
Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27, No. 2, 309–322
DOI: 10.1515/amcs-2017-0022

AN INTERVAL ESTIMATOR FOR CHLORINE MONITORING IN DRINKING
WATER DISTRIBUTION SYSTEMS UNDER UNCERTAIN SYSTEM

DYNAMICS, INPUTS AND CHLORINE CONCENTRATION
MEASUREMENT ERRORS

RAFAŁ ŁANGOWSKI a,∗, MIETEK A. BRDYS a,b

aDepartment of Control Systems Engineering
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The design of an interval observer for estimation of unmeasured state variables with application to drinking water distri-
bution systems is described. In particular, the design process of such an observer is considered for estimation of the water
quality described by the concentration of free chlorine. The interval observer is derived to produce the robust interval
bounds on the estimated water quality state variables. The stability and robustness of the interval observer are investigated
under uncertainty in system dynamics, inputs, initial conditions and measurement errors. The bounds on the estimated
variables are generated by solving two systems of first-order ordinary differential equations. For that reason, despite a large
scale of the systems, the numerical efficiency is sufficient for the on-line monitoring of the water quality. Finally, in order
to validate the performance of the observer, it is applied to the model of a real water distribution network.
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1. Introduction

Drinking water distribution systems (DWDSs) are part
of critical infrastructure systems (EU Cost Action
IC0806—IntelliCIS, 2008), in which reliable, high
performance and secure operation is very important, due
to the need for ensuring safe and efficient functioning of
the society.

The main objective for the DWDS is to meet demand
on water of required quality for all domestic and industrial
consumers (Brdys and Ulanicki, 1994). As this goal
is complex, suitable monitoring and control algorithms
operating on-line need to be applied in order to achieve
it. Moreover, two aspects must be taken into account
during control and monitoring in the DWDS: quantity and
water quality. It was shown by Brdys et al. (1995) that
a strong, unilateral relation between quantity and quality
exists. Hydraulics of water has an impact on the water
quality; therefore, the necessity of an integrated approach
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to control the DWDS appears. A very important aspect
of efficient operation of the DWDS is gathering on-line
information. In the DWDS two types of monitoring
systems can be distinguished: the water quantity and
water quality. In this paper only the water quality
monitoring system is considered. The water quality can
be determined by several quality factors and a disinfectant
concentration is one of the most popular ones. Several
disinfectants are used in practice but the chlorine is
the leading one. The water quality monitoring system
exploits the water quality measurements in order to gather
knowledge about the state of water quality. In typical
DWDSs water quality sensors are located at the network
nodes. The water quality may be measured in laboratories
or by using on-line sensors. Bacteriology measurements
(e.g., the number of coli bacteria) are typical laboratory
measurements in the DWDS and obviously, they cannot
be utilised on-line. At present, primarily the free chlorine
concentration may be measured on-line. Hence in this
paper the water quality is determined by its concentration.
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Unfortunately, the chlorine sensor placement at all of the
DWDS nodes is impossible. It is due to, e.g., the high
costs of hard sensors and the possibility of their their
installation. Therefore, the missing information about the
state needs to be recovered by employing their estimation
based on other measurements and, e.g., the mathematical
model of the process.

Typically, the DWDS is composed of pumps, valves,
pipes, nodes, tanks and reservoirs. The pumps and
valves are used to control hydraulic quantities that are
the water flow rates and pressures. Since the chlorine
reacts with organic and non-organic matter in water, the
chlorine concentration decreases in time (Males et al.,
1988; Rossman et al., 1994). On the one hand, if the
chlorine concentration is too low, pathogenic bacteria can
grow in water and this can even lead to the bacteriological
instability. On the other hand, a strong chlorination
performed at the water treatment stations and within the
network by booster stations can recover safe water, but can
also lead to an increase in the concentration of harmful
disinfection by-products (DBPs) (Boccelli et al., 2003;
Arminski et al., 2013). Therefore, the proper values
of the chlorine concentration should be guaranteed by
a suitable activity of all the water treatment stations in
the DWDS. In this paper, modelling of the DBPs is not
considered. Hence, the DWDS water quality modelling
takes into account changes in the chlorine concentration
at the nodes, tanks and along the pipes. Moreover, it is
assumed that reservoirs are the sources of treat water (the
water quality from reservoirs is constant).

During formulation of the decay models of the
chlorine concentration, it is commonly assumed that a
hydraulic solution of the DWDS (the values of flow rates
at the pipes, etc.) is known and it is constant over the
specified time interval called the hydraulic step. The
models of chlorine decay during water transfer through
the pipes can be found in the works of Males et al. (1988),
Rossman et al. (1994), Park and Kuo (1996), Al-Omari
and Chaudhry (2001). During water transfer throughout
the network, the water may be stored in tanks. The water
retention time in a tank can be long and unfavourably
influence the water quality in the DWDS. The long water
retention time in the tanks may lead to a decrease in
the chlorine concentration, regrowth of the pathogenic
bacteria in water and the appearance of the DBPs.
Therefore, modelling the chlorine decay in the tanks is
necessary and it can be found in the work of Mau et al.
(1995) or Clark et al. (1996). In this paper it is assumed
that the tank is a continuous stirred reactor (CSR) and the
quality model has been shown by Clark et al. (1996). In
the DWDS there are controlled and uncontrolled quality
nodes (Boulos et al., 2004). When modelling water
quality it is assumed that the instantaneous and complete
mixing of chlorine at both types of nodes proceeds.
Therefore, the chlorine concentration out of the node at

all outflows is the same and it is equal to the chlorine
concentration at the node. The quality controlled nodes
are the nodes with chlorine booster stations. Chlorine is
directly dosed into the controlled quality nodes in order
to maintain the required chlorine concentration, which is
prescribed by the quality controller (Propato et al., 2001).

Hence the DWDS water quality model is composed
of the system of algebraic equations that describe the
changes of chlorine concentration at the nodes, the
system of ordinary differential equations that describe
the chlorine decay in the tanks and the system of partial
differential equations that describe the distribution in the
chlorine concentrations along the network pipes. There
are several methods which can be used in order to solve
this model (Rossman and Boulos, 1996). One of them
is the finite-difference method based on discretization
of partial differential equations in the time and space
domains (Mitchel and Griffiths, 1980). Another option
is discretization only in space. An outline of this
methodology was given by Łangowski and Brdys (2007).
In turn, a comprehensive approach is described in this
paper.

