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An approach to estimation of a parametric discrete-time model of a process in the case of some a priori knowledge of the
investigated process properties is presented. The knowledge of plant properties is introduced in the form of linear bounds,
which can be determined for the coefficient vector of the parametric model studied. The approach yields special biased
estimation of model coefficients that preserves demanded properties. A formula for estimation of the model coefficients
is derived and combined with a recursive scheme determined for minimization of the sum of absolute model errors. The
estimation problem of a model with known static gains of inputs is discussed and proper formulas are derived. This
approach can overcome the non-identifiability problem which has been observed during estimation based on measurements
recorded in industrial closed-loop control systems. The application of the proposed approach to estimation of a model for
an industrial plant (a water injector into the steam flow in a power plant) is presented and discussed.

Keywords: absolute error measure, constrained parameters estimation, identification, parametric MISO models.

1. Introduction

Identification focused on determination of a statistic
model of the process, which would represent dynamic
properties of a plant, is nowadays one of the basic
approaches to the development of advanced modern
control systems. The model can be developed in various
structures, both linear and non-linear. The only basic
demand is its quality and fidelity in representing the given
process properties. Verification of model behavior is
usually based on comparison of model output ym(t) with
process output y(t), which should be close in a defined
norm.

The output measurements y(t) are recorded in
the presence of measured (or estimated) inputs vi(t),
which can express controls ui(t) or disturbances wi(t).
In industrial applications many signals are usually
measured—this amount can reveal information about
process behavior, however, not all should be included
into the statistic model structure, so as not to mask
real impact of other inputs. For example, consider a
chemical reactor, where the reaction intensity I of a
mixture in the reactor is dependent on temperature T
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of this mixture. The impact of the heating steam flow
H , being one of the control inputs, is very important
in modeling the reaction I , but introduction of mixture
temperature T into the set of statistic model inputs can
conceal the effect induced by control H , and as a result,
the estimated model may represent a completely false
reaction of intensity I to variations in H . On the other
hand, the model of intensity I without temperature T will
not involve information on unmeasurable disturbances
which may influence intensity I , like, e.g., changed
heat transfer terms, a neglected saturation of the steam,
its flow or pressure, and many other factors. Another
important aspect is a proper excitation by manipulated
controls in data used for identification of the process
model. A well-known effect is the loss of identifiability
(Astrom, 1983; Eykhoff, 1974; Heath, 2001; Isermann,
1988; Ljung, 1999; Ljung and Foorsell, 1998; Norton,
1980; Söderström and Stoica, 1989) of a model based
on direct measurements of controller input u and output
y from the process, if the investigated process runs in a
closed-loop system without additional control excitation
or demanded changes in the value of yd(t).

In problems where representative signals are
measured, the most efficient way is modeling the
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investigated system based on a description of the system
with known relations and values of model coefficients Θ
fitted to recorded measurements (e.g., Gautier and Briot,
2011). Although this way is very effective and robust, it is
useful for processes with well-developed models and low
impact of unmeasured disturbances.

Usually, during process identification, some a pri-
ori information of the investigated process is accessible
due to the process operator’s knowledge, balance of
the flows or energy exchange, but it is limited to very
basic information like, e.g., approximated static gains
for basic controls, main inertia or transportation delays.
Although this information is accessible, there is no direct
way to introduce it into the estimated statistic model
structure. Many authors, who are focused on statistical
applications (Bun and Carree, 2000; Hayakawa, 2010;
Kiviet, 1995; Phillips and Sul, 2007), try to reduce the bias
effects introducing this information in a different way into
simple, first order signal statistics. Others (e.g., Ferretti
et al., 1991; Gourieroux et al., 2010; Hayakawa, 2010)
test various approaches and methods with respect to their
sensitivity to biases.

