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a BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences
University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal

e-mail: {plmariano,luis.correia}@ciencias.ulisboa.pt

We analyse Give and Take, a multi-stage resource sharing game to be played between two players. The payoff is dependent
on the possession of an indivisible and durable resource, and in each stage players may either do nothing or, depending
on their roles, give the resource or take it. Despite these simple rules, we show that this game has interesting complex
dynamics. Unique to Give and Take is the existence of multiple Pareto optimal profiles that can also be Nash equilibria,
and a built-in punishment action. This game allows us to study cooperation in sharing an indivisible and durable resource.
Since there are multiple strategies to cooperate, Give and Take provides a base to investigate coordination under implicit
or explicit agreements. We discuss its position in face of other games and real world situations that are better modelled by
it. The paper presents an in-depth analysis of the game for the range of admissible parameter values. We show that, when
taking is costly for both players, cooperation emerges as players prefer to give the resource.
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1. Introduction

Agents do not live in isolation. They typically have
to interact with others in order to solve whatever tasks
they are entrusted with. This means that agents are
prone to repeatedly encounter each other, which provides
opportunities for free-riding or exploitive behaviours.
This problem can be modelled with social games, in
particular iterated games or multi-stage games, which
are more adequate for this purpose. Although there is
an amount of work using iterated versions of Prisoner’s
Dilemma (PD) (Brembs, 1996; Nowak et al., 1994),
Ultimatum (Sigmund et al., 2001), Public Good Pro-
vision (PGP) (Blackwell and McKee, 2003; van Dijk
et al., 2002) and various 2 × 2 games (Lau and Mui,
2012), these models do not present multiple strategies for
cooperation. On the contrary, the multi-stage game Cen-
tipede (Rosenthal, 1981; Binmore, 1996) presents several
cooperative strategies, but has a single optimal one.

Most of those games, having a single cooperating
strategy, only allow the study of simple forms of
cooperation; namely, players only need to take a binary
decision on whether to cooperate or not. However,
there are more complex forms of cooperation, such
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as choice of agreements (Sutter and Strassmair, 2009),
and non-cooperating behaviours such as betrayal and
exploitation. In such cases there is a need for games that
can model multiple cooperating strategies with equivalent
gains. This feature provides players with a multitude of
strategy choices. Such a property is essential to support
the study and development of non-trivial negotiation
strategies. In games with a single cooperating strategy this
is not possible.

1.1. Contributions. The drive to develop the Give
and Take (Mariano and Correia, 2002a) game was the
fact that most common games used to analyse cooperation
either do not have multiple optimal cooperating strategies
or depend on external control. We wanted an iterated
game with a diversity of Nash equilibria (NEs) and Pareto
optimal (PO), such that players have different options for
cooperation, under their own control. Give and Take
is a game where players have to share an indivisible
resource, by alternating its possession. Therefore, the
resource must be durable in the sense that it does not suffer
significant depreciation.1 Such a game allows us to study
the establishment of pre-game agreements and subsequent

1If it were not durable, there would be no opportunity for a dilemma
because it would be consumed by the first player having it.
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possibilities of breaking it, as well as norm enforcement
in a self-organised agent community. It provides an
immediate parallel to a variety of social problems. As
examples, we have book borrowing from a library, time
sharing in a holiday facility, and expensive equipment
sharing such as a community farm tractor. These problems
can be solved by human populations in a self-organised
way. By this, we mean that individuals sharing the
resource establish their own rules to share and monitor the
resource without any external intervention.

While previous work on the Give and Take
game (Mariano and Correia, 2002a; 2002b; 2003) has
focused on an experimental study of parameter values
that favour cooperation, no theoretical analysis has yet
been put forward to study the game’s properties in general
and how to play it in an optimal way. In this paper, we
present an in-depth investigation of the possible strategy
profiles for players of Give and Take, namely, NE and
PO profiles under different game parameter values. The
fact that, in general, there are multiple NE and PO
profiles means that the best rational behaviour of a player,
besides being conditioned by game parameters, is also
very dependent on the behaviour of the partner. Therefore,
we can foresee different ways to choose a cooperating
strategy, for instance, by pre-game negotiation (Sutter
and Strassmair, 2009; Anderlini, 1999) or by iterative
adaptation to the opponent’s strategy.

1.2. Organisation. The rest of this paper is organised
as follows. In Section 2 we overview some abstract
games used to analyse cooperative dilemmas, and we
situate these games in relation to Give and Take.
Section 3 formally describes the Give and Take game
and its parameters, and presents real applications. The
two subsequent sections constitute the theoretical and
numerical analysis and are the major contribution of this
paper. First, in Section 4 we consider the complexity
of computing a NE of a Give and Take game in order
to motivate our choice of strategy space, which allows
us to compute the equilibria in games with an undefined
number of stages. Second, in Section 5, we present
numerical simulations of the equilibria with a strategy
space different from the one used in the previous section.
Next, in Section 6, we discuss the implications of the
results previously obtained and we suggest extensions to
the game. We wrap up in Section 7 with final remarks.

2. Related work

Many games have been used to study cooperation. Here
we briefly analyse the games that are most related to Give
and Take and identify the novelty that this game affords.

2.1. Resource. When we consider scenarios with an
indivisible resource that must be shared, used by a single

agent at a time, no other current games provide a suitable
model. In general, the resource is always available for
everybody, which means that in every iteration the same
set of actions can be performed by any player. This is
the case in PD, PGP, Ultimatum, Dictator2, Centipede
or Give-Or-Take-Some (GOTS) (McCarter et al., 2011),
among others. In all these games, the resource is also
divisible. Consequently, at any time, all the players can
gain some utility from the resource.

In addition, due to these features, the resource in
common games to study cooperation usually has some
dynamics, externally controlled as by Nature (Akiyama
and Kaneko, 2000), or by the players’ actions. In PGP, the
resource must be provided by the players and profitability
depends on the number of providers. In Ultimatum and
Dictator, the good, externally supplied, is divisible and
one of the players decides how to divide it. Centipede
needs an externality that makes the resource increase its
value in each stage. Give and Take models a single
indivisible and durable resource. In this game, payoffs
are the result of using the resource.

2.2. Cooperative dilemmas. Dilemmas are present
in many day-to-day situations (Fehr and Gintis, 2007;
McCarter et al., 2011): Should people use public transport
to favour traffic flow, or use private transportation for
comfort? Should farmers over-exploit fields without any
period of recovery for immediate profit, or should they
give land a resting period for long term benefit? Should
people pay taxes to increase government funding of public
projects, or should they avoid taxes to preserve income?
These are some situations where people have the option
of cooperating for the common good of society, but a
selfish action often gives a larger immediate payoff than
a cooperating one.

