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SINGULARITY AVOIDANCE IN REDUNDANT ROBOT
KINEMATICS: A DYNAMICAL SYSTEM APPROACH

KRrzyszror TCHON*

This paper is concerned with avoidability/unavoidability of singular configu-
rations in the redundant manipulator’s kinematics with an arbitrary degree of
redundancy. The dynamical system approach has been adapted as a guiding line.
A self-motion distribution has been defined, spanned by the so-called Hamilto-
nian vector fields associated with the given kinematics. The Hamiltonian vector
fields are established to be divergence-free. Around singular configurations of
corank 1 a reduction procedure is applied leading to a discovery of a common
constant of motion of all vector fields belonging to the self-motion distribution.
By examining the stability of the Hamiltonian vector fields sufficient conditions
for avoidability and unavoidability are derived, formulated in terms of the Hes-
sian matrix of the constant of motion.

1. Introduction

Tt is well-known that employing of the kinematic redundancy in the robotic manipula-
tor design improves the robot performance and increases its dexterity. In particular,
the kinematic redundancy may be used as a means to overcome the problem of kine-
matic singularities of a manipulator. Indeed, redundant manipulators possess a prop-
erty of singularity avoidance that means that a prescribed end-effector position and
orientation realized by a singular configuration of the manipulator may be produced
alternatively by a non-singular configuration. To exploit the advantage of redundan-
cy towards coping with the problem of singularity we need to be able to distinguish
between avoidable and unavoidable singular configurations of a redundant manipu-
lator. Several characterizations of avoidability /unavoidability have been provided in
the robotic literature, based either on the dynamical system approach (Bedrossian,
1990; Bedrossian and Flueckiger, 1991; Flueckiger and Bedrossian, 1994; Shamir,
1990; Tchon, 1997a; Tchori and Matuszok, 1995) or on the singularity theory ap-
proach (Seng et al., 1997; Tchoti, 1997b; Tchori and Matuszok, 1995). Most of the
mentioned papers address the avoidability /unavoidability problem for the kinematics
with degree of redundancy 1 and formulate avoidability conditions for singular con-
figurations of corank 1. Towards this aim a concept of the self-motion vector field is
widely applied (Bedrossian and Flueckiger, 1991; Shamir, 1990; Tchori and Matuszok,
1995). Singular configurations of higher coranks are treated in (Tchof, 1997a). In
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(Tchori and Matuszok, 1995) a relationship has been discovered between avoidabil-
ity and normal forms of kinematic singularities. The kinematics with the degree of
redundancy greater than 1 are studied in (Seng et al, 1997; Tchori, 1997b) using
the methods of singularity theory. A sufficient condition for avoidability proposed in
(Seng et al, 1997) holds for arbitrary redundant kinematics with corank 1 singular
configurations. In (Tchor, 1997b) the normal form approach has been employed to
derive sufficient conditions for avoidability and unavoidability of corank 1 singular
configurations in redundant kinematics. These conditions apply, however, only to the
kinematics that are equivalent to the quadratic normal form.

In this paper, we extend the dynamical system approach to the redundant kine-
matics with an arbitrary degree of redundancy. Our main tool is a concept of the
Hamiltonian vector field introduced in (Arnold, 1993) to deal with singularities of the
so-called complete intersections. Following this approach, we introduce a concept of
the self-motion distribution, spanned by Hamiltonian vector fields, whose maximal
integral manifolds coincide with the self-motion manifolds of the kinematics. It is
shown that all the Hamiltonian vector fields are divergence-free, a result proved in
(Tchont and Matuszok, 1995) for the self-motion vector field. A simple avoidabili-
ty condition is formulated in terms of the linear approximations to the Hamiltonian
vector fields. A self-motion control system is introduced as a description of all self-
motion trajectories of the redundant kinematics. Around singular configurations of
corank 1 the Hamiltonian vector fields are transformed to a reduced form depending
on n—m+ 1 coordinate functions. A first integral (a constant of motion) for these
vector fields has been revealed corresponding to the self-motion Hamilton function
considered in (Tchori and Matuszok, 1995). Sufficient conditions for avoidability and
unavoidability of singular configurations have been elaborated by examining stability
conditions of the Hamiltonian vector fields, and expressed in terms of the Hessian
matrix of this first integral. These conditions have a form similar to those recently
obtained within the singularity theory approach in (Tchot, 1997b), reducing in the
case of the kinematics with redundancy degree 1 to the avoidability /unavoidability
criteria proved in (Tchofi and Matuszok, 1995). The applicability of new conditions
has been tested with an example of the 4R planar kinematics.

