA method, kPCA for women and
by the 28-parameter feature vector, kPCA and NLPCA.
In fact, the analysis for which voice pathology showed
the highest level of accuracy is very difficult, because the
differences between the mean accuracies were up to 1.5%.
The results of precision for women (HD) for the initial 28
parameters vector, kPCA and NLPCA were between 94
and 100% and for PCA between 87 and 100%. For men,
all of the methods showed HD of between 90 and 100%.
The precision of pathological cases (PD) for women was
kept between 94 and 100% for the 28-parameter vector,
kPCA and NLPCA and for PCA from between 86 and
100%, whilst for men it was between 88 and 100%.
The sensitivity for women ranged from 89 and 100%,
where the lowest value belonged to PCA. The sensitivity
calculated for men was located between 87 and 100% with
the same trend for PCA. The specificity for women was
between 90 and 100% and for men between 90 and 100%.

7. Conclusion

Traditional classification algorithms require the input of
initial data to be formatted in a data matrix, where the
columns represent the parameters describing the signal,
and the rows represent the observations. We can find in the
literature many types of proposed features describing the
human voice, which are analysed further using different
processing techniques that concentrate on covering more
information (Bishop, 2006). Those analysis techniques
provide a lot of advantages in transforming voice data.
Extracting information about the state of a patient’s
health might be challenging while gathering significant
information from many features.

The goal of this paper was to form a
multi-dimensional feature vector with a proper
classification that could discriminate between healthy
and pathological voices. We created a vector that
consisted of 28 features and used it for different machine
learning methods such as principal component analysis,
kernel principal component analysis and non-linear
PCA based on an auto-associative neural network. The
data set consists of 1342 patients of which half were
healthy individuals. The database included patients
suffering from 4 voice pathologies: functional dysphonia,
hyperfunctional dysphonia, laryngitis and vocal fold



Acoustic analysis assessment in speech pathology detection 639

Table 4. Number of principal components covering up to 90% variance for women taken under examination.

number of principal components a h a l a n i h i l i n u h u l u n

functional dysphonia 16 16 16 14 14 14 15 14 15
hyperfunctional dysphonia 16 16 16 15 15 14 15 14 14

laryngitis 16 16 16 15 14 14 15 14 14
vocal cord paralysis 16 16 16 15 14 14 15 14 14

Table 5. Number of principal components covering up to 90% variance for men taken under examination.

number of principal components a h a l a n i h i l i n u h u l u n

functional dysphonia 16 16 16 14 14 14 15 14 15
hyperfunctional dysphonia 16 16 16 15 15 14 15 14 14

laryngitis 16 16 16 15 14 14 15 14 14
vocal cord paralysis 16 16 16 15 14 14 15 14 14

paralysis. The analysis was completed separately for
recordings of 3 vowels: a, i, u spoken at 3 different
pitches: high, low and normal, by both women and men.
The results from different techniques were subjected to
10-fold cross-validation. Results from all the analysis
were put in the confusion matrix, which enabled us to
summarise the detection process.

Principal component analysis was used to extract
relevant information from a huge dataset, by excluding
a correlation between the parameters and as a result
obtain reduced dimensions of data. In the end,
classification based on a reduced number of principal
components showed the very similar level of accuracy
to the classification based on the 28 feature vector. The
experimental results show that the PCA methodology
helped to reduce the data in an efficient manner and we
still had 90% of the variance data. The results did not
lose significant signal information. The proof for this is
that PCA achieved an optimal feature subset with a similar
classification accuracy for most analysed vowels at all the
vocal pitches for both female and male recordings having
a reduced number of principal components in comparison
with the 28 parameters vector.

By adding the “kernel trick” with non-linearity
and proper sigma to PCA, we scaled the non-linear
uncorrelated components to the unit variance. By this
process we obtained a complex non-linear whitening
(sphering transformation), which was a useful step
for further classification. The results of kPCA were
slightly better than of PCA analysis and the classification
completed for a 28-parameter feature vector. The
disadvantage of adding the “kernel trick” is still having an
initial number of parameters (28), which required a much
longer calculation time compared with the PCA method.

In addition, as illustrated through the last experiment,
the hierarchical NLPCA method detected pathology in
voice analysis with a similar accuracy, precision and
sensitivity to kernel PCA, and in a few cases it was even

higher. It enabled us to decompose the data non-linearly
to distinguish application of dimensionality. The idea
behind this approach is that the NLPCA method locates
and eliminates linear and non-linear relationships in the
data and ensures non-linear components have the same
hierarchical order as linear components in the standard
PCA (Wang, 2012).

The contribution presented in this paper shows that
the chosen classifying methodology is relevant to the
pathology detection process. Acoustic analysis using
proposed parameters can be a useful, objective tool for
confirming the pathological changes of the glottis in
the analysed four types of voice pathology: functional
dysphonia, hyperfunctional dysphonia, laryngitis and
vocal fold paralysis.
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