There are quite a few games that model cooperative
dilemmas. Three of the most commonly used are PD, its
iterated version called Iterated Prisoner’s Dilemma (IPD),
and PGP, which can be considered an extension of PD to n
players. In the one-shot variant of these games, the single
PO profile is dominated by other strategies, rendering a
lower outcome to the game’s players. Typically, one of
these strategies is the single NE. These games have been
used to model scenarios where a single resource must be
cared for by everybody. All players have access to it and
can reap its benefit. GOTS is a variant of PGP in which
players can voluntarily give or take resource units from
a common resource pool (McCarter et al., 2011). The
strategy space of GOTS is more complex than the one of
PGP, where players either provide the good or not. Other
than that, in GOTS, there is no state nor do players have
roles.

2We refer to Dictator because, in spite of its being a one player game,
when played iteratively, players usually exchange roles.
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The aforementioned games are symmetric. But
asymmetric ones are also used to study cooperative
dilemmas. Games such as Dictator or Ultimatum have
a single Nash equilibrium that is not selected as often
as the theory predicts in experiments involving human
subjects (Camerer, 2003). In these games, one player has
a resource and must decide how to divide it with the other
player. In Ultimatum, the other player decides to accept
the division or not. Again, in terms of fairness, these
games have a single PO profile: the resource is equally
split among the two players. But other profiles are also
PO in this sense. There are multi-stage variants of Ulti-
matum where players take turns proposing divisions of the
resource (Nicolò and Yu, 2008), with players exchanging
roles as determined by a third party controlling the
experiment (Cason and Mui, 1998).

Centipede is also an asymmetric game with a single
NE and a single PO, which do not coincide. It has been
used to study backward induction, also with disparate
results when comparing human response to theoretical
rational behaviour (McKelvey and Palfrey, 1992). This
game has the interesting detail of the players controlling
the number of stages of the game. In each stage, a player
can choose to end the game or to pass.

The existence of cooperative dilemmas and
experimental results that differ from predictions has
given rise to research in punishment (Ottone, 2008) and
communication (Sutter and Strassmair, 2009) to promote
cooperation. Some of the games previously mentioned
have been extended with an additional post-game stage
where players can punish their partners or with an
additional pre-game stage where they communicate their
strategies. Note that such extensions do not only impose
an additional stage but usually generate a different NE
from the original game. When the NE does not change,
the addition of a punishment stage raises the question of
higher order punishments, because punishment is not the
rational choice. For instance, this is the case in PGP with
punishment studied by Fehr and Gächter (2002) as well
as Boyd et al. (2003).

In our game, punishment is built-in as it does not
require a specific stage for it. One of the actions (take
action) can be considered punishment. However, it may
not be dominated, which contrasts with the need of
second-order punishment in PGP. As we show in this
article, a player may be able to recover the cost of the
punishing action in the following stages.

2.3. Coordination games. Coordination games pose
a different problem compared to cooperative dilemmas.
Players have to coordinate their actions if they want to
maximise their gains (Helbing et al., 2005). As examples
of this type of games, we have Stag Hunt and Battle of
Sexes. In Stag Hunt one of the pure NE is risk dominant
but yields a lower payoff than the second pure NE. This

constitutes a dilemma because a risk-averse player prefers
the first NE. In Battle of Sexes, the two pure NE are
symmetric. This is a dilemma because each player prefers
the pure NE more beneficial to itself.

A coordination dilemma may be solved if players can
establish an agreement or make their actions depend on
some external device such as coin flipping. For instance,
in Battle of Sexes, players may agree on going to the
opera if the outcome is heads. Players can also resort to
pre-play communication (Anderlini, 1999) as a means to
solve coordination problems.

In our game, there are several equally good NE
(for certain parameter values). This problem can be
tackled with pre-play communication, but it can also be
solved during the game. The player without the resource
can observe when the other gives it away and adjust
its strategy accordingly. Likewise, the player with the
resource may adjust its strategy as a result of observing
the other player taking it away. Give and Take contrasts
with the reviewed coordination games since coordination
can be obtained while playing the game.

2.4. Uniqueness of Give and Take. Besides the
characteristics mentioned above, Give and Take also has
unique properties of optimal equilibria and asymmetry.
We shall now briefly analyse them.

PGP and PD are games with a single PO profile.
When they are played iteratively, the number of NE and
PO profiles may increase (see Hofbauer and Sigmund,
1998; Gintis, 2000). Centipede, Ultimatum and Dicta-
tor also have several PO profiles. However, in such
games, these profiles are usually dominated by some
NE. A similar situation happens when a taking-it-in-turns
pattern is considered (Ward, 1998). In this case, there are
typically infinite PO equilibria; however, none of them is
a NE. In Give and Take, there are multiple POs that are
also NEs. Therefore, in the absence of a single dominating
strategy, players can choose different NEs through explicit
or implicit agreements.

Give and Take is a stochastic game (SG) because
resource possession influences the payoff matrices as well
as players’ actions. The player with the resource has a
set of actions different from the set of the player without
the resource. The value for a given action is not the
same in the two sets. Moreover, in each stage, players’
actions control the role they have in the subsequent stage
of the game. This is uncommon since in other known
asymmetric games, such as iterated Centipede or Ultima-
tum, the players change roles by external control.

Several characteristics of real problems are not
captured by the games we have reviewed, which are
among the most widely used in social and economic
sciences. The metaphor of a library book, or a community
tractor, is better modelled with the Give and Take game
rather than with PD, PGP, Dictator, Ultimatum or their
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iterated versions, or Centipede. To the best of our
knowledge, Give and Take is the most adequate game
to model self-organised sharing of a durable resource
through time. The existence of multiple coincident NE
and PO profiles provides an increased realism to model
social dilemmas, where players usually have a varied set
of cooperating options available.

3. Description of Give and Take

We now describe Give and Take and the dilemma that
players are faced with.

3.1. Overview. This game has an unbalanced nature
since players have different roles depending on who holds
the resource at the beginning of every stage. Initially, a
random player is assigned the possession of the resource,
which is indivisible and durable. The player with the
resource has a benefit from using it. Actions available
to a player depend on its role. There are two actions for
each player, one of them being identical for both. The
player with the resource can give it, give (G), to its partner,
who always accepts it; the player without the resource
can forcefully take it, take (T); and both players can do
nothing—we may distinguish this case as noner (+) and
none¬r (-) for the player with the resource and the player
without the resource, respectively. If a player gives the
resource away, it receives a bonus. A player that takes the
resource pays a penalty as does its partner, although these
penalties may be different. This is a multi-stage game,
where the number of stages is externally determined, if
limited. Each discrete time instant corresponds to a stage.
Players’ roles remain the same, provided both players do
nothing. Players exchange roles whenever the player with
the resource gives it or the player without the resource
takes it.