Aguire et al. (2004) presented an application
of LS estimation to a problem of identification of
non-linear characteristic coefficients in a case of some
known constraints. There are also methods based on
identification of models of plant dynamics, e.g., in
a continuous time domain (Heath, 2001; Kowalczuk
and Kozłowski, 2000; Söderström et al., 1997), or in
forms different from the traditional discrete-time transfer
function representation (e.g., Goodwin and Welsh, 2002;
Ninness et al., 1999). In the area of control applications
the main problems arise in the case of estimation of plant
dynamics, based on data recorded for a plant P working
in a control loop system with a controller C. In the case
of the closed control loop operating at a steady working
point without additional excitations, the estimation leads
to determination of the plant dynamics as −1/C, which is
called the loss of identifiability (Astrom, 1983; Goodwin
and Welsh, 2002; Ljung, 1999; Ljung and Gunnarson,
1990; Norton, 1980; Söderström and Stoica, 1989). This
effect was observed and some remedies were proposed
(e.g., Goodwin and Welsh, 2002), but they in fact limit
the possibility of model identification by reduction of its
order or the transfer domain. On the other hand, the
above-mentioned effect of the loss of identifiability was
not reported in the investigation of models in continuous
time domain (e.g., Kowalczuk and Kozłowski, 2000;
Ljung and Foorsell, 1998; Söderström et al., 1997), hence
perhaps this approach can be more robust to deal with the
above-mentioned effect.

The paper is organized as follows. After the
introductory section, the problem statement together with
a short discussion of possible applications is described in
Section 2. Section 3 contains derivation of constrained

estimation, based on known a priori information, with
application of a special weighted least-squares approach.
This approach can be transformed to estimation in terms
of the performance index being the sum of absolute errors
and the corresponding on-line algorithm is presented in
detail in Section 4. The major advantage of this version
of the algorithm is its low sensitivity to measurement
outliers, which can be significant in the case of small
variations in the measured signals (Janiszowski, 2014). In
Section 5 an application of this algorithm to estimation
of the model of a water injector into the steam flow
in a power plant, operating in a closed-loop system, is
presented. After a detailed discussion of the estimation
results, where the effect of weak identifiability is
observed, the paper is finished with concluding remarks
in Section 6.

2. Problem statement

Consider a process with measured controls ui,
disturbances wj and process output signal y. We
are looking for a linear (with respect of coefficients)
discrete-time model ym of the process output y,
expressed by the relation

ym(k) = v(k)Θ, v,Θ ∈ R
m, (1)

where v(k) = [v1(k), . . . , vm(k)] is a row vector of
signals vi(k) dependent on measured or estimated signals
ui, wj or y. The row vector v(k) is further called the
vector of model inputs and Θ is a column vector of
unknown model coefficients, further called the model.
The investigated process is assumed to be stationary in the
sense that estimation of process dynamics in the form (1)
is justified for the given operation point of the investigated
process.

The employed estimation algorithms of Θ are usually
derived with application of some standard formulation of
the estimation problem, e.g., the least sum of square errors
of model output or the expected value of the variance for
the one-step prediction error of the model (Eykhoff, 1974;
Isermann, 1988; Ljung, 1999; Norton, 1980; Söderström
and Stoica, 1989). Let us denote by IM the performance
index used by the estimation method M for determination
of the model Θ and based on minimization of a measure
‖·‖ of the model error e = y − ym as

IM (Θ̂) = min
Θ

‖e‖, (2)

where Θ̂ is the optimal solution in terms of the index
IM . The estimated model Θ̂ can then be verified by
determination of the value of the application index ID ,
which expresses the intended destination of the model Θ̂,

ID(Θ̂) = F (Θ̂), (3)
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defined as a functional F of the vector Θ̂ representing the
final application of the estimated model Θ̂. For example,
this functional can represent a quality measure of the
modeling error in the control system considered regarding
recorded disturbances,

F (Θ̂) =

L∑

k=p

|yD(k)− v̂D(k)Θ̂|, (4)

where the signal yD represents data recorded in some
experiment D used for verification of the quality of model
Θ̂. The vector v̂D(k) of model inputs preserves the
same structure as v(k), being combined from measured
signals uDi(k), wDj (k) but with values corresponding
to the output, estimated by the model output ym(k) (1)
instead of the measured values y(k). The number N =
L − p + 1 of the measurements (4), taken into account,
depends on all the measurement instants L and the initial
discrete time instant p. The measure F in the form (4)
cannot be used directly as the index for optimization of
the statistic estimator (2), but can be used for evaluation
of the applicability of the estimated model Θ̂.

In the formulated problem there is a possibility of
testing different model structures and approaches (linear,
non-linear, neural nets of various structures, etc.) used in
its calculation, and then the model Θ̂, which represents
the least value of the application index (4), can be chosen.