"This paper is composed as follows. Section 2 presents basic concepts including an
introduction of the self-motion distribution and a proof of the divergence-freeness of
the Hamiltonian vector fields. In Section 3, after confining to singular configurations
of corank 1, a reduction procedure of the self-motion distribution is accomplished
and sufficient conditions for avoidability and unavoidability are derived. Section 4
presents an example. The paper is concluded with Section 5.

2. Basic Concepts

We shall investigate the forward kinematic map of a redundant robotic manipulator,
referred to as the kinematics. In suitable coordinate systems in the joint manifold as
well as in the task manifold the kinematics can be represented by an analytic map

kiR R™,  y=k(z) = (k‘l(m),kg(x), s ,km(z)) (1)
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Since the kinematics are redundant, we shall always assume that n > m. A vector
z = (z1,%2,...,Tn) € R™ denotes positions of the joints, and is called the manipu-
lator’s configuration, a vector y = (y1,¥2,-..,¥m) € R™ stands for the position and
orientation of the end-effector.

It is well-known that the configurations = € R™ of the kinematics can be divided
into regular configurations at which the rank of the Jacobian matrix of the kinematics
is maximum,

rank %’;— (z)=m (2)
and singular configurations at which the rank of the Jacobian matrix decreases, so
rank %IZ- (z) <m (3)
The difference
ok
- = 4
m — rank E (z) 4)

will be referred to as the corank of the configuration z. By analyticity of the map %
the set of regular configurations is open and dense in R"™. Then a set of singular
configurations is analytic.

Let £ € R® be a regular configuration of the kinematics k. Then the set

I(z) = {z € k‘l(k(x))i rank % (z) = m}

is an (n—m)-dimensional analytic submanifold of R™ called a leaf passing through z.
A collection of all leaves forms a foliation of the set of regular configurations. Con-
nected components of the leaves will be referred to as the self-motion manifolds of
the kinematics. Clearly, any two configurations belonging to the same self-motion
manifold produce the same position and orientation of the end-effector, furthermore,
they can be connected to each other by a continuous path lying entirely inside this
self-motion manifold.

A singular configuration z € R™ is called avoidable, if there exists a non-singular
configuration z' included into the level set determined by k(z), z' € k~1(k(z)),
otherwise z is unavoidable. It turns out that avoidability of z means that the leaf
I(z') C k~(k(z)), moreover this leaf is dense in the level set: I(z') = k~1(k(z)).
Consequently, if a singular z is avoidable, then in any open neighbourhood of z
one can find a regular configuration yielding the same position and orientation of the
end-effector. This means that the avoidability is a local concept.

In order to characterize avoidable and unavoidable singular configurations of the
kinematics k we need to introduce an infinitesimal description of the self-motion
manifolds. This will be accomplished by defining a so-called self-motion distribution
whose maximal integral manifolds coincide with the self-motion manifolds. The self-
motion distribution is spanned by a collection of vector fields, named after (Arnold,
1993) Hamiltonian vector fields, that are defined below.
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Definition 1. Given the kinematics k(z) = (ki(z), k2(z),...,km(z)), we choose a
sequence of integers 1 <4; < -+ < iyyy1 < n and define a Hamiltonian vector field
Hi, 4,4, (z) by a symbolic expansion with respect to the first row of the following
determinant:

[ a 8 .ne 6 ]
Ox;, Oz, oz;, .,
ok, 0Ok ok,
Hiy.ipsy (z) = det | O7i; Oz O%inss | (z) (5)
Okm Ok, Ok,
| Oz, Oziy, T Oz, |

Expressed in components, the j-th component of the vector field

Hi1--~im+1 (m)J =0 if J #i1,02,.. ':im+1

and
Ok ) ok, ok, o Ok
az‘il 8mi7,_1 8xi,+1 81‘,;m+1
Hij iy (T)j = (_1)r+1 det (z) (6)
Ok, Ok, Okm Ok
0z, ox;,_, Oz;, 0T;,, 11

ifj=t¢,7r=12,...,m+1.
By definition, each Hamiltonian vector field is analytic, vanishing at the singular

configurations.