3.2. Formalisation. Give and Take can be represented
as a SG (Shapley, 1953). The state of the SG represents
who has the resource. This means the set of games
contains two elements.3 The set of actions for the player
with the resource is Sr = {noner, give}, while the set
of actions for the player without the resource is S¬r =
{none¬r, take}. The state transition probability function
is either zero if both players play the none actions, or one
otherwise.

Give and Take has three parameters which are related
to the game actions: bg is the bonus received by the
performer of the give action, cpt is the cost paid by the
take action performer, and cst is the cost paid by the
take action subject. The parameter values are analysed
in Sections 3.4 and 4. The resource possession, pr, is

3We use the definition of the SG by Shoham and Leyton-Brown
(2009).

(1, 0) (bg, 1)(−cst, 1− cpt) (bg − cst, 1− cpt)

T-- T

G+

Fig. 1. Extensive form description of a stage of Give and Take.
The first information set (counting from the top) repre-
sents the player with the resource, r, while the second
information set the player without the resource, ¬r. The
first value of the payoffs pair is for the player with the
resource. See the text for an explanation of the payoff
values.

one unit and this possession is accounted for after both
players’ actions. This means that, if both players do
nothing, the player with the resource gains one unit and
the other gains nothing. Figure 1 shows the extensive form
of one game stage. From this figure we can extract the
stage payoff matrices.

Since the game stage is asymmetric, there are two
stage payoff matrices. Each payoff matrix is characterised
by a subscript representing who has the resource, r,
and who does not have it, ¬r. In both matrices, each
row corresponds to a different action of the player with
the resource and each column corresponds to a different
action of the player without the resource. Namely, the top
row and left column correspond to action none of the two
players, the bottom row corresponds to action give (player
with the resource), and the right column corresponds to
action take (player without the resource). The payoff
matrix of the player with the resource is

Ar =

[
1 −cst
bg bg − cst

]
, (1)

and the payoff matrix of the player without the resource is

A¬r =

[
0 1− cpt
1 1− cpt

]
. (2)

The asymmetry of this game is clear as the matrices are
not equivalent, i.e., the matrix in Eqn. (1) is not the
transpose of the matrix in Eqn. (2).

Figure 2 depicts the stochastic game behind Give
and Take with an undefined number of stages. We
consider that Nature defines the initial state by assigning
the resource to one of the players.

3.3. Payoff computation. Consider the following
action sequence where time goes from left to right:

+G--+G--+G--++--++--++T++T
--+G--+G--+G-T+G-T+G-T+-T+

.

Clearly, the top player started with the resource. An action
sequence can be divided into periods where each period is
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- T
+ 1 0 −cst 1− cpt
G bg 1 bg − cst 1− cpt

+ G
- 0 1 1 bg
T 1− cpt −cst 1− cpt bg − cst

G -
+ T
G T

- G
T +
T G

Nature

50%

50%

- +

+ -

Fig. 2. Graphical representation of the stochastic game and Na-
ture’s initial move in Give and Take. Nature initially
gives the resource either to the row player (top table) or
to the column player (bottom table). Each table repre-
sents a game of the stochastic game. The arrows that de-
part from these tables represent the transition probability
function. The transition is deterministic and an arrow is
labelled with an action profile of the departing game.

characterised by the actions performed by each player. In
particular, the example can be split in three periods:

+G--+G--+G-- ++--++-- ++T++T
--+G--+G--+G -T+G-T+G -T+-T+

.

All the three periods have different action sequence
patterns. In the first period the players only perform the
give action. Here the action sequence pattern that repeats
is one player performing the give action in some stage,
and afterwards the other player also performs the give
action. In the second period, the top player only plays
the none actions while the bottom player takes and gives
the resource. In the last period, players only play the take
action.

There are six possible action sequence patterns,
which are shown in Table 1. Each pattern was assigned
a class; for instance, in Class A both players give the
resource. Some action sequences may belong to the same
class but differ on the number of stages that players take
to perform an action. Each class has two specific payoff
expressions (one for each player) that are a function of
the number of stages, tr (a player holds the resource
before giving it or having it taken), and the number of
stages, t¬r (it waits without the resource before taking it
or being given it). Note that these two parameters are not
a characterisation of a player’s strategy. They are rather a
characterisation of an action sequence pattern.

We can augment the example that we presented in the
beginning of this section with the action sequence pattern
classes:

Table 1. Classification of the six action sequence patterns. Time
goes from left to right. The third column contains the
value of variables F t

k and F b
k used in the top and bot-

tom players’ payoff, respectively (see Eqn. (3)).

Class Action sequence pattern F t
k F b

k

A +· · ·+G-· · ·-+
bg-· · ·-++· · ·+G

B +· · ·+G-· · ·-T bg − cpt
-· · ·-++· · ·+G bg − cst

C +· · ·+G-· · ·-T bg − cpt
-· · ·-++· · ·+- −cst

D +· · ·+G-· · ·-T
bg − cpt − cst-· · ·-T+· · ·+G

E +· · ·+G-· · ·-T bg − cpt − cst
-· · ·-T+· · ·+- −cpt − cst

F +· · ·+--· · ·-T −cpt − cst-· · ·-T+· · ·+-

A A A C C F F
+G-- +G-- +G-- ++-- ++-- ++T ++T
--+G --+G --+G -T+G -T+G -T+ -T+

.

The periods shown in the last sequence were further
divided at the stage where the resource went back to the
top player. With this division, class A action sequence
pattern repeats three times. During each sub-period,
the top player kept the resource during tr = 2 stages
and spent t¬r = 2 stages without the resource. The
action sequence pattern in the fourth and fifth sub-periods
belongs to class C. In this class, only the bottom player
performed the give and take actions. In the last two
sub-periods, which belong to class F , the top player had
the resource during tr = 2 stages and spent t¬r = 1 stage
without the resource.

From the matrices (1) and (2) we deduce players’
payoff. Analysing any of the six action sequence patterns
presented in Table 1, their duration is tr + t¬r. During
this time the top player holds the resource for tr stages,
which earns it tr payoff units. However, we also need to
take into account the actions performed by both players.
Let F t

k be an expression depending on bg, cpt and cst. The
average payoff obtained per game state by the top player
in class k ∈ {A, . . . ,F} is

ut
k =

1

tr + t¬r
(tr + F t

k), (3)

where the value of F t
k is given in the third column of

Table 1. A similar expression gives the payoff for the
bottom player. We need to swap the tr and t¬r parameters
and use the F b

k parameter. Whenever both players play the
same set of actions, which occurs in classes A, D and F ,
only one value of Fk is shown. For any finite game, the
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average payoff is a weighted average of uk,∑
k wkuk∑
k wk

, (4)

where wk, the weight of uk, is the number of times class
k occurred during the game.