The process also includes modelling the uncertainty.
There are several approaches to uncertainty modelling;
however, a set-membership approach is an attractive
option (Brdys and Chen, 1995; Amairi, 2016; Jauberthie
et al., 2016). In this approach the uncertainty is described
by means of an additive bounded error where only the
bounds are known. The bounded models of uncertainty
need less a-priori information about the system and they
are less demanding than the probabilistic models. The
optimisation based on the set-membership algorithms for
set bounded estimation of the quantity, integrated quantity
and quality in the DWDS was presented by Brdys and
Chen (1995), Duzinkiewicz (2006) as well as Brdys
and Chen (1996), respectively. Unfortunately, due to
the necessity of solving highly nonlinear and nonconvex
optimisation problems, it is time-consuming and, thus,
not always applicable to on-line estimation. Hence a new
interval estimation method for quality monitoring in the
DWDS is proposed in this paper. The method utilises an
observer known as an interval observer.

In the literature various approaches to design
interval observers can be found. For example, an
interesting survey of the structures of interval observers
was presented by Efimov and Raı̈ssi (2016). In this
paper a structure which was applied to the wastewater
treatment process (Gouzé et al., 2000; Hadj-Sadok and
Gouzé, 2001; Alcaraz-González et al., 2005; Rapaport
and Dochain, 2005) is used and further developed.
The first approach to set bounded estimation with the
interval observer for an example DWDS was presented
by Łangowski and Brdys (2006). Next, the structure
of the observer was further developed and presented by
Łangowski and Brdys (2007). The structures of interval
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observer, utilising only the direct state measurements
were shown in these papers. Further research was
focused on deriving the proof of stability and robustness
of the designed interval observer and it was generally
outlined by Brdys and Łangowski (2008). In this paper a
comprehensive approach also containing a new structure
of interval observer is presented. Moreover, the proposed
observer is applied to water quality estimation in a real
DWDS and its performance is validated by simulation.
The detailed research on modelling and estimation with
the interval observer can be found in the work of
Łangowski (2015).

2. DWDS water quality model

The model of advective chlorine transport with the
first-order decay for the l-th pipe can be described by
(Males et al., 1988; Rossman et al., 1994; Park and
Kuo, 1996; Al-Omari and Chaudhry, 2001)

∂tcl(z, t) + vl(z, t)∂zcl(z, t) = αlcl(z, t), (1)

with the initial and boundary conditions

cl(z, 0) = cl,0,t(z), cl(0, t) = cl,0,z(t),

where t is the time instant; z is the distance along the
l-th pipe, z = 0 and z = Ll denote the beginning
and the end of the pipe, respectively; ∂(·) denotes the
partial derivative with respect to (·); cl(z, t) signifies the
chlorine concentration within the l-th pipe at the distance
z at the instant t; vl(z, t) denotes the linear water flow
velocity in the l-th pipe; αl stands for the bulk reaction
rate coefficient of the l-th pipe.

Remark 1. Notice that the linear water flow velocity and
flow rate are the same at a given pipe, i.e., vl(z, t) =
vl(t). This is because of the assumption of the water
incompressibility and that pipes are of a pressure type.

The water quality model in the CSR can be described
as (Clark et al., 1996)

dt (Vf,h cf,h) = S1 − cf,h(t)S2 + βhVf,h(t)cf,h(t), (2)

dtVf,h(t) = S3 − S2, (3)

with the initial conditions

Vf,h(0) = Vf,h,0, cf,h(0) = cf,h,0.

Moreover, the following condition must be taken into
account for the storage tank with a separated water filling
in and drawing cycles:

S2S3 = 0, (4)

where
S1 =

∑

l∈INf,h(t)

ql(t)cl(Ll, t),

S2 =
∑

l∈OUTf,h(t)

ql(t),

S3 =
∑

l∈INf,h(t)

ql(t).

Here dt stands for the derivative with respect to t;
INf, h(t) is the set of pipes supplying water to the tank
h at the instant t; OUTf, h(t) denotes the set of pipes
draining water from tank h at instant t; cf,h(t) is the
chlorine concentration in tank h and at instant t; Ll

signifies the length of pipe l; cl(Ll, t) stands for the
chlorine concentration at the end of the l-th pipe at instant
t; Vf,h(t) signifies the volume of tank h at instant t; ql(t)
denotes the corresponding water flow rates; βh is the tank
reaction rate coefficient of the h-th tank.

Combining (3) and (2) the changes in the chlorine
concentration in the tank can be described as

dtcf,h(t) =

(
− S3

Vf,h(t)
+ βh

)
cf,h(t) +

S1

Vf,h(t)
, (5)

and for the storage tank with separated water filling in and
drawing cycles during the drawing phase:

dtcf,h(t) = βhcf,h(t). (6)

During the filling phase, the equation describing the
chlorine concentration dynamics in the tank is the same
as (5).

From the constituent mass balance law, the model of
the chlorine decay at the n-th quality controlled node is
(Boulos et al., 2004):

S4 + S5 − cout,n(t) [S6 + S7] + cdoz,n(t) = 0, (7)

where
S4 =

∑

l∈INn(t)

ql(t)cl(Ll, t),

S5 =
∑

l∈EINn(t)

ql(t)cl(Ll, t),

S6 =
∑

l∈OUTn(t)

ql(t),

S7 =
∑

l∈EOUTn(t)

ql(t).

INn(t), EINn(t) are the sets of pipes supplying water and
supplying water from the external sources to node n at
instant t, respectively; OUTn(t), EOUTn(t) denote the
sets of pipes draining water into the network and draining
water from node n at instant t, respectively; cout,n(t)
signifies the chlorine concentration at node n at instant
t; cdoz,n(t) is the mass of chlorine injected to node n at
instant t.
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The chlorine concentration cout,n(t) can thus be
written as

cout,n(t) =
cdoz,n(t)

S6 + S7
+

S4 + S5

S6 + S7
. (8)

Denoting by cin,n(t) the first term on the right-hand
side of (8) yields

cdoz,n(t) = cin,n(t) [S6 + S7] . (9)

Hence combining (9) and (8) gives

cout,n(t) = cin,n(t) +
S4 + S5

S6 + S7
. (10)

We have the mass balance law

S8 + S9 = S6 + S7, (11)

where

S8 =
∑

l∈INn(t)

ql(t), S9 =
∑

l∈EINn(t)

ql(t).