Definition 2. The self-motion distribution Ay associated with the kinematics k is
an analytic distribution spanned by the vector fields (5):

Ap = Spangw {H'i1~~~im.+1 1<y <o < im-i—l < n} (7)

To illustrate the concept of the self-motion distribution we shall compute Ay for
the kinematics of a planar 4R manipulator:

k@) = (k(2), ka(s)

= (l181 + las12 + 135123 + laS1234, l1€1 + lac12 + l3ci23 + laciaza)  (8)

where [;, 1=1,2,3,4 denote the link lengths, while the symbols s, c stand respec-
tively for the sine and cosine functions, e.g. si; = sin(z; + z;), c;; = cos(z; + z;).
Since the manipulator has n = 4 d.o.f., there are four Hamiltonian vector fields
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distinguished by the indices (1,2,3), (

1,2,4), (1,3,4), (2,3,4). We shall compute
Hio3(z) explicitly using the expression (6):

8(1?2 8323
= det
Haa(h =4t a1, on,
a:vg 6113
ok ok
15]
Higs (z), = —det Oz, Oxs

; Oy Ok
8m1 61’3

(IE) = —12 (l383 + 14334)

(z) =lgl3ss +1alysss + lil3s03 + 11145034

Ok, Bk,
dz1 Oz,
Bk, Ok
0z Omy

Hias (), = det (z) = —l1 (l2s2 + 13523 + l45234)

L H123 (:E)4 =0

Similarly, the other Hamiltonian vector fields are computed as follows:

’

Hi2a(z); = —ls (I354 + l2534)
ﬁ Hio4 (.’E)2 =l (1384 +1y834 + 115234) (10)

Hi24(z); =0, Hiza (2), = 11 (los2 + 13523 + 145234)

Hizg (ZI})l = —13l434, Hiaza (CC)2 =0
j Hiza (2)3 = —la (1384 + 2834 + 115234) (11)

Hizq (z), = (lalsss + lalassa + lilzsas 4 l1las234)

Hjss4 (z), =0, Hazs (2), = l3lyss
S Hoss (z)y = —la (I3ss + l2s34) (12)

| Hyss (z), =l (I3s3 + l4534)

The self-motion distribution Ay corresponding to the kinematics (8) consists of linear
combinations of Hamiltonian vector fields Hios (z), Hi2a (z), Hiza(x), Hosza (z)
multiplied by any analytic functions of z.

Now let us return to the general case and examine the Hamiltonian vector fields
Hi, . i,..(z) associated with the given kinematics k. The following result generalizes



406 K. Tchon

Proposition 1 proved in (Tchon and Matuszok, 1995):

Proposition 1. The vector fields Hy (@), 1 <41 <+ <imy1 < n, are
divergence-free, i.e.

a'El-il .. -im.+1 (m)

div H;, ... (z) = tr 5 =0 (13)
Proof. Clearly,
mtl 6Hi Pt Z),
div iy i (2) = ) ——l"'a’;.“( 2

r=1

so using (6) we need to compute the partial derivative

aH’l:l...’i7n+1 (m),’r 7-+1 a 6k 8](: ak ak
axi,. - (-—1) ax‘i,v det [ azil 8x7:7-—1 aSL‘7;1-+1 ' aa”.'im+1 :|(x)

But from the multilinearity of the determinant we deduce

aHil...i,,.+1 (x)ir r41 fuar ak‘ 62]6 ak
afEi - (_1) . Z det [ 61‘1'1 o 6xi.6wi h 8(1),‘ +1 ](.’E)
T j=1,j#r 7 o m

The sum on the right-hand side can be divided into two parts yielding finally

m+1r—1
ok 8%k ok
i o - 1)yt e ...
A Hip () = 303 (e | g s TR — @
r=1 J=1 '] 7 ™
m+1 m+1
ok 8%k ok
— T+1 .« RS
" 7; J;—l( 1) det [ axil awi.‘i axi"‘ a"'E’:m+1 :‘ (m)

Denoting respective terms in the sums above by M;, and Nj,, we conclude that the
divergence is equal to

m+1r—1 m+1 m+l1
) r+1 r+1
div Hil---im+1 (I) = Z Z (—1) Mjf‘ + Z Z (_1) er
r=1 j=1 r=1 j=r+l

Now we use the identity

m+1r—1 m+1l m+1

2.2=2 X

r=1 j=1 i=1 r=3+1



Singularity avoidance in redundant robot kinematics: A dynamical . .. 407

swap indices of summation, note that by the equality of mixed partial derivatives
M,; = (=1)""""' N;,, and conclude that

m+1 m+1 m+1 m+1
. r+1 r+1
leH'il...'im+1(x) = Z Z (_1) * Mj"'+ Z Z (_1) + er
=1 r=j+1 r=1 j=r+1
m+1 m+l m+1 m+1
j+1 r+1
=3 2 UM+ Y CUTN,
r=1 j=r41 r=1 j=r+1
m+1 m+1
= > (=) (Njp=Ny)=0
r=1 j=r+1

We have proved that the Hamiltonian vector fields are divergence-free which
yields that the self-motion distribution consists of divergence-free vector fields exclu-
sively. The self-motion distribution generates all self-motions of the kinematics that
can be treated as trajectories of the following self-motion control system:

T = Z Hil_..im_,_l (.’L‘) Wiy, i1 (14)

1<i <o <imp1<n

Locally, the number of controls in (14) can be reduced to n —m by a suitable choice
of a local basis of Ag.