3.4. Dilemma setup. Considering that parameters bg ,
cpt and cst are non-negative, we now focus our attention
on their upper bounds and on the limit case of zero value.

Parameter bg . If bg is greater than one, the player with
the resource is better off if it gives it to its partner. Its
payoff matrix is reduced to a 1 × 2 vector because action
noner is dominated by action give. Since the resource
is going to exchange hands, should the partner regain it?
As cpt is a non-negative constant, it should do nothing,
waiting to be given the resource. Summarising, the payoff
matrices (1) and (2) are reduced to row give and column
none¬r. After eliminating dominated strategies, the Nash
equilibrium is σ = (1, 0). This means that, independently
of the (even) number of stages that are going to be played,
the only optimum strategy profile in this case is, in every
stage: the player with the resource gives it and the other
does nothing (action none¬r). For any number of stages,
the approximated average payoff per stage is

1 + bg
2

if bg ≥ 1. (5)

In this case, there is no dilemma, as the rational
choice is also PO. Players are better off giving away the
resource in every stage. This is no surprise since bg ≥ 1
means that the gain of giving the resource is larger than
of keeping it. Therefore, from now on, we shall focus on
bg < 1. With 0 ≤ bg < 1, we have a dilemma in this
game.

The limit case of bg = 0 does not change
dominance in the single stage payoff matrices. However,
a different dilemma arises when there are multiple stages.
The resource can be exchanged at different time rates,
provided they are identical for both players, without
changing the players’ payoffs. In this case, there is a
coordination dilemma.

Parameter cpt. If cpt is zero, taking the resource is free
and action take weakly dominates action none¬r. As for
the player with the resource, knowing this, it should give
the resource. This means that, independently of the (even)
number of stages that are going to be played, the only
optimum strategy profile in this case is, in every stage:
the player with the resource gives it and the other takes
it. For any number of stages, the approximated average
payoff per stage is

1 + bg − cst
2

if cpt = 0. (6)

This parameter does not have an upper bound. It
can grow indefinitely without introducing dominating
strategies in the single stage payoff matrices.

Parameter cst. This parameter by itself does not have
an influence on dominance and equilibria in the single
game stage.

Parameter domain. Combining all these results, the
complete parameter domain is

(bg, cpt, cst) ∈ [0, 1[ × ]0,∞[ × [0,∞[. (7)

3.5. Applications of Give and Take. We now dwell
on the interpretation of the Give and Take game. The
applications better modelled by this game are cases of
self-organised sharing of durable goods. In those cases,
if someone currently holding the resource does not give it
back to its partner after some reasonable time, it may be
punished by the partner. However, enforcing a penalty is
usually costly. In real social situations, such a process
takes time and effort for both the performer and the
subject involved, whether the penalty is directly inflicted
by a partner or by a public entity. This is captured by
parameters cpt and cst.

The bonus, even if not material, can be interpreted
at least as a reputation side effect, with some equivalent
value, typically less than the benefit of using the resource.
This means that, in real cases modelled, when there is no
material bonus for giving the resource, we assume that
there is a positive social impact for the person who gives
it. With this in mind, we shall now revisit the examples
given in Section 1.1 in greater detail.

Suppose that two farmers share a tractor. Each may
use it for some limited time, taking profit pr from it in
plowing the land. After that, it may voluntarily yield
the tractor, which is positively evaluated by its partner in
a subjective way, bg. Otherwise, it may risk a forceful
action from the partner. In this process, the farmer that
recovers the resource and the one that did not relinquish it
may suffer some kind of loss, cpt and cst respectively, not
necessarily identical for both.

In the case of borrowing a book from a library, pr can
be the subjective value of the pleasure or utility a reader
gets from reading a book. If individual B returns a book
with delay, the time reader A waits for the book is cpt and
a period of inhibition imposed on B is cst. In this case,
bg may be a contribution for the reliance of a reader. A
low or null reliance may aggravate the inhibition period,
while a positive reliance does not produce such an effect.
Therefore, cst may depend on the reader’s reliance.

A holiday house tends to be disputed in high season.
Its usage for a period may be evaluated as benefit pr and to
relinquish it on time contributes bg to a subjective positive
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reputation. If one must evict an abuser, it incurs a cost cpt,
economically and in discomfort, while the abuser suffers
a penalty cst, comprising a possible inhibition of use.

A service contract may also be easily modelled by
Give–Take. If both sides are happy with the result, it is
equivalent to assume that both alternately perform the give
action. Periodically one provides a service and the other
pays for it, involving a cost/benefit of pr. Here, bg can
also be considered a positive contribution to a subjective
reputation. If one of the partners, say A, is not satisfied
with the contract, it may claim nonfulfillment. A pays
some litigation cost, cpt, and may recover the contracted
deal. The other partner, B, gets a penalty, cst, for not
providing the service.

4. Theoretical analysis of equilibria

The problem of computing a NE of a two-player
general-sum game is NP-complete (Chen and Deng,
2006). In particular, this problem belongs to the class
PPAD, or the polynomial parity argument, directed ver-
sion (Papadimitriou, 1994). This means the time to
compute this problem is exponential in the size of the
game; in particular, in the size of the strategy space.

Backward induction in finite games is used to reduce
the strategy space, and thus the complexity of computing
a NE. If we apply backward induction, the reduction in
strategy space is meager. In the last �cpt� stages both
players do nothing: the player without the resource is not
able to recover the cost of the take action, and the player
with the resource has no incentive to give it. In the real
world scenarios given in Section 3.5, the number of stages
l may be much greater than cpt. In the end, backward
induction is not very helpful.

The computation of a NE of a game in extensive
form is exponentially faster compared to a game in normal
form (Koller et al., 1996). In particular, in Give and Take
it is 2l versus 22

l−1. Even if we used the extensive form
of a finite Give and Take game (built using the tree in
Fig. 1), the number of information sets is exponential in l.
Thus, there is an exponential number of constraints in the
corresponding linear complementary program (Shoham
and Leyton-Brown, 2009).

To the best of our knowledge, there is no efficient
method to compute a NE of Give and Take with a finite or
infinite number of stages. Regarding the finite game, the
procedure belongs to the class PPAD. Backward induction
does not considerably reduce the strategy space. As for the
infinite game, it is not possible to model Give and Take
as a repeated game (for which it is possible to compute
a NE).