The problem of identification, i.e., determination of
the model Θ̂ which yields the least value of ID , will
be now extended—the estimated model should satisfy
additional conditions which express a priori knowledge of
the plant, i.e., gains of step responses, inertia, or influence
of mutual compensating inputs. This a priori knowledge
of process properties will be introduced in the form of a
linear relation between the components of the coefficient
vector Θ̂,

QΘ̂ = q, q ∈ R
p, Q ∈ R

p×m, (5)

where the product QQT is nonsingular. The condition
formulated as the relation (5) expresses a priori
information on the estimated process. This information
can introduce different properties, but its linear form (5)
is crucial. Examples of the formula (5) are discussed in
Section 3.

3. Problem solution

Let us consider an estimation method M of the model
coefficients vector Θ̂ based on the model error

ε = Y − V Θ, ε, Y ∈ R
N , V ∈ R

N×m,

Y =

⎡

⎢⎣
y(p)

...
y(M)

⎤

⎥⎦ , V =

⎡

⎢⎣
ν(p)

...
ν(M)

⎤

⎥⎦ , ε =

⎡

⎢⎣
ε(p)

...
ε(M)

⎤

⎥⎦ , (6)

and a minimized measure of the model error, defined as

IM (Θ) = εTWε, (7)

where W is a positive-definite weight matrix. The
estimation of the optimal vector coefficients vector ΘO in
terms of the minimum of the index (7) will be defined by
the well-known formula (Eykhoff, 1974; Isermann, 1988;
Ljung, 1999; Norton, 1980; Söderström and Stoica, 1989)

Θ0 = [V TWV ]−1V TWY, Θ0 ∈ R
m. (8)

The investigated estimation problem will involve a
bias by introducing a bound defined by (5), i.e., the
solution to the estimation problem with the bound (5) will
minimize the index in the form of Eqn. (7).

Theorem 1. The vector Θ of the coefficients of the model
(1), which satisfies the condition (5) and minimizes the
error measure IM , has the form

Θ∗ = Θ0 − ζ[QΘ0 − q], Θ∗ ∈ R
m, (9)

where

ζ = SQT [QSQT ]−1, (10a)

S = [V TWV ]−1. (10b)

Proof. Estimation of the model vector Θ, which
minimizes (7) subject to bounds (5), can be considered
as minimization of the performance index in the form

I∗(Θ, ζ) = [Y − V Θ]TW [Y − V Θ]

+ ζ(QΘ − q), ζ ∈ R
p,

(11)

where ζ is the vector of Lagrange multipliers. From the
necessary conditions for the model vector Θ∗ to be a
minimum of I∗, we obtain

∂

∂Θ
I∗(Θ, ζ) = −2V TWY + 2V TWVΘ∗

+QT ζ∗ = 0, (12a)

∂

∂ζ
I∗(Θ, ζ) = QΘ∗ − q = 0, (12b)

which can be expressed as a set of linear equations,

[
α QT

Q 0

] [
Θ∗

ζ∗

]
=

[
β
q

]
, (13a)

α = 2V TWV, β = 2V TWY, (13b)

with a solution for Θ∗ being a product of the upper row of
inversion of the block matrix

A =

[
α QT

Q 0

]



770 K.B. Janiszowski and P. Wnuk

and the vector [
β
q

]
.

When the inverted block matrix

A =

[
A1 A2

A3 A4

]

has a non singular submatrix A1 (equal to α in (13)), the
inversion of A can be expressed in the form

A−1 =

[
A−1

1 +A−1
1 A2Λ

−1A3A
−1
1 A−1

1 A2Λ
−1

−Λ−1A3A
−1
1 Λ−1

]

(14)
with

Λ = A4 −A3A
−1
1 A2. (15)

In the case considered A4 = 0 and we have Λ =
−Qα−1QT . The upper row of the inverted block matrix
A−1 is equal to [α−1 + α−1QTΛ−1Qα−1, α−1QTΛ−1],
and as a result we can determine the investigated vector of
the model as

Θ∗ = (α−1+α−1QTΛ−1Qα−1)β−α−1QTΛ−1q. (16)

Now we can observe that the product α−1β is equal
to Θ0 defined in (8), and the formula for Θ∗ can be
rearranged as

Θ∗ = α−1β + α−1QTΛ−1[Qα−1β − q]

= Θ0 + α−1QTΛ−1[QΘ0 − q], (17)

which is equal to the formula presented in (8). �

The above formula (3) is similar to the result
presented by Draper and Smith (1998) for the case of a
constrained least-squares estimation problem.