Hence, from (11) and (10) the following holds (Propato
et al., 2001; Boulos et al., 2004):

cout,n(t) = cin,n(t) +
S4 + S5

S8 + S9
. (12)

By contrast, water quality at the uncontrolled nodes
is only dependent on the chlorine concentrations at the
pipes supplying water into these nodes. Clearly, if there
is no chlorine injection at node n, the first term on the
right-hand side of (12) disappears (Rossman and Boulos,
1996; Boulos et al., 2004):

cout,n(t) =
S4 + S5

S8 + S9
. (13)

Note that the chlorine concentration in tank h and
at uncontrolled node n at instant t directly depends on
the chlorine concentrations cl(Ll, t), where l is from
the set INf, h(t), INn(t) and EINn(t), respectively. In
other words, these chlorine concentrations depend on the
chlorine concentrations at the ends of the pipes supplying
water into the tank and the node at instant t. Notice
that the magnitudes and directions of water flow rates
determine the water quality model structure. Since the
flow directions and their magnitudes can change over the
time horizon considered, the water quality model structure
can change as well. In this paper they are assumed
constant over a specified time interval called the hydraulic
step, TH (Brdys and Ulanicki, 1994).

2.1. DWDS water quality model for estimation. In
order to solve the DWDS water quality model a method
of Mitchel and Griffiths (1980) can be used to discretize
(1) in time and space domains. Clearly, in order to
approximate (1), time t and distance z are discretized.
Assume that for the l-th pipe t = kΔtl, where Δtl stands
for a time period and z = mΔll, Δll signifies the length
of the pipe segment. Writing cl(m, k) = cl(mΔll, kΔtl),
the particular components of (1) can be approximated as
follows (Chen, 1997):

∂tcl(z, t)|z,t ∼= cl (m, k + 1)− cl (m, k)

Δtl
, (14)

∂zcl(z, t)|z,t ∼= cl (m, k)− cl (m− 1, k)

Δll
, (15)

cl(z, t) =
cl (m, k + 1) + cl (m, k)

2
. (16)

By contrast, in the work of Łangowski and Brdys (2007)
(1) was discretized only in the space domain. Clearly, if
the time period Δtl approaches zero then the right-hand
side of (14) approaches the derivative:

∂tcl(z, t)|z,t ∼= cl (m, k + 1)− cl (m, k)

Δtl

−−−−→
Δtl→0

dtcl (m, t) .
(17)

Moreover, (15) and (16) may be written as

∂zcl(z, t)|z,t ∼= cl (m, t)− cl (m− 1, t)

Δll
, (18)

cl(z, t) = cl(m, t). (19)

Therefore, (1) can be approximated as

dtcl(m, t) + vl(m, t)
cl(m, t)− cl(m− 1, t)

Δll
= αlcl(m, t),

(20)

with the initial conditions cl(m, 0) = cl,0,t(m).
Hence (20) describes the chlorine concentration over

time at the pipe point located at the distance mΔll
from the pipe origin. Moreover, the discretized equation
illustrates a virtual pipe partitioning into segments. The
pipe partitioning method was described by Rossman et al.
(1993) or Łangowski and Brdys (2007). During the
partitioning procedure the travelling time of the chlorine
concentration within each pipe over a particular TH is
calculated. The minimum value of this time is the
so-called quality step and is denoted by TQ. Notice
that two extreme cases can occur: (a) very short pipes
with high linear water flow velocities and (b) very long
pipes with slow linear water flow velocities (Rossman
et al., 1993). Hence TQ and Nl can yield a very small
value in case (a) and a large number in case (b). Both cases
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may lead to a significant increase in the computational
time. Therefore, a minimum quality step TQ,min and a
maximal number of segments Nl,max are introduced. In
consequence, a certain loss of solution accuracy appears,
especially for the pipes with a short (case (a)) and a long
(case (b)) travelling time.

Notice that the linear water flow velocity and flow
rate at each segment within a given pipe are the same
(see Remark 1). Moreover, the linear water flow velocity
and flow rate at a given pipe can be assumed constant
over TH . A value of TH depends on the demand rate of
change and is typically between 0.5 and 2 [h] (Brdys and
Ulanicki, 1994). Clearly, the number of constant flow rate
intervals over a time horizon T equals J = T/TH . The
partitioning procedure is repeated for each TH . Hence
the number of segments within a single pipe may differ
in each TH . Therefore, the water quality model has a
time varying structure. Hence, (5)–(6), (12)–(13) and (20)
describe a time continuous lumped water quality model
for estimation.

The chlorine concentrations at the network nodes and
tanks are seen as most important and they are viewed as
the DWDS quality outputs. The chlorine concentrations
at the network nodes can be calculated by applying (12)
and (13). Clearly, the forms of the equations depend on
the node structures. Hence, the chlorine concentration
at a given node requires the inflow rates as well as
the chlorine concentrations at a given node. As was
mentioned, the chlorine concentration at a given node
depends on the chlorine concentrations at the ends of the
pipes supplying water to the given node. Therefore, these
chlorine concentrations can be determined by applying
(20), whereas the chlorine concentrations in the tanks
can be calculated by using (5) and (6). Moreover,
the chlorine concentrations in the tanks as well as the
chlorine concentrations at the pipe ends are the quality
state variables and they are denoted by x(t).

Notice that the state variables representing the
chlorine concentrations in the tanks are directly
transferred to the system output. A similar situation
occurs at a node supplied by only one pipe. Due to
different travelling times through the pipes in the DWDS,
pipe partitioning into segments is applied. The number
of elementary segments within each pipe can be different
and the chlorine concentration dynamics for each segment
is defined by (20). This introduces new state variables
into the water quality model. Hence the quality state
x(t) is composed of the chlorine concentrations at all the
pipe segment ends as well as in the tanks. Notice that
the structure of vector x(t) is constant but only over each
TH . The state equations for the pipe segment ends are
derived from (20). Let us denote by xr(t) the chlorine
concentration at the end of the pipe segment r. Then from

(20) it follows that (Łangowski and Brdys, 2007)

dtxr(t) =

(
−vr(t)

Δlr
+ αl

)
xr(t) +

vr(t)

Δlr
ce,l,r(t), (21)

where vr(t) denotes the linear water flow velocity along
the segment r; Δlr is the length of segment r; ce,l,r(t)
signifies the chlorine concentration at the beginning of
the r-th segment.

Four cases for the segment quality input ce,l,r(t) can
be distinguished:

(i) ce,l,r(t) = xr−1(t),

(ii) ce,l,r(t) = csr(t),

(iii) ce,l,r(t) = xh(t),

(iv) ce,l,r(t) = cout,n(t),

where xr−1(t), csr(t), xh(t), cout,n(t) are the chlorine
concentrations at instant t at the end of segment r − 1,
the external water source, tank h and node n calculated
from (12) or (13), respectively.