In this section, we consider a specific strategy space
that allows us to draw some properties regarding how
players using strategies from this space would play Give
and Take. The analysis focuses on games with an infinite

number of stages.

4.1. Strategy space. Strategies prescribe the action a
player should play for every history. Here we restrict the
game analysis to pure strategies with only two parameters:
tg , the number of stages a player holds the resource before
giving it, and tt, the number of stages a player waits
without the resource before taking it. This defines an
N × N strategy space. This space, with constant tg and
tt, is the simplest pure strategy space of Give and Take.

While our choice may look too simple, we must
realise that, with contingent strategies, the strategy space
grows exponentially with history size. Therefore, a choice
must be made on how much history a strategy can handle.
Hofbauer and Sigmund (1998) used a strategy, when
analysing the IPD game, that only takes into account what
happened in the last iteration. With our choice of strategy
space, a Give and Take player, besides representing tg
and tt to specify the strategy, must record a time value.
The latter is countable (discrete time), representing how
long ago the resource last changed hands. Notice that the
strategies in this strategy space are minimally contingent
because players only need to record the time of the last
resource movement. Pure non-contingent strategies are
the trivial cases with (tg, tt) ∈ {1,∞}× {1,∞}. In such
cases, a player never gives the resource or gives it right
away when it receives it, and likewise for the take action.
There is no need for history representation.

The proposed strategy space, although simple, allows
us to obtain rich interaction dynamics (see the following
sections). In this first analysis of Give and Take, we need
to establish the results of the simplest strategies in the
game. The insight gained will also prove useful for future
developments of dynamical strategy spaces.

4.2. Classes of strategy pairs. We are going to
characterise strategy profiles, which are pairs of strategies
(si, sj), with si = (tig, t

i
t) and sj = (tjg, t

j
t ), for players i

and j. The characterisation is based on relations tig � tjt
and tit � tjg . Each one of the nine combinations produces
one of the six action sequence patterns presented earlier in
Section 3.3. Thus, the characteristic of a strategy profile
is the class of the action sequence pattern. Table 2 shows
these characteristics but considers players unidentifiable
(meaning it is indifferent which player performs each
action sequence). For example, we say that the pair of
strategies si = (1, 3) and sj = (2, 3) belongs to class A.
Each pattern is repeated with a period equal to its length
(shown in third column of Table 2).

The payoffs of the two players, top and bottom in
each class in Table 1, may be different. In classes B, C
and E , this is clear since the action sequences of the two
players are different. In classes A, D and F , the payoffs
can be different when tig and tjg differ.
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Table 2. Characterisation of profiles based on strategies (tig, t
i
t)

and (tjg, t
j
t ). Each profile has an action sequence pat-

tern periodically repeated.

Combination Class Period length

tig < tjt ∧ tit > tjg A
tig + tjgtig < tjt ∧ tit = tjg B

tig < tjt ∧ tit < tjg C
tig + tittig = tjt ∧ tit = tjg D

tig = tjt ∧ tit < tjg E
tig > tjt ∧ tit < tjg F tjt + tit

4.3. Pure strategies. First, we are going to look for
a pure weak Nash equilibrium (pwNE). We recall the
definition of the pwNE: a strategy profile (si

�, sj
�) is a

pwNE if any si and sj are deterministic strategies and
verify

ui(si, sj
�) ≤ ui(si

�, sj
�), ∀si, (8)

uj(si
�, sj) ≤ uj(si

�, sj
�), ∀sj . (9)

To help analyse this problem, we introduce the
graphical representation of a strategy payoff as pictured in
Fig. 3. Referring to strategy si, if we represent parameter
tig varying on the horizontal axis and parameter tit varying
on the vertical axis, we can map, on the XY plane, the
payoff ui(si, sj) of strategy si against a fixed strategy sj .
We divide the quadrant in zones according to the class the
pair (si, sj) belongs to, as defined in Table 2. In each
zone, we also represent the corresponding expression of
ui(si, sj). Since classes B, C and E are the ones where
relations are not symmetrical, we use the same letter but
with a prime (e.g., B′) to distinguish whether the player
with strategy si is the top or bottom player in Table 1 (a
prime denotes the bottom player).

The rationale for using the XY plane to look for pure
Nash equilibria is as follows:

1. If we plot strategy si payoff against sj in the XY
plane, we only have to look for strategy si

� with the
highest payoff. That is to say, si� is the best response
to sj .

2. Next, we select si� as the new fixed strategy, and we
look in the XY plane for the best response, sj�. If
this strategy is equal to the first fixed strategy, sj ,
then (si

�, sj
�) is a pure Nash equilibrium.

A Nash equilibrium found by this method may be
weak if we find multiple best responses in any of the
previous steps.

4.4. Finding the best responses. To find si
�, the best

response to sj , we can eliminate zones C′, B, D, E ′ and

F in Fig. 3 since their payoff is lower than or equal to
a payoff of a neighbouring zone (represented in Fig. 3
by signs ≥ and ∨). We can further restrict the search
by selecting the best candidates in the four remaining
zones, A, B′, C and E . The best response is one of these
candidates.

B′ All strategies in this zone, tit > tjg , have the same
payoff. So, every one of them fares equally well. The
complete characterisation of the best candidates in B′

is4

si = (tjt , t
i
t) with tit > tjg. (10)

A The best candidates in this zone are strategies with tig
as high as possible (up to tjt − 1) since the payoff is
strictly increasing with this parameter. By definition,
zone A has tig < tjt (see the horizontal axis).

Therefore the best candidates must have tig = tjt − 1.
This zone is also characterised by tit > tjg (see the
vertical axis), but tit does not influence the payoffs.
Therefore, the best candidate strategies in zoneA are

si = (tjt − 1, tit) with tit > tjg. (11)

C In this zone the payoff is also strictly increasing in
parameter tig (up to tjt − 1). To maximise the payoff,
we must increase tig to its maximum value in C
(tig = tjt − 1). As for parameter tit, the payoff
may increase, level or decrease, depending on the
sign of the numerator, tig + bg − cpt, being negative,
zero or positive, respectively. If this value is zero
or negative, then the payoff is zero or negative and
we can discard this zone, as zone A is better, having
strictly positive payoffs. With a positive numerator,
we must decrease tit to its minimum (tit = 1) in order
to maximise the payoff. Thus, the best candidate in
zone C is

si = (tjt−1, 1) when tjt−1+bg−cpt > 0, (12)

otherwise the best response to sj is in zone A.