The biased estimate Θ∗ proposed in (9) will converge
to Θ0 when the model Θ0 preserves the property
defined by the condition (5). Then the bias term
α−1QTΛ−1[QΘ0−q] will vanish from the estimation (9).
Now, let us consider possible application cases where the
biased (9) formula can be applied. First, the problem of a
simple, linear, dynamic SISO system will be investigated.
A model of the discrete-time transfer function for this
system with a sampling interval Δ and the ZOH unit is
represented by the transfer function

G(z−1) =
Y (z−1)

U(z−1)
=

B(z−1)z−d

A(z−1)

=
b0z

−d + b1z
−1−d + · · ·+ brz

−r−d

1 + a1z−1 + · · ·+ arz−r
, (18)

where z−1 is a shift operator in the discrete time domain,
z−sv(k) = v(k − s), d is a discrete form of the delay
τ = dΔ. The transfer function (18) can be transformed
into a difference equation for the output y(k). The relation

between the input and output values, assuming that y(k)
is the effect of the dynamics only and the previous values
of input u(k − i), is equal to

y(k) = −
r∑

i=1

aiy(k − i) +

r∑

i=0

biu(k − i− d). (19)

The model of these dynamics expressed in the form
(1) is simple,

y(k) =v(k)Θ, (20a)

v(k) =[−y(k − 1), . . . ,−y(k − r),

u(k − d), . . . , u(k − r − d)],
(20b)

Θ =[a1, . . . , ar, b0, . . . , br]
T . (20c)

Let us now suppose that a priori information on this
system is the static gain K of the above transfer function
(18). Then, from the definition of (18) we can write

K =
b0 + b1 + · · ·+ br
1 + a1 + · · ·+ ar

⇒
K(1 + a1 + · · ·+ ar) = (b0 + b1 + · · ·+ br) (21)

and express the above condition in the form (5) as

[−1, . . . ,−1, 1/K, . . . , 1/K]Θ = QΘ = q = 1, (22a)

Q = [−1, . . . ,−1, 1/K, . . . , 1/K]. (22b)

In the case of many inputs into the process (the case
of a MISO system) and the knowledge of some of static
gains Ki, one can derive the model

y(k) =v(k)Θ, v(k), Θ ∈ R
M ,

M =r +m(r + 1), (23a)

v(k) =[−y(k − 1), . . . ,−y(k − r),

u1(k − d1), . . . , um(k − r − dm)],
(23b)

Θ =[a1, . . . , ar, b10, . . . , b1r, . . . , bm0, . . . , bmr]
T .

(23c)

If there are known static gains, e.g., K1 and K3 for
the first and third inputs, the linear form of the bounds (5)
will be defined by Q,

QΘ = q, v(k), q ∈ R
2, Q ∈ R

2×M , (24a)

q = [1, 1]T , (24b)

Q =

⎡

⎣
−1, . . . ,−1, 1

K1
, . . . , 1

K1
, 0, . . . , 0, 0, . . . , 0

−1, . . . ,−1, 0, . . . , 0, 1
K3

, . . . , 1
K3

, 0, . . . , 0

⎤

⎦ .

(24c)

It should be noted that the above conditions are
specified without any restrictions on the model order. If
additional precise information about the model coefficient
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vector is accessible, then it could be checked whether it
can be included in the form of bounds expressed as in (5).

Another problem that can be solved by the proposed
approach and existing in industrial applications of
identification techniques arises in processes with integral
action, i.e., the process output is in fact an integral of input
activity. Identification based on recorded measurements
is difficult, due to a variable output level, an undefined
operation point and effects of the controller activity
system, which hold the process output on a predefined
level. The resulting estimation may contain the integration
property, which usually is represented as inertia of a very
large time constant. This a priori information can be
included into estimation in the form (5), too. It is clear
that the integrating action of the process described in the
form of the transfer function (18), both for a single- and a
multi-input case, will induce at least one unit root in the
denominator of (18) and is in fact equal to the bound (5)
in the form

1 +
∑

i

ai = 0 ⇒ [1, . . . , 1, 0, . . . , 0]Θ = −1. (25)