Having determined the generators of the self-motion distribution we shall examine
invariant manifolds of every Hamiltonian vector field. Being divergence-free these
vector fields have either the stable, the unstable and the centre invariant manifold or
only the centre manifold (Guckenheimer and Holmes, 1983). In the former case, the
following sufficient condition for avoidability of singular configurations holds:

Theorem 1. Let zy be a singular configuration of the kinematics k (zo is then
an equilibrium point of every Hamiltonian vector field). Suppose that there exists a
vector field H, ;... (z) whose linear approzimation at o, 0H;, i, (T0) /0z, has
an eigenvalue with a non-zero real part. Then zg is avoidable.

3. Corank 1 Singular Configurations

Suppose that zo € R™ is a corank 1 singular configuration of the kinematics k =
(k1,-..,km). Without any loss of generality, we may assume that the upper left
submatrix of the Jacobian matrix of ¥ has full rank at zg, i.e.

Ok k1
dz1 0T
rank : : (zo)=m—1 (15)
Okm—1  Okm—1

8:1:1 Bzm_l
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By (15) the following map is clearly a local diffeomorphism around zg

£=0@= (k) .., kn-1(2), Tm, .-, 20 ) (16)

In new coordinates the kinematics are expressed as

K(§)= (517 627 D] €m~—1; h(E)) (17)
where h(£) is analytic and verifies the condition
how(z) =kn(z) (18)

Let us compute the Hamiltonian vector fields for the transformed kinematics (17).
Because the Jacobian matrix of K takes the form

It 0 --- 0
0K
@) o o oon | o)
o™=t O 0,
it is easily seen that according to the expression (6) we obtain for i =1,2,...,n—m
oh & éh 8
. —(— m-+41 v _1\ym+2 Y

i.e. only the components number m and m + i of Hia. mm+i(£) are non-zero.
The Hamiltonian vector fields corresponding to other choices of indices 1 < i; <
-+ < im41 < n are zero vector fields. We assert that locally, in a certain neigh-
bourhood of & = ¢ (o), the self-motion distribution is spanned by (n —m) vector
fields (20). Obviously, these vector fields are locally conjugate to the Hamiltonian
vector fields (5). Furthermore, since all the vector fields Hio. m m+i (£) have zero
components along &1,€2,...,&m—1 coordinates, these coordinates must remain con-
stant on the maximal integral manifolds of the self-motion distribution. Consequently,
we can accomplish a reduction of the vector fields (20) to the remaining (n — m + 1)
coordinates &m,&m+1,- - -, &n, cf. (Tchon, 1997a; Tchoti and Matuszok, 1995). To this
aim, we define new variables 6; = &,4+i, 2 =0,1,...,n—m and introduce a function

H(901017'-~)9n—m):h(kl(m0)v kQ(zO)y sy km—l(mo)’ 901 teey an—m) (21)

After this restriction, the Hamiltonian vector fields (20) assume the following form
fort=1,2,...,n—m:

m+1 aHi 1m+2_a£ 0

Hizmm+i (0) = (-1) 96, 96, +(-1) 96, 90;

(22)

The vector fields (22) span the reduced self-motion distribution A%. In the case of
the kinematics with degree of redundancy 1, we have shown in (Tchori and Matuszok,
1995) that the corresponding vector field (22) is indeed Hamiltonian with (21) playing
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the role of a Hamilton function. The reduced Hamiltonian vector fields enjoy the
following remarkable property:

Proposition 2. The function H (64,61,...,0n—m) is the first integral (a constant
of motion) of each vector field from the reduced self-motion distribution, i.e. for any
V € A} the directional derivative

dHV =0 (23)
Proof. 1t suffices to compute (23) for the vector fields (22) spanning A%. Indeed,
mbs OHOH (i OH O

66’,' 600 800 691

= (—pymt (GHOH _OHOHN
N 86; 90, 96 06;)

dH Hi2. .;mmts = (1)

The knowledge of H (6;,61,...,0,—m) being the first integral of all the vector
fields V' € A} allows us to employ a stability theorem of Dirichlet (Siegel and Moser,
1971) to derive the following sufficient condition for avoidability:

Theorem 2. Let zp = (zo1,-. -3 Lom—1,L0m, - - - ,Ion)_ € R* denote a singular con-
figuration of the kinematics k. Define 8y = Tom,---,0n—m = Ton. Suppose that the
Hessian matriz