E In this zone the payoff only depends on parameter tit.
Again, it may increase, level or decrease depending
on the sign of the numerator, tjt+bg−cpt−cst, being
negative, zero or positive, respectively. We can also
discard this zone if the numerator is zero or negative.
In that case, at least zone A has a better candidate.
With a positive numerator, since tjt is constant the
best candidate in zone E is

si = (tjt , 1) when tjt + bg − cpt − cst > 0. (13)

The identified candidates of the four zones define the
set of candidate strategies si from which a best a response
to sj can be determined. In the next section we show the
resulting Nash equilibrium.

4Recall that si is defined by the pair (tig , t
i
t).
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Fig. 3. Graph shows the payoff of player i, ui(si, sj), as a function of strategy si parameters, tig and tit. The reference values in the
graph axis to which these parameters are compared are the parameter values of the opponent player j, tjg and tjt . The quadrant
is divided into 9 zones according to the class the strategy profile (si, sj) belongs to (A to F). The labels in the axis represent
relations tig � tjt and tit � tjg .

4.5. Some properties of Give and Take. Taking into
account the analysis in the previous section, there are
propositions that can be derived regarding the nature and
existence of NEs.

Proposition 1. There is an unbounded number of class
A pwNEs of the form ((1, x), (x − 1, 2)) with x > 1, if
cst ≥ 1 ∧ cpt ≥ 1 + bg.

All these profiles are also POs. Although their
number is unbounded, they require an unlimitedly patient
player as it must wait x − 1 stages for the resource. For
high values of x, this can be unrealistic. The proof also
shows that there are situations where cst < 1 and this
strategy profile is still a NE.

This result shows that these equilibria exist if

1. the cost of being punished by action take is high
enough, i.e., cst large enough, meaning greater or
equal to the resource value;

2. players are discouraged to take the resource by
having a penalty high enough for performing action
take, i.e., cpt large enough, meaning greater or equal
to the resource value plus bonus.

With this profile, to give the resource is a rational
choice. Players receive different payoffs except for x =
2. In this case, we have strategy profile ((1, 2), (1, 2)),
which is the single symmetrical profile that verifies this
proposition.

Proposition 2. The number of class A strategy profiles
of the form ((x, x+1), (x, x+1)) that are pwNEs is finite
for cpt ≥ 1 ∧ cst ≥ 1/2.

These are the only symmetrical strategy profiles
forming a pwNE. This proposition shows that there is a
finite number of them. Notice that the single symmetric
profile identified in Proposition 1 is a particular case of
these strategy profiles. Moreover, for bg > 0, it is the
single PO. If bg = 0, all of these profiles are POs.
The parameters of action take are the ones that play a
major role in defining the number of strategy profiles: the
higher the values of cpt and cst, the higher the number of
symmetrical strategy profiles that exist.

The existence of these profiles raises a problem of
coordination similar to the one found in coordination
games. These profiles and the ones identified in
Proposition 1 have different payoffs, as is also the case
in Stag Hunt. As we have said, players facing this
coordination dilemma may solve it either before playing
or by observing the behaviour of the partner.

Regarding real-life applications, if the penalty for not
delivering the book, for not sharing the tractor, for not
returning the apartment or for not fulfilling the contract
is high enough, then players may be compelled to behave
properly. This is similar to the fear of retaliation found in
IPD (Axelrod, 1984).

Proposition 3. If bg = 0 ∧ x > cpt ∧ cpt + cst ≥ 1,
there is a k ∈ N such that there is an unbounded number
of class C strategy profiles of the form ((x, 1), (y, x + 1))
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that are pwNEs, with x > k ∧ y ≥ x ∧ y > 1.

These pwNEs occur when the bonus to give the
resource is zero. While players may choose a symmetrical
cooperative strategy profile, this proposition shows they
may turn to asymmetric profiles. In this case, one of the
players does nothing, only keeps the resource one stage
per period and suffers the cost of being the subject of
action take. The other player performs both the give and
take actions and thus controls when its partner has the
resource. It does not matter if we increase cpt, because
for all x > k the conditions of this proposition are true,
and thus there is an unbounded number of strategy profiles
that are pwNEs.

Profiles of this form are not symmetric, in the sense
that the two players have different payoffs. Only through
simultaneous strategy changes can both players leave
these equilibria and achieve payoff equity.

The existence of these pwNEs contrasts with the
games we reviewed earlier. With this profile, the player
playing strategy (x, 1) controls when the partner has the
resource. Even then, the player only relinquishes it for
just one stage during the duration of the action period. The
partner has no incentive to deviate from its strategy, which
amounts to doing nothing at any stage. It has no incentive
to give the resource because the bonus is zero, and it has
no incentive to take the resource because it gets a lower
payoff due to cpt. This behaviour is not found in any of
the games we reviewed earlier.

Proposition 4. Classes of strategy pairs (or profiles) can
be ordered using as sorting criteria Pareto dominance. In
the general case, we have the following sequence, where
the arrow means that the destination profile Pareto domi-
nates the origin profile:

A ←− B ←− C
D ←− E ←− F . (14)

In other words, this proposition states that, for
example, for every strategy profile belonging to class
B, there is a strategy profile from class A that Pareto
dominates. From the previous propositions, it is clear that
a pwNE strategy profile stated in Proposition 3 (class C)
is Pareto dominated by some strategy profile from class
A. However, both players must change their strategies,
to go from class C to class A. To achieve this change
simultaneously, players need to establish an agreement.
Notice that a strategy profile that is Pareto dominant is not
necessarily a Nash equilibrium. Moreover, if players are
not cooperative, they may not settle in a Pareto dominant
profile. Instead, such players try to exploit their partners.

5. Numerical analysis

In this section we show the results of numerical analysis
of Give and Take. We used an evolutionary approach,

that is to say, a population composed of some strategies
was subject to an evolutionary algorithm and we identified
the strategies that were more successful. The properties
presented in the previous section guide us in choosing the
parameters of Give and Take.

5.1. Strategy space. Besides the strategy space
introduced in Section 4.1, we defined a strategy with a
history of size 1. By observing an action sequence (see,
for instance, Table 1), one realises that there are eight
possible action combinations. Therefore, a strategy has
eight parameters that indicate whether a player should
either give the resource or take it, depending on the
actions played in the previous stage. The strategy has two
additional parameters that indicate what a player should
do in the first stage, depending on whether it has the
resource or not. Let

s = (aGT, aG-, a+T, a+-, aTG, a-G, aT+, a-+, aG, aT) (15)

represent a strategy where the subscripts in the first eight
parameters represent the action played in the previous
stage, and the subscripts in the last two parameters
represent the action to be performed in the first stage.