As the state equations for the tanks are derived from
(5) and (6), we get

dtxh(t) =

(
− S3

Vf,h(t)
+ βh

)
xh(t)

+

∑
l∈INf,h(t)

ql(t)ce,l,h(t)

Vf,h(t)
,

(22)

dtxh(t) = βhxh(t), (23)

where ce,l,h(t) is the chlorine concentration in flow l to
tank h at instant t.

It is obvious that the water transport through the tank
does not occur for the case of a storage tank with separated
water filling and drawing cycles during the drawing phase.
Clearly, the chlorine concentration during the drawing
phase decreases with time in accordance with kinetics
decay (cf. (23)). As opposed to the drawing phase, the
chlorine concentration dynamics in the tank during the
filling phase depends on the chlorine concentration at all
inflows to the tank (cf. (22)). Moreover, ce,l,h(t) is at the
same time the chlorine concentration at the end of the last
segment of the l-th pipe supplying water into the tank.
Hence (22) may be rewritten as

dtxh(t) =

(
− S3

Vf,h(t)
+ βh

)
xh(t)

+

∑
l∈INf,h(t)

ql(t)xl(t)

Vf,h(t)
,

(24)

where xl(t) is the state variable representing the chlorine
concentration at the end of the last segment of the l-th pipe
supplying water into tank h at instant t.



314 R. Łangowski and M.A. Brdys

Finally, due to (21), (23)–(24) and taking (12) and
(13) into account, the chlorine concentration dynamics
throughout the entire DWDS can be written as

dtx(t) = A(t)x(t) + b(t), (25)

where A(t) is the time-varying state matrix whose
elements are composed of the hydraulic quantities, lengths
of pipe segments and reaction rate coefficients; b(t)
denotes the vector of inputs whose elements are dependent
on the hydraulic quantities, the lengths of pipes segments,
quality quantities at reservoirs and injection of the
chlorine at the quality controlled nodes.

The water quality model described by (12)–(13)
and (25) was implemented in MATLAB. The model
performance was examined by comparing its results with
those obtained by applying the well-known EPANET
simulator which serves as the virtual benchmark plant.
The EPANET accurately integrates the quality model
(1)–(4), (12) and (13) and the hydraulic model equations
that are omitted in this paper in order to determine the
flow rates q(t) and linear water flow velocities v(t) (Brdys
and Ulanicki, 1994). The network quantity-quality model
equations can be considered a faithful representation of
reality. The model of water quality described by (2)–(4),
(12)–(13) and (20) is viewed as the approximate model of
reality. Comparative results for an example DWDS can be
found in the work of Łangowski and Brdys (2007).

3. Estimation of the chlorine concentration
in the DWDS

The dynamics of the chlorine concentration in the DWDS
is described by model (25) and some special properties
can be distinguished:
P1: The magnitudes and directions of the water flow rates
determine the water quality model structure.

P2: The hydraulic quantities as well as the quality
quantities are non-negative and bounded. Therefore

∀t ≥ 0 :

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ q(t) ≤ qmax,
0 ≤ v(t) ≤ vmax,
0 ≤ p(t) ≤ pmax,
0 ≤ c(t) ≤ cmax,

(26)

where ≤ is understood element-wise; qmax, vmax, pmax,
cmax denote the maximal values of flow rates, linear water
flow velocities, pressures and chlorine concentrations in
the DWDS, respectively.

P3: The chlorine concentrations only at certain network
nodes are simultaneously state variables (the state is
directly transferred to the system output). In this case,
each of the output measurement equations can be written
as

ycout(t) = x2(t), (27)

where ycout(t) is the vector of measurements; x2(t)
denotes the vector of measurable state variables.

P4: The dynamics of the chlorine concentration in the
DWDS described by (25) is cooperative. This is because
the off-diagonal elements of the Jacobian matrix of the
model (25) are non-negative. For example networks
in the work of Łangowski and Brdys (2007) or Brdys
and Łangowski (2008) this was shown by employing a
cooperative system definition (Smith, 1995). It is worth
adding that this property has a crucial meaning for the
further design of the interval observer.

Notice that in order to solve the water quality model
(cf. Section 2.1) the values of hydraulic quantities have to
be available. This information is delivered by the quantity
monitoring system. The monitoring system gathers
information from the hydraulic sensors which are used in
the DWDS. Typically, only a limited number of hydraulic
quantities are directly measured in the DWDS due to,
e.g., the sensors and their maintenance costs. Therefore,
in order to recover a lack of hydraulic information, the
necessity of employing a hydraulics estimation based
on available hydraulic hard measurements and, e.g.,
hydraulics mathematical models arises. The hydraulics
estimator based on set-membership uncertainty modelling
can be found in the works of Brdys and Chen (1995),
Duzinkiewicz (2006). Hence the hydraulics estimator
delivers estimates of hydraulic quantities in an interval
form. Clearly, the upper and lower trajectories of
hydraulic quantity estimates are constant over each TH .
It is assumed that hydraulics information in this form is
known for the DWDS considered but it is not obtained
from the hydraulics estimator. In order to simulate the
estimator, the EPANET is used. Assume that TH = 1 [h],
T = 24 [h] and for a nominal demand pattern hydraulic
simulation results are obtained from the EPANET. Next,
the values of hydraulic quantities are disturbed by about
±Γ%. Hence, the interval form of the hydraulic quantities
is

q±l (j) = ql(j)± Γql(j), (28)

v±l (j) = vl(j)± Γvl(j), (29)

V ±
f,h(j) = Vf,h(j)± ΓVf,h(j), (30)

where ± is to distinguish between the upper and the lower
hydraulic quantity bounds; ql(j) and vl(j) denote the flow
rate and the linear water flow velocity gathered from the
EPANET for the l-th pipe at the j-th TH , respectively;
Vf,h(j) stands for the h-th tank volume gathered from
the EPANET at the j-th TH ; j = 1, 2, 3, . . . , J and
J = T/TH = 24 [h]/1 [h] = 24.

In accordance with (28)–(30) the upper and the lower
trajectories for the hydraulic quantities are constant over
each TH . Nevertheless, over the entire time horizon
T , these trajectories can be treated as continuous and
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time-varying. The upper and the lower trajectories of the
hydraulic quantities obtained in this way might be more
conservative than trajectories that could be delivered by
the hydraulics estimator. However, for the water quality
estimation purposes, the hydraulic information obtained
as above is sufficient. Moreover, it is assumed that the
chlorine concentrations at the water sources are constant,
but their values are not exactly known. Clearly, only
certain upper c+sr and lower c−sr bounds on these quantities
are available, so that for each water source we have

c−sr ≤ csr ≤ c+sr. (31)

Because the hydraulic quantities as well as the
quality at reservoirs are not exactly known, but certain
upper and lower bounds are available, we have

b−(t) ≤ b(t) ≤ b+(t), (32)

A−(t) ≤ A(t) ≤ A+(t). (33)

Remark 2. The trajectories of hydraulic quantities are
constant over each TH . Therefore, for successive TH the
inequality (33) can be rewritten as

A− ≤ A ≤ A+. (34)

U1: It is assumed that, although the state initial conditions
are unknown, some bounds are available, so that

x−(0) ≤ x(0) ≤ x+(0).