4. Estimation algorithm

The algorithm represented by the estimator (8) can
express different approaches. In the case of the weights
W in (7) being equal, we obtain a simple least-squares
approach. In the case of the weights determined on
the basis of the covariance matrix of the model output
residuals, one can obtain a form close to the filtered
least-squares approach. When the weights are, e.g.,
fitted to each step of the algorithm, we can obtain a
performance index close to the least sum of absolute
model errors (LAE) (Janiszowski, 1998; 2014). This form
of estimation was used because it is robust to local outliers
in the processed data. This algorithm will be briefly
recalled, for exposing terms necessary for determination
of the estimate (9) and the products (10), (11). The
presented on-line version can be used iteratively with
the performance index (4) continually decreasing and
converging to the global minimum of the LAE (for more
details, see Kozłowski and Kowalczuk, 2007).

Algorithm 1 can be easily transformed to a simple
least-squares approach by setting parameters λ = 0 and
γ = 2.

The transformation of Θ0 into Θ∗, made in Step 6
of Algorithm 1, is not necessary in each step, hence it
is calculated only when needed. It requires inversion of
the matrix and can be time consuming. The choice of
the threshold value εmin in Step 2 of the above algorithm
also remains to be defined. Most authors suggest to use a
value being a low (2 up to 5) multiplicity of measurement
transducer quantization.

Algorithm 1. Estimation algorithm.
Initial. Initial conditions for the algorithm:

Θ0(0) = [0, . . . , 0], Θ0 ∈ R
m (26a)

P0 = diag(κ), P0 ∈ R
m×m, (26b)

and κ ∈ [103, 105] initializes the matrix P .

Step 1. Estimate the model error:

εk = y(k)− v(k)Θ0(k − 1), k = 1, . . . , L, (27a)

v(k) = [v1(k), v2(k), . . . , vm(k)]. (27b)

Step 2. Determine the weight coefficient:

ek =

{
1/|εk|λ, |εk| ≥ εmin,

max = 1/εmin, |εk| < εmin,
(28a)

λ = 2− γ, (28b)

where γ ∈ [1, 2] is the exponent of the weights ek (28)
equal to 2 in the case of the sum of the squared deviations
or 1 in the case of the sum of absolute errors (Janiszowski,
2014).

Step 3. Calculate the vector of the weighted model inputs
w(k) and the vector χ:

w(k) = ekv(k), (29)

μ(k) = [ρ+ w(k)Pk+1w(k)
T ]−1, (30)

χ = μ(k)Pk−1w(k)
T , (31)

where ρ ∈ [0.99, 1] is a forgetting factor and Pk−1 is

a matrix approximating [V TWV ]−1 at each step of the
on-line identification algorithm.

Step 4. Update the model coefficient vector:

Θ0(k) = Θ0(k − 1) + sign(εk)χ|εk|γ−1. (32)

where the term sign(εk) expresses the ratio εk/ek in the

case of the minimal sum of absolute deviations.

Step 5. Update the estimation of the matrix P :

Pk = [1− χvk]Pk−1ρ
−1, Pk ∈ R

m×m. (33)

Step 6. Calculate the vector Θ∗ of the biased model
coefficients (9) if it is necessary:

Θ∗(k) = Θ0(k)− ξ[QΘ0 − q], (34a)

ξ = PkQ
T [QPkQ

T ]−1, (34b)

where Q and q are defined by the bias condition (5), e.g.,
like in Eqns. (22), (24) or (25),
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5. Example of application

The proposed approach was used for estimation of the
model of dynamics of the steam conditioner in a power
station (Fig. 1). The dynamics of steam conditioner
injectors of II stage were investigated.

The basic function of the investigated water injector
was to maintain steam temperature on a demanded level.
The steam flow was defined by the actual load of the
turbine and was kept constant. The control of temperature
was simple—electrical controlled valves v delivered water
to a steam. Water was evaporating and reduced the
temperature of the steam at the output. The control was
fast and effective in reduction of disturbances: variable
input steam temperature Ti and steam humidity η. The
signals Ti, η, v—valve position (percentage of closing)
and To—output temperature, were measured and available
in control system. The data were collected at the sampling
rate Δ = 1 s and the quality of measurements for both
temperatures Ti and To was equal to 0.1◦C: for the
humidity transients a transducer of 12-bit resolution was
used. The control valve signal was a variable with a dead
zone of 1% and the corresponding transducer was quite
precise and had 16-bit resolution.