This strategy has ten binary parameters and can thus
be represented by a natural number from the interval
[0, 1023]. If we assume that doing nothing is encoded by
zero and giving or taking (depending on the parameter) is
encoded by one, the following equation gives the code of
a strategy s:

code(s) = aGT + 2aG- + 22a+T + 23a+-

+ 24aTG + 25a-G + 26aT+ + 27a-+

+ 28aG + 29aT.

. (16)

5.2. Nice strategies. A general analysis shows that,
if a strategy is a best response to others or is able to
survive some evolutionary dynamics, it must play nice
with itself. Out of 1024 possible strategies, only 194
give the resource. Moreover, it has to play nice with
others; namely, the resulting action sequence ideally
should belong to class A independently of who starts
with the resource. Out of 523776 possible pairs, only
7517 result in games where strategies give the resource.
Therefore, one could sort the 194 strategies according to
the number of appearance in the 7517 pairs. On the other
hand, one can perform numerical simulations to assess
how robust each one of these 194 strategies is against all
the other strategies. From this point on, we shall call these
194 strategies nice, alluding to the fact that each one gives
the resource when playing against itself.

5.3. Simulations and results. To analyse the fitness
of a strategy, we performed a set of simulations in order
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Table 3. Parameters tested in the simulations to evaluate the
history-one strategies.

bg bonus to give {0, 0.5}
cpt cost perform action take {1.5}
cst cost perform action take {2.25}
l number of stages {100}

number of generations 2000
population size 100
mutation probability 1%
mutation operator flip parameter,

randomisation
selection operator tournament size 2,

imitation

to see how robust nice strategies are against mutants. We
took an evolutionary algorithm approach (Hofbauer and
Sigmund, 1998). The chromosome of an individual is just
the strategy described in the previous section. In this set
of simulations, the initial population was homogeneous.
In each generation, all players in the population played
with everybody else. The fitness of an individual was
the sum of the payoffs it obtained in all the games it
participated in. We used two selection operators, namely,
tournament selection with size two and imitation. We used
two mutation operators, namely, flipping one of the ten
strategy parameters or randomisation of all parameters.
In each experimental setting, the mutation operator was
applied with 1% probability. Table 3 shows the parameters
used in this set of experiments.

For each possible strategy with history of length
one we counted the number of individuals per generation
using that strategy. That is to say, we created an histogram
of all strategies using as data all the generations from
the first set of experiments. Figures 4 and 5 show the
histograms. Instead of ordering the strategies by their
encoding, the horizontal axis is sorted by the number of
occurrences of each strategy. Using this view, one can
see in Fig. 4 that strategy occurrence follows a power
law distribution, meaning most strategies occur rarely,
i.e., only in the first generations. Figure 5 shows the top
ten strategies in all simulations (bg is either 0 or 0.5),
in simulations with bg = 0, and in simulations with
bg = 0.5. Each point in this plot has a label showing
the strategy code. If the strategy is not nice, there is an
additional star symbol in the label. In this plot, one can see
that, in the top ten positions, seven out of the strategies are
nice, meaning that it is advantageous to share the resource
by giving it.

The next set of results shows properties of the
strategies that were on the three top ten ranks. Table 4
shows the properties of these strategies. There are a total
of twelve strategies and two thirds are nice. All but one of
the nice strategies give the resource right after the partner
gives it to them (see column a-G). Only strategy 584
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Fig. 4. Results of simulations using the history strategy space.
This graph shows all strategies sorted in descending or-
der of their number of occurrences.

keeps the resource and gives it only when both players do
nothing. A common characteristic is giving the resource
when they have it; columns aTG through aT+ have 79%
of the give actions. This corresponds to being nice. On
the other hand, all but one are spiteful since they take
the resource if nothing happened in the previous iteration
(see column a-+). Again, strategy 584 does not take
the resource. They can be considered patient as they do
nothing when they lose resource possession. There are
only 9% of the take actions in columns aGT through a+T.

As for the four strategies that are not nice, they have
varying characteristics which are more visible when we
observe their action sequences. Strategies 18 and 544 do
nothing when playing among themselves. This means that
on average they fare as well as nice strategies when bg is
zero. The other strategies, 130 and 931, take the resource
when playing among themselves. However, when 18
plays with the other top ten strategies, it does nothing, and
it keeps the resource twice as many stages as the opponent.
This means it has an advantage compared to the opponent.
On the other hand, strategy 931 also takes the resource
when playing with some of the top strategies and for this
reason has a lower rank.

6. Discussion

In a Give and Take game with a defined number of stages,
l, there might be a problem of coordination. This happens
in all cases except for cpt > l, which means that the loss
from the penalty for taking the resource cannot possibly
be recovered in the last l stages. If players cooperate,
both can profit from bonus bg and avoid the outcome of
Nash equilibria that may be lower. This stands even when
bg = 0, due to penalties cpt and cst that come into play
if a player retaliates, meaning that it takes the resource
from the partner. The cooperative strategy profile that
equally maximises both players’ payoffs is the one in
which both agents give the resource after holding it for the
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Table 4. Strategy parameters of those in the three top ten ranks. The first rows show the parameters of strategies that are not nice
(marked with a star). The remainder rows are for nice strategies. The three rightmost columns show their place in the three
ranks.

strategy aGT aG- a+T a+- aTG a-G aT+ a-+ aG aT rank
code all sims bg = 0 bg = 0.5

18� - T - + G + + - + - 6 4 7
130� - T - + + + + T + - 8 3 15
544� - - - + + G + - + T 1 1 3
931� T T - + + G + T G T 14 27 9
224 - - - + + G G T + - 2 7 1
432 - - - + G G + T G - 9 6 11
480 - - - + + G G T G - 11 10 10
496 - - - + G G G T G - 3 2 2
500 - - T + G G G T G - 4 5 4
504 - - - G G G G T G - 5 8 5
508 - - T G G G G T G - 7 9 6
584 - - - G + + G - + T 10 12 8

same number of stages. Such a behaviour is the preferred
one of Homo Sociologicus (López-Pérez, 2008; Fehr and
Gintis, 2007; Gintis, 2000), in opposition to the behaviour
of Homo Economicus that would instead select the actions
of Nash equilibria. When bg > 0, Homo Sociologicus’
behaviour converges to the optimal profile where agents
give the resource right after receiving it. It is optimal
from the fact that both players equally divide the resource
possession and maximise the bonus by giving it back and
forth every stage.

For an undefined number of stages, this game has
many different pure weak Nash equilibria. These range
from symmetrical, where players have identical strategies,
to asymmetrical profiles, where one player does nothing
while the other periodically gives and takes the resource.