U2: The chlorine concentration measurements at the
nodes are contaminated by the measurement uncertainty.
Hence (27) is rewritten as

ycout(t) = x2(t) + εcout(t), (35)

where εcout(t) is the measurement error.

It is assumed that εcout(t) is bounded:

|εcout(t)| ≤ εmax
cout

.

Hence the measured state can be bounded as

x−
2 (t) ≤ x2(t) ≤ x+

2 (t), (36)

where x−
2 (t) = ycout(t) − εmax

cout
and x+

2 (t) = ycout(t) +

εmax
cout

and due to P2 we have x−
2 (t), x2(t),x

+
2 (t) ≥

0, ∀t ≥ 0.

Note that the uncertainty in the system dynamics,
inputs, initial conditions and measurement errors is
described by a deterministic model. In particular, the
set-membership model of uncertainty is used. Hence,
in order to estimate the chlorine concentration in the
DWDS, set bounded estimation can be applied.

4. Interval observer for water quality in the
DWDS

In this section the possibility of applying the interval
observer proposed by Alcaraz-González et al. (2005) to
water quality estimation will be investigated. As has
been assumed, the hydraulic quantities are not exactly
known. Thus, the state matrix A(t) is uncertain (cf. (33)).
Hence, in order to use the above-mentioned structure of
the interval observer during estimation of the chlorine
concentrations in the DWDS, the uncertainty in the matrix
A(t) should be eliminated. It is possible to decompose the
matrix A(t) as (Łangowski and Brdys, 2006)

A(t) = Ā(t) + ΛA(t), (37)

where Ā(t) is an exactly known part of the state matrix
A(t); ΛA(t) is the resulting uncertainty in the matrix
A(t).

In order to apply the interval observer proposed by
Alcaraz-González et al. (2005) to the DWDS, (25) may
be rewritten as

dtx(t) = Ā(t)x(t) + b̄(t), (38)

where
b̄(t) = ΛA(t)x(t) + b(t). (39)

In order to determine the bounds on b̄(t) needed for
the observer design, the bounds b−(t), b+(t) have to
be modified in order to incorporate the uncertainty in
ΛA(t)x(t). The latter can be bounded by using a-priori
bounds on ΛA(t) and x(t). Assuming that the state
measurements (cf. P3) are exactly known and taking the
above remarks into account, the DWDS interval observer
is (Łangowski and Brdys, 2006)

(
S±) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dtw
±(t) = Ā11(t)w

±(t)
+N1Ā12(t)x2(t) +Mv̄±(t),

w±(0) = Nx±(0),
x̂±
1 (t) = N−1

1 w±(t),
(40)

where x(t) = [x1(t) x2(t)]
T ∈ R

n is the state vector
and x1(t) ∈ R

s, x2(t) ∈ R
m are the vectors of

unmeasured and measured state variables, respectively
and s = n−m; x̂±

1 (t) denote the upper and lower bounds
on the estimated state variables; w(t) is an auxiliary
variable, defined as w(t) = Nx(t); N = [N1 0]; N1 =
ηI ∈ R

s×s denotes an invertible matrix proportional
to the identity matrix and η is an arbitrary, positive
and constant parameter; M = [N1 0 0]; v̄±(t) =[
b̄±
1 (t)

1
2B̄1 ± 1

2B̄2

]T
; B̄1 = b̄+

2 (t) + b̄−
2 (t); B̄2 =

b̄+
2 (t) − b̄−

2 (t); A11(t) = {ai,j}, A12(t) = {ai,p},
A21(t) = {ap,j}, A22(t) = {ap,p}, ∀i, j ∈ 1, s, ∀p ∈
s+ 1,m are suitable parts of the matrix A(t) structured
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by the measurement state variables

A(t)

=
est.

meas.

[
A11(t) ∈ R

s×s A12(t) ∈ R
s×m

A21(t) ∈ R
m×s A22(t) ∈ R

m×m

]

n×n

b1(t) = {bi}, b2(t) = {bp} denote suitable parts of the
vector b(t) structured by the measurement state variables:

b(t) =
est.

meas.

[
b1(t) ∈ R

s

b2(t) ∈ R
m

]

n

.

Observe that the matrix Ā(t) and vector b̄(t) are
constructed analogously as A(t) and b(t).

The above interval observer may suffer from
significant conservatism due to possibly excessive bounds
on x(t). Also, the measurement uncertainty may not be
negligible and, therefore, it is further developed. Starting
from the DWDS dynamics described by (25), applying in
the interval observer proposed by Alcaraz-González et al.
(2005) boundsA+(t), A−(t) instead of the known matrix
Ā(t) and bounds x+

2 (t), x
−
2 (t) (cf. U2) instead of x2(t)

that are based on the measurement error bounds, yields
(Łangowski and Brdys, 2007; Brdys and Łangowski,
2008):

(
S±) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dtw
±(t) = A±

11(t)w
±(t)

+N1A
±
12(t)x

±
2 (t) +Mv±(t),

w±(0) = Nx±(0),
x̂±
1 (t) = N−1

1 w±(t),
(41)

where v±(t) =
[
b±
1 (t)

1
2B1 ± 1

2B2

]T
; B1 =

b+
2 (t) + b−

2 (t); B2 = b+
2 (t) − b−

2 (t); x
±
2 (t) denote the

upper and lower bounds on the measured state variables
given by (36).

Remark 3. It is clear due to (32) and (33) that A−
11(t) ≤

A11(t) ≤ A+
11(t), A

−
12(t) ≤ A12(t) ≤ A+

12(t), b
−
1 (t) ≤

b1(t) ≤ b+
1 (t) and b−

2 (t) ≤ b2(t) ≤ b+
2 (t).

Theorem 1. (Brdys and Łangowski, 2008) The inter-
val observer (41) produces stable and robust upper and
lower envelopes x̂+

1 (t) and x̂−
1 (t), respectively, bounding

the unmeasured state variables x1(t) in spite of the un-
certainty in inputs (chlorine measurements at reservoirs),
initial conditions, state measurements (chlorine measure-
ments at network nodes) and the state matrix A(t) in the
linear part of the system dynamics.