The control problem and the investigated models
were restricted to a defined operating point—the defined
load of the power system. Limited operation conditions

Boiler

  

 

 

I stage of
overheaters

I stage of
injectors

II stage of
overheaters

II stage of
injectors

Fig. 1. Scheme of the steam-water flow in a power system.
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Fig. 2. Basic scheme of the investigated process dynamics.

Fig. 3. Data used for identification: output temperature (a),
valve action (b).

suggested investigation of linear transfer function models
with a structure shown in Fig. 2.

The balance of steam enthalpy showed that more
than 92–96% of output steam energy was delivered by
the enthalpy of the input steam flow, and hence the
transfer function GToTi(s) will present a static gain of
about 0.90 up to 0.91 with respect to the temperature
of the input steam, reduced by injection of water that
evaporated in the hot steam flow. The data used for
identification were recorded during normal operation of
the plant, subjected to a closed-loop control that has
maintained a constant value of output steam temperature
To, approximately 470◦C (Fig. 3(a)). This value was held
by the injector valve position with the range [0.19, 0.53]
(1.0: closed, 0.0: open) (Fig. 3(b)). The model of
dynamics was investigated in the structure corresponding
to Fig. 2. Statistical estimation methods were based on the
performance index (2) in the form of the expected value
of one-step prediction error variance, with the algorithm
presented in Section 4 without bias (4).

The evaluation index (4) of the calculated models
was based on the measure of the error in the form eD,

eD(k) =To(k)− v(k)Θ̂,

v(k) =[T̂o(k − 1), . . . , η(k − 1− dη), . . . ,

τi(k − 1− dτ ), . . . , v(k − 1− dv), . . . ],

where T̂o(k − i) denotes the value of the output steam
temperature estimated (not directly measured) by the
model. As for synchronization of both the sequences,
the estimated values T̂o(k − i) have been replaced by
the measured To(k − i) values at first n + dmax (model
order and maximal delay) time instants. Such an approach
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Fig. 4. Best linear model for To fitted in terms of (4): plots of
measured (dark grey) and estimated (light grey) To (a),
absolute error between To and T̂o (b).

should reveal real impact of each input Ti, η and v on
estimation of the evolution of the output temperature To.

An example of identification and model evaluation
is shown in Fig. 4. The best order, fitted in the class of
linear, three input (humidity η, valve v, inlet temperature
Ti) models, resulted in quite good effects of modeling in
terms of (4) (see Fig. 4). The optimal model structure was
as follows: order n = 9, delays in process inputs dη = 5,
dv = 5 and dTi = 0 at the sampling interval Δ = 1s. The
obtained transfer functions can be easily reduced to forms
of order four or five. In Fig. 4(a) a direct comparison of
the measured output To and the one estimated on the basis
of the model is shown, and in Fig. 4(b) the error between
both the signals is shown.

The mean error value was less than about 0.024%,
which corresponded to the mean error value equal
to 0.126 ◦C, but the analysis of the resulting model
structure has created some confusion. The static gain
factor for the humidity impact η was −11.52, for
the closing of the water inlet valve v it was 1.339,
and for the input steam temperature Ti it was 0.475.
The last value was too small and the static gain for
valve impact was estimated by the process operator
as rather too small. It was clear that conditions for
efficient identification were violated, but the possibility of
conducting an active experiment on a normally working
turbine system was limited. After determination of the
optimal (in terms of the performance index (4)) discrete
time transfer functions for the discussed inputs (η, v,
Ti) of order n = 9, reduction in these functions
combined with transformation into continuous time
domain was performed. This transformation was based
on minimization of the distance between the frequency

Fig. 5. Estimated step responses of To with respect to η (a),
v (b), Ti (c) for the optimal model.

characteristic determined for the original transfer function
and the characteristic of the continuous time transfer
function of lower order preceded by the ZOH element
(Janiszowski, 2014). The reduced transfer functions
for variations in the output ΔTo and variations in the
investigated inputs Δη, Δv, ΔTi were equal to

GΔToΔη(s)

=
−11.55 + 1815s− 1537.5s2 + 1497.2s3

1 + 36.319s+ 573.9s2 + 847.25s3 + 915.75s4

× e−5s,

GΔToΔv(s)

=
1.339 + 85.592s− 12.233s2 + 58.516s3

1 + 36.402s+ 577.06s2 + 896.84s3 + 852.51s4

× e−5s,

GΔToΔTi (s)

=
0.4754 + 10.293s+ 54.555s2 − 16.543s3

1 + 36.957s+ 595.78s2 + 1134.53s3 + 1324.15s4
.