O’H -
557 (B0, .., 0n—m) (24)

is definite (positive or negative). Then zo is unavoidable. The matriz (24) can be
computed effectively in the original coordinates of the kinematics k in the following
manner:

8%H - _
ST (B0, 0n—m) =-MT (X -P)M

-(MT -+ (MT (Y -@) )+ W -5) (25)

where
( -1 2 2 2
M= Ok 8_%) :6km’ Yza—km, :6km
oz o% 82 OToz Vol
Ok (OK\ ' 0%
= | 5 — WS -1
B oz (Bg) 0z;0z; LI =m
< kn (0k\™' 0% (26)
= —m [ 22 = <m-1,m<j<
@i = g (ag;_) dz0g,” Sm-hLmsisn
Ok (OE\ ™' 0% .
i = —— | — — < <
A (ag) oz0z;) T obI=T
In expressions (26) k= (k1,...,km-1), £=(21,...,Tm-1), T= (Tm,...,ZTn) and

all the partial derivatives should be computed at the singular configuration x.
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Remark 1. The function H (8,01, - ..,0,—m) may serve as a starting point to define
a Lyapunov function for V € A%. It is worth noting that, although derived here in a
different way, the condition (24) coincides with that proposed in (Tchon, 1997b).

Now let us examine the property of avoidability. By analyzing the linear approxi-
mation to the reduced Hamiltonian vector fields Hio..mmai (8) defined by (22) and
after taking into consideration Theorem 1 we arrive at the following conclusion:

Theorem 3. Suppose that o = (Toi,...,Tom—1,%om,---,%on) € R* denotes a
singular configuration of the kinematics k. Let for a certain 1 =1,2,...,n—m

92H 9?2 2 2
o0‘H (8H) <0 (27)

962 962  \ 86,00;

Then the singular configuration zo is avoidable. The partial derivatives in (27) are
taken at B9 = Tom, .-+, 0n—m = Ton. Suitable ezpressions in the original coordinates
are easily derived from (25), (26).

Remark 2. The condition (27) for the kinematics with redundancy degree 1 has
been proved in (Tchori and Matuszok, 1995).

4. Example

We shall apply the sufficient conditions provided by Theorems 2 and 3 in order to
establish avoidability or unavoidability of singular configurations of the 4R planar
kinematics defined by (8). It is immediate to observe that singular configurations of
the kinematics (8) take the form zo = (Zo1, o2, o3, To4), Where zg; = 0, +m. In what
follows, we shall concentrate on a pair of singular configurations zj = (0,0,0,0) (all
four links stretched out) and zZ = (0,0,0,7) (thelinks 1-3 stretched out, the 4-th link
folded down). Assisted moderately by the symbolic computation in MATHEMATICA
we have found from the expressions (26)

lilagga  hilse iy
PH -1
EYD (Zo) = —liasa | lilsa lizlaa Loy (28)
lils  lials liosly
with notations I;; = l; + l;, etc. The matrix (28) is negative definite, therefore by

Theorem 2 the configuration z} is unavoidable. An analogous computation for T2
has provided

o —li(les —l) —hL(ls—=1U) ULl
500 (23) = (has =)™ | —li(ls —ls) —ligda—l) lols (29)

Iily l12l4 l123ly
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valid under assumption that lj23 # l4. An application of Theorem 3 results in the
following avoidability conditions (H;; = 8*H /86,06;):

HooH11 — Hgl =l (13 — l4) <0 = la<ly
HyoHyo — ng = —l1l4lo3 < 0, that is always satisfied

Eventually, we conclude that z? is avoidable independently of any particular values
assumed by geometric parameters of the manipulator. Both the avoidability and the
unavoidability result obtained above can be verified immediately by inspection of the
4R kinematics under consideration.

5. Conclusions

Starting from the concept of the Hamiltonian vector fields we have extended the dy-
namical system approach to deriving avoidability /unavoidability conditions of singu-
lar configurations in the redundant manipulator’s kinematics with an arbitrary degree
of redundancy. The self-motion distribution has been introduced as an infinitesimal
characterization of the self-motion manifolds of the kinematics. Self motions generat-
ed by the kinematics have been described by the self-motion control system. Sufficient
conditions for avoidability and unavoidability have been delivered, expressed in terms
of the Hessian matrix of a constant of motion of all the vector fields belonging to
the self-motion distribution. The results obtained in (Tchod and Matuszok, 1995) for
the case of the degree of redundancy 1 have been generalized to the kinematics with
redundancy degree > 2. They are also comparable to the avoidability /unavoidability
conditions found in (Tchod