Proof. The upper and the lower estimation errors can be
written as

e+(t) = x̂+
1 (t)− x1(t), (42)

e−(t) = x1(t)− x̂−
1 (t) (43)

for the systems S+ and S−, respectively. Without any loss
on generality, onlyS+ will be further considered. Because
of the directions of water flow the rates are constant only
over each TH , and the water quality model is also constant
only over these intervals. Moreover, the magnitudes of
hydraulic quantities are also constant over each TH (cf.
P1). Hence the state matrix A(t) is time-independent over
each TH . Therefore, the upper estimation error dynamics
associated with S+ over each TH is as follows:

dte
+(t) = N−1

1 A+
11N1x̂

+
1 (t)−N−1

1 A11N1x1(t)︸ ︷︷ ︸
R+(t)

+A+
12x

+
2 (t)−A12x2(t)

+N−1
1 Mv+(t)−N−1

1 Nb(t).
(44)

First, the component R+(t) will be considered. It is
easy to show that

R+(t) = A+
11x̂

+
1 (t)−A11x1(t). (45)

Owing to (34), we have

A+
11−A11 = ΔA+

11 ⇒ A11 = A+
11−ΔA+

11. (46)

Combining (46) with (45), we get

R+(t) = A+
11

(
x̂+
1 (t)− x1(t)

)
+ΔA+

11x1(t). (47)

Combining (47) and (44), the dynamics of the upper
estimation error become

dte
+(t) = A+

11e
+(t) + I+ II− III+ IV︸ ︷︷ ︸

H+(t)

,
(48)

where

I = ΔA+
11x1(t),

II = A+
12x

+
2 (t),

III = A12x2(t),

IV = N−1
1 Mv+(t)−N−1

1 Nb(t).

Owing to P2, P4 and Remark 3 we have

A+
11,ij ≥ 0, ∀i 	= j.

Hence the system (48) has cooperative dynamics.
Moreover, the system S+ also has cooperative dynamics
(Smith, 1995). Additionally, using the definitions of the
upper estimation error e+(t), the structure of S+ and U1,
it is easy to show that

e+(0) = x̂+
1 (0)− x1(0) ≥ 0. (49)

We shall now check the sign of H+(t). Due to (46),
Remark 3 and P2 it is clear that I = ΔA+

11x1(t) ≥ 0.
Moreover, using Remark 3, P2 and P4: II = A+

12x
+
2 (t) ≥
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0 and III = A12(t)x2(t) ≥ 0. By Remark 3 and
U2 the inequality A+

12x
+
2 (t) − A12(t)x2(t) ≥ 0 is

ensured. The non-negative sign of IV is ensured by
P2, Remark 3 and the choice of N1. As I, II, III
and IV are non-negative, so is H+(t). Moreover, as P2
holds, H+(t) is bounded. Due to the properties of linear
cooperative systems (Hadj-Sadok and Gouzé, 2001), the
upper estimation error satisfies

e+(t) ≥ 0, ∀t > 0. (50)

Hence the trajectories of the system S+ dominate the
trajectories of (25) from above. Clearly, S+ generates the
upper bounds on the estimated state variables.

Let us now examine the stability of the interval
observer (41). If A+

11 is Hurwitz stable then the dynamics
of the upper estimation error (42) is also stable. It was
checked for the DWDS presented in Section 5 as well as
for example DWDSs considered by Łangowski and Brdys
(2007) or Brdys and Łangowski (2008) that A+

11 is truly
Hurwitz stable over each TH . Moreover, they proved that
the matrix A−

11 is also Hurwitz stable over each TH .
Hence, the interval observer (41) is a robust and

stable estimator for water quality estimation in the DWDS
and it is guaranteed that x̂−

1 (t) ≤ x1(t) ≤ x̂+
1 (t) for the

initial conditions satisfying x−(0) ≤ x(0) ≤ x+(0). �

The interval observer (41) requires state
measurements. Unfortunately, the chlorine concentration
measurements are the state measurements only at certain
network nodes (cf. P3). Hence the proposed interval
observer is further developed in order to handle a case
where the chlorine concentration sensor is located at
the node with several connected pipes. Additionally,
it is assumed that the measuring node is the quality
controlled one. Just for the sake of simplicity, with no
loss of generality, a quality controlled node n with two
supplying pipes is considered. According to (12) the
chlorine concentration at this node is

ycout,n(t) = cin,n(t) +
yq1(t)x1(t) + yq2(t)x2(t)

yq1(t) + yq2(t)
, (51)

where yq1(t), yq2(t) are the measurements of water flow
rates in pipes 1 and 2, respectively.

In this case the output measurement (27) is

ycout(t) = x2(t), (52)

where
x2(t) = [x2(t) x̃2(t)]

T
, (53)

and x̃2(t) denotes the vector of indirectly
measured state variables and is called the vector of
pseudo-measurements.

The measurements of ycout,n(t) cannot be directly
utilised by the observer (41) as they are not measurements

of the state variable. However, from (51) the state variable
x2(t) can be expressed as

x2(t) =
yq1(t)

yq2(t)

(
ycout,n(t)− cin,n(t)

)

+ ycout,n(t)− cin,n(t)− yq1(t)

yq2(t)
x1(t),

(54)

and used to define pseudo-measurements as

x̃2(t) =
yq1(t)

yq2(t)

(
ycout,n(t)− cin,n(t)

)

+ ycout,n(t)− cin,n(t)− yq1(t)

yq2(t)
x̂1(t).

(55)

Hence, in order to define the pseudo-measurements,
the estimates of state variable x̂1(t) are used instead
of the state variable x1(t). Assuming that the chlorine
concentration cin,n(t) added to node n is exactly known,
the needed upper and the lower bounds on x̃2(t) are
calculated from (55):

x̃+
2 (t) =

y+q1(t)

y−q2(t)

(
y+cout,n

(t)− cin,n(t)
)

+ y+cout,n
(t)− cin,n(t)−

y−q1(t)

y+q2(t)
x̂−
1 (t)

x̃−
2 (t) =

y−q1(t)

y+q2(t)

(
y−cout,n

(t)− cin,n(t)
)

+ y−cout,n
(t)− cin,n(t)−

y+q1(t)

y−q2(t)
x̂+
1 (t).