Figure 5 presents the step responses of this model.
The humidity impact, as observed in Fig. 5(a), is very
dynamic; however, in steady state it represents a small
effect. The change in the humidity η should involve a
similar variation in To, due to the operator experience, but
the effect of such strong non-minimum phase behavior of
the valve was not directly observed.

For estimation of a more realistic injector model, the
static gain of the inlet steam temperature Ti was fixed at
0.91 and the algorithm presented in Section 4 was used.
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Fig. 6. Biased linear model for To fitted in terms of (4) for the
fixed static gain of Ti: plots of To (dark grey) and T̂o

(light grey) (a), absolute error between To and T̂o (b).

The obtained best model for the injector installation was
of the following structure: order n = 14, delays at inputs
dη = 5, dv = 5 and dTi = 0 with the mean value of the
error (modeled as in the previous case) equal to 0.166◦C.
For the order n = 9 and the same delays, the error
was estimated at 0.169◦C, and hence a more compact
model is discussed here. The gains were estimated for
η = −8.834, the water inlet valve v = 2.83 and the input
steam temperature Ti = 0.91. The results of modeling in
the sense of (4) are presented in Fig. 6. After reduction
of the transfer functions of the investigated models to the
fourth order, and approximation to the continuous time
domain, the corresponding representations were obtained:

GΔToΔη(s)

=
−8.834 + 1625.9s− 2439.3s2 + 1580.73s3

1 + 44.155s+ 663.136s2 + 977.99s3 + 1074.6s4

× e−5s,

GΔToΔv(s)

=
2.836 + 60.338s− 64.036s2 + 48.823s3

1 + 43.286s+ 626.9s2 + 1072.4s3 + 1027.2s4

× e−5s,

GΔToΔTi(s)

=
0.91 + 12.72s+ 39.2s2 + 3.57s3

1 + 44.9s+ 695.94s2 + 1449.51s3 + 1746.4s4
.

The impact of steam humidity showed again strong
non-minimal-phase behavior. The step responses for the

Fig. 7. Estimated step response of To with respect to η (a), v (b),
Ti (c) for the biased model.

same inputs variations are presented in Fig. 7. The impact
of input temperature ΔTi represents the demanded level
−0.91. The error measure (Fig. 6(b)), was only slightly
greater than the one observed in the case of the optimal
model (Fig. 4(b)). It should be mentioned that the impact
of the unmeasured, but surely very important signal, i.e.,
the steam flow, may have influence on the model quality
and the fitting of the optimal model.

6. Conclusions

The proposed approach of special biased estimation has
been used in practice for determination of dynamics for
process running in a closed control loop. This case is
known as a difficult problem, especially in the presence
of constant compensation of disturbance impacts. The
“free” estimation may induce the effect of a loss of
identifiability, hence one way is biased estimation, with
some fixed a priori knowledge of the model features.
As the presented results showed (Figs. 4 and 6), both
the dynamic models are quite good in the sense of the
performance index (4), but the latter was closer to the
process operator’s expectation and can be accepted by
the end-user, i.e., a technology engineer. The proposed
approach is applicable to the problem of known static
gains, but it can be used for other problems, too, e.g.,
known time constants, the presence of integration, known
impacts of two mutually compensating inputs, etc. In
the given case of the steam conditioner, the problem of
identification in the closed-loop system can be combined
with the latter effect—it is well known that humidity
of steam in front of the injector is strongly related to
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its temperature and therefore the above-mentioned effect
may deteriorate identification quality.

The condition introduced by the relation (5) has the
form of a linear bound of the linear model coefficients
Θ, which has to be satisfied by the estimated model.
This condition can be relaxed by introduction of a weaker
one. The model performance index can be a convex
penalty function defined on the estimated model property
κ0 defined by the distance measure ρ|κ − κ0|, where the
κ is a property expected in the estimated model. Then
the goal of estimation will be defined by the minimum of
ID(Θ̂) + ρ|κ − κ0|, where the model error measure will
be combined with the distance from the above-mentioned
property κ.
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