Players that avoid exploitative strategies settle in
symmetric strategy profiles. This behaviour would be
favoured by Homo Sociologicus. To achieve that, players
have to negotiate, either explicitly, by communication and
agreement, or implicitly, by self-adapting their strategies
while playing. The rational result of negotiation is the
profile ((1, 2), (1, 2)) because it is the single symmetrical

PO of this game for bg > 0, besides also being a pwNE
(see Propositions 1 and 2). When the bonus for giving the
resource, bg, goes down to zero, an unbounded number of
symmetric POs appear in addition to that one.

The costs of the take action, cpt and cst, can
be considered penalties that serve as deterrents of
noncooperative behaviour. It should be noted that these
two parameters also serve to establish a dilemma in the
game. If both are zero, there is no dilemma and the player
without the resource always takes it.

Propositions 1 and 2 show that if take costs
are sufficiently high, cooperation is a NE. Although
there are unlimited asymmetric cooperative profiles
(Proposition 1), there are also some symmetric ones
(Proposition 2). Proposition 3 showed that if there is no
incentive to give the resource (bg = 0), one player does
nothing during the game. It only has the resource when
the partner gives it to it.

The analysis done in Section 4 focused on a subset of
the entire strategy space. On the other hand, the analysis
done in Section 5 focused on all strategies with history
size equal to one. The results showed that the most
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successful strategies are those that share the resource by
giving it right after receiving, followed by strategies that
do nothing. Moreover, when there is a bonus for giving
the resource, strategies that give the resource rise to the
first position.

The propositions and experimental work show that
the fear of retaliation and positive recognition of those
who share are important to promote cooperation in Give
and Take as well as in real world scenarios it models. This
means that people return a book to the library, a family
returns a holiday facility, and a farmer returns a tractor.

These are some of the real scenarios that are better
modelled by Give and Take. The asymmetry of Give
and Take is a realistic feature that PGP does not account
for, although the latter has been used in cases where
players have different roles with different bargaining
powers (Velez et al., 2009). Give and Take is best suited
for modelling turn-taking scenarios (Lau and Mui, 2012).
Ownership of the resource and the possibility to give it
or having it taken may help model access a common
pool resource such as a fishery (Fehr and Leibbrandt,
2011; Jones, 2006), water sources (Wallace et al., 2003;
Rowland, 2005) or forests. This asymmetry is also present
in entities that share an international river. The nation
upstream may use the water for producing electricity or
irrigation, while a downstream nation is left with a lower
resource value. Even within a country, a dam may restrict
water access to some citizens while improving the benefits
of others (Wallace et al., 2003).

Further applications of Give and Take are possible if
we consider extensions to the game. A political system
dominated by two parties (Ward, 1998) can be modelled
by Give and Take. In this case, the resource represents
the government. The extension consists of the player with
the resource having a third action: drop the resource. In
this application, dropping the resource is only done at
specific turns. After dropping the resource, parties invest
in campaigning to gain the favour of the electorate. Taking
the resource is equivalent to the player in the opposition
promoting social unrest, proposing a motion of censure or
capitalising on a general strike. Another application of a
multi-player Give and Take is to a multi-party system.

Traffic flow in intersections without sema-
phores (Dong and Dai, 2011) can also be modelled
by a variation of Give and Take. At certain intersections,
only the cars arriving from a specific lane can use the
intersection to turn left. In this application, the resource
is access to the intersection. The extension is the fact
that the player that has the resource may leave the game
and hand the resource to a new player. This extension
may be well suited to model the behaviour of drivers at
intersections (Doniec et al., 2008).

7. Conclusions

We have analysed the Give and Take game, where two
players hold a common resource in turns, each of these
defining a stage of the game, with different roles for both
players. The player with the resource can give it to its
partner, while the player without the resource can take it
from its partner. It was shown that this game has numerous
pure weak Nash equilibria and PO profiles. This is a
unique feature of this game which contrasts with common
games such as PD, Ultimatum, PGP and Centipede, or
their iterated versions. The fact that there are many pure
weak Nash equilibria and PO profiles raises a problem of
coordination as found in games such as Battle of Sexes. In
Give and Take, players may coordinate while playing the
game, by mutual adaptation to the partner’s strategy.

Another unique feature is that the take action may
be seen as a built-in punishment for non-cooperative
behaviour. Knowing this, an individual may be induced
to cooperate, fearing retaliation costs. Moreover, neither
cooperation induction, nor role changing nor coordination
do require any entity besides the players. All these make
Give and Take an interesting tool to study agreements and
their subsequent fulfilment or breaking.

There are social situations that are better represented
by Give and Take than by previous games. It is more
adequate to model sharing of a durable and indivisible
resource by two individuals without external intervention,
i.e., in a self-organised process. We have given examples
of book lending in a library, community tractor sharing,
holiday flat sharing, and service contracts. In these
scenarios, at each time instant only one person can read
the book, only one farmer can plough the fields, only one
family can use the premises, and only one individual can
provide the service at each stage.

In this paper, we have studied Give and Take divided
in two cases: undefined and defined number of stages.
In the first case, PO and pwNE strategy profiles range
from symmetric to asymmetric. In symmetric profiles
both players give the resource and never take, while in
asymmetric profiles one player plays both the give and
take actions while the other remains passive. The higher
the costs of taking the resource, the greater the number of
symmetric profiles, which means that punishing favours
cooperative behaviour. In the case of a defined number
of stages, simulations show that strategies that give the
resource rank higher compared to strategies that take the
resource. Even if there is no bonus for giving the resource,
strategies that give obtain high ranks.

Give and Take shows a richness of choices and
dilemmas that players are faced with in both situations.
Equity exists if both players cooperate and share the
resource in equal terms. There are different ways to
achieve such a cooperation level. Players may establish
agreements, for instance, by direct negotiation or by
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mutual strategy adaptation along stages.
The wide choice of cooperative strategies provides a

rich environment for the study of negotiation, agreement,
treason, retaliation and norm enforcement. We intend
to explore these situations using Give and Take as a
supporting tool. Also concerning future developments, we
plan to increase the number of players and resources.

With more than two players, there is the possibility
of coalitions, where teams of players compete for the
resource. In terms of strategy space, this results in an
increase in complexity. With n players in a game, a player
can give the resource to the n − 1 players. As for taking
the resource, we have to deal with the possibility of more
than one player taking the resource, meaning that we have
to decide who gets the resource in the next stage of the
game.

With more than one resource, there is an increased
resource exchange strategy space. Will a player never give
a resource to someone that has already one resource? Will
a player take a resource from someone that has more than
one? We also intend to study the problem of treason and
its avoidance or control under this extended Give and Take
game model.
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