(56)

If the vector of chlorine concentration measurements
are defined as (52), then taking (56) into account,
the following new structure of the interval observer is
proposed:

(
S±) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dtw
±(t) = A±

11(t)w
±(t)

+N1A
±
12(t)x

±
2 (t) +Mv±(t),

w±(0) = Nx±(0),
x̂±
1 (t) = N−1

1 w±(t).
(57)

Note that if an uncontrolled node with more than
one supplying pipe is considered, the term cin,n(t) in the
right-hand side of (56) disappears.

In order to estimate the unmeasured state variables
by using the interval observer (57), the necessity of
calculating the pseudo-measurements appears. Hence, the
following procedure is proposed:

S1: The estimation of unmeasured state variables is
performed by using the interval observer (41). During
this estimation process only direct state measurements are
used.
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S2: The pseudo-measurements of indirectly measured
state variables are calculated by employing (56). Next,
the state variables that refer to pseudo-measurements are
removed from the estimated states and the vector of
measurements x2(t) is augmented by adding the vector
of pseudo-measurements x̃2(t) to produce the interval
observer (57).

Notice that the pseudo-measurements are the
new, important source of information. Hence, the
two-step estimation algorithm has a better performance
than the estimation process without the indirect state
measurements.

Theorem 2. The interval observer (57) produces stable
and robust the upper and the lower envelopes x̂+

1 (t) and
x̂−
1 (t), respectively, bounding the unmeasured state vari-

ables x1(t) in spite of the uncertainty in inputs, initial
conditions, direct and indirect state measurements and the
state matrix A(t) in the linear part of the system dynam-
ics.

Proof. It is obvious that the upper and the lower estimation
errors are still described by (42) and (43). Therefore,
the upper estimation error dynamics is still defined by
(48), where I = ΔA+

11x1(t), II = A+
12x̄

+
2 (t), III =

A12(t)x̄2(t), IV = N−1
1 Mv+(t) − N−1

1 Nb(t). Since
the upper estimation error dynamics are still determined
by the matrix A+

11, the system (48) has cooperative
dynamics. Hence the dynamics of the interval observer
(57) remains also cooperative.

We shall now check the sign of H+(t). Observe
that the structure of H+(t) has one difference. Clearly,
the vector of measurements is composed of the state
measurements and pseudo-measurements. Hence, the
inequality x−

2 (t) ≤ x2(t) ≤ x+
2 (t) is ensured by U2

and due to P2 it is obvious that x−
2 (t), x2(t), x+

2 (t)
≥ 0, ∀t ≥ 0. However, it is necessary to show that the
following holds:

x̃−
2 (t) ≤ x̃2(t) ≤ x̃+

2 (t),

x̃−
2 (t), x̃2(t), x̃

+
2 (t) ≥ 0, ∀t ≥ 0.

(58)

We shall now prove that the inequality (58) is really
fulfilled. First, since x̂1(t) ∈ [x̂−

1 (t), x̂
+
1 (t)] is in fact

unknown, the Chebyshev centre x̂∗
1(t) of the enveloped

estimates is to be used. Hence, (55) can be rewritten as

x̃2(t) =
yq1(t)

yq2(t)

(
ycout,n(t)− cin,n(t)

)

+ ycout,n(t)− cin,n(t)− yq1(t)

yq2(t)
x̂∗
1(t)

(59)

Due to P2, (33), U2 and since the interval observer (41) is

robust and stable, we get

y−q1(t) ≤ yq1(t) ≤ y+q1(t),

y−q2(t) ≤ yq2(t) ≤ y+q2(t),

y−cout,n
(t) ≤ ycout,n(t) ≤ y+cout,n

(t),

x̂−
1 (t) ≤ x̂∗

1(t) ≤ x̂+
1 (t),

(60)

y−q1(t), yq1(t), y
+
q1(t), y

−
q2(t), yq2 (t), y

+
q2(t),

y−cout,n
(t), ycout,n(t), y

+
cout,n

(t),

x̂−
1 (t), x̂

∗
1(t), x̂

+
1 (t), cin,n(t) ≥ 0, ∀t ≥ 0.

Hence, due to (60) and taking into account the
mutual relations between y−cout,n

(t), ycout,n(t), y
+
cout,n

(t) and

x̂−
1 (t), x̂

∗
1(t), x̂

+
1 (t), this can be written as

x̃+
2 (t) =

y+q1(t)

y−q2(t)

(
y+cout,n

(t)− cin,n(t)
)

+ y+cout,n
(t)− cin,n(t)−

y−q1(t)

y+q2(t)
x̂−
1 (t) ≥ 0.

(61)
Unfortunately, it is possible that x̃2(t) and x̃−

2 (t) will
be negative. However, because P2 holds, these cases are
eliminated. Clearly, it is assumed that if x̃2(t) and x̃−

2 (t)
are negative, then during the estimation process the zero
values for x̃2(t) and x̃−

2 (t) are used. Therefore

x̃2(t) =
yq1(t)

yq2(t)

(
ycout,n(t)− cin,n(t)

)

+ ycout,n(t)− cin,n(t)− yq1(t)

yq2(t)
x̂∗
1(t) ≥ 0,

(62)

x̃−
2 (t) =

y−q1(t)

y+q2(t)

(
y−cout,n

(t)− cin,n(t)
)

+ y−cout,n
(t)− cin,n(t)−

y+q1(t)

y−q2(t)
x̂+
1 (t) ≥ 0.

(63)
From (61)–(63) it follows that x̃−

2 (t), x̃2(t), x̃
+
2 (t) ≥ 0

∀t ≥ 0. Moreover, due to the above it is easy to show
that x̃−

2 (t) ≤ x̃2(t) ≤ x̃+
2 (t). Furthermore, (58) implies

that the initial conditions e+(0) are non-negative and the
sign of H+(t) is also non-negative. Hence, the upper
estimation error associated with the interval observer (57)
satisfies (50). Therefore, the trajectories of the system
(57) dominate the trajectories of the system (25) from
above. Moreover, the interval observer (57) remains
stable. Hence, the interval observer (57) is a robust and
stable estimator for water quality estimation in the DWDS
and it is guaranteed that x̂−

1 (t) ≤ x1(t) ≤ x̂+
1 (t) for the

initial conditions satisfying x−(0) ≤ x(0) ≤ x+(0). �

Remark 4. Notice that the interval observers (41) and
(57) are stable and robust over each hydraulic step TH .
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Because the water flow directions and their magnitudes
can change over a given time horizon, the water quality
model structure can change as well (cf. Section 2). As a
consequence, the interval observers have to be modified.
In other words, for each TH a different structure of the
interval observer, determined by the hydraulic quantities
and their values, needs to be used. Therefore, the overall
observer can be viewed as a mechanism with switched
dynamics. Due to the stability of the observer dynamics,
the switching time instants should be chosen carefully.
In this paper the switches take place together with the
successive TH , which are inherited from the known
hydraulic solution. Such an approach gives a structural
consistency of the observer dynamics and the dynamics
of the estimated process. Hence the switching is basically
driven by the changes in the hydraulics and they can have
impact on every nodes in the DWDS. Moreover, despite
the knowledge of when the switching will follow, the
structure of the next observer will be known from the time
instant when a hydraulic solution for the next TH will
be available. Therefore, the switching sequence can be
hard to determine, as it depends on the operating states
and conditions of the DWDS. Indeed, in order to ensure
the observer stability over the entire time horizon, certain
conditions constraining the switching time instants have
to be added. In this paper the stability of the switching
process has been investigated only by simulation.

The structures of the interval observers (41) and
(57) require determination of the matrices A− and A+

over each TH . Notice that the majority of elements in
these matrices are directly composed of the pipe segment
lengths, reaction rate coefficients and hydraulic quantities.
However, certain matrices elements are evaluated by
solving suitable optimisation problems. This situation
occurs for the state variables representing the chlorine
concentrations at the ends of pipe segments where the
segments quality input equals the chlorine concentration
at the DWDS node (cf. (iv)). This issue and formulation
of suitable optimisation problems were described in detail
by Łangowski and Brdys (2007). Moreover, by the
definition of the state variables, the observers (41) and
(57) return the quality estimates only at the DWDS nodes
that are supplied by one pipe. By contrast, the chlorine
concentrations at the nodes with several connected pipes
are linear combinations of the appropriate state variables.
Therefore, the chlorine concentrations at these nodes
are calculated based on the estimates of these state
variables by solving suitable optimisation problems. The
formulation of these optimisation problems was described
in detail by Łangowski and Brdys (2007).

Remark 5. It is obvious that for on-line estimation the
efficiency of the estimation algorithm should be high.
Notice that the interval estimation algorithm does not
require solving on-line highly nonlinear and nonconvex

optimisation problems during the estimation process.
The estimates of unmeasured state variables result from
solving systems of ordinary differential equations. Hence
the efficiency of the interval estimation algorithm is
high. This was examined for example DWDSs and
corroborating results were discussed by Łangowski and
Brdys (2007).

The proposed methodology for the model of free
chlorine and DBPs concentrations has been further
developed by Arminski and Brdys (2013).

5. Case study

The interval observers (41) and (57) were applied to
the model of a real DWDS. The DWDS considered (cf.
Fig. 1) is located in Chojnice in Poland. This DWDS
delivers water to about 40,000 inhabitants (Nowicki
et al., 2012). The numbers of particular elements in the
DWDS are 177 nodes, 271 pipes, 2 reservoirs, 1 tank
and 3 pumps. The water is provided to the network from
two sources, which are modelled as reservoirs of treated
water. There are not water quality controlled nodes.
During modelling the DWDS was divided into seven
parts and one cumulated consumer was assigned to each
part. Consequently, there are seven water demand nodes.
These water demand nodes are clearly marked in Fig.
1. The demand values as well as the demand patterns at
these nodes are based on real data and two types of the
demand pattern are distinguished: 1 and 2 (cf. Fig. 2).
The demand pattern 1 is used at nodes 31, 39, 67, 83 and
88, whereas the demand pattern 2 is used at nodes 60 and
70.

The demand patterns (cf. Fig. 2) are used in order
to obtain the nominal values of hydraulic quantities
from the EPANET and then they are distorted by about
±2%. The chlorine concentration measurements and the
chlorine concentration at reservoirs are provided also by
the EPANET; however, reaction rate coefficients α and β
were changed. The chlorine concentration measurements
are contaminated by the measurement error (cf. (27))
of ±2%. According to Section 2.1 TQ,min as well as
Nl,max are introduced into the algorithm and they equal
4 [min] and 8, respectively. The estimation results at
several nodes are shown in Figs. 3–6. Four trajectories
are presented in each figure: the chlorine concentration
from the EPANET cf., bounds on the estimated chlorine
concentrations and Chebyshev centres.

The presented simulation results show that the
chlorine concentration trajectories are always inside the
estimated bounds. However, the abrupt changes in the
trajectories during transients can be observed. This is the
effect of initial and boundary conditions on the chlorine
concentration being equal to zero at the beginning of the
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Fig. 1. Chojnice drinking water distribution system.
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Fig. 2. Demand patterns at nodes 31, 39, 67, 83, 88, 60 and 70.
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Fig. 3. Interval estimation results at node 10.

observation. The overall robust estimation results yield a
satisfying performance.

6. Conclusions

In this paper a water quality model for estimation has
been derived and implemented in MATLAB. Set bounded
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Fig. 4. Interval estimation results at node 27.
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Fig. 5. Interval estimation results at node 49.

estimation using an interval observer for the chlorine
monitoring in the DWDS has been presented. The
stability and robustness of the designed interval observer
have been rigorously proved.

The proposed interval observer has been applied to
the model of a real DWDS. The obtained results yield
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Fig. 6. Interval estimation results at node 144.

satisfying performance of the estimated bounds.
Some directions for future research are, i.a., deriving

sufficient conditions for the stability and robustness of
the interval observer during the switching time instants
and developing additional mechanisms giving tighter
estimation bounds.
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Systems Engineering at the Gdańsk University of Technology. Currently
he is an assistant professor there. His research interests involve math-
ematical modelling, estimation and monitoring of large scale complex
systems.

Mietek A. Brdys (1946–2015) received the MSc
degree in electronic engineering and the PhD and
DSc degrees in control systems from the Institute
of Automatic Control at the Warsaw University
of Technology in 1970, 1974 and 1980, respec-
tively. In 1992 he became a full professor of con-
trol systems in Poland. During his career he was
the head, a visiting professor, a staff member and
a consultant at many universities, companies and
organisations (IEEE and IFAC). His research was

supported by the UK and Polish research councils, industry and the Eu-
ropean Commission. He was the author and the co-author of about 220
refereed papers and six books. His research included intelligent decision
support and control of large scale complex systems, robust monitoring
and control, softly switched robustly feasible model predictive control
and integrated monitoring, control and security of critical infrastructure
systems. The applications included environmental systems, technologi-
cal processes, power smart grids and defence systems.

Received: 13 June 2016
Revised: 9 December 2016
Re-revised: 25 February 2017
Accepted: 16 March 2017


	Introduction
	DWDS water quality model
	DWDS water quality model for estimation

	Estimation of the chlorine concentration in the DWDS
	Interval observer for water quality in the DWDS
	Case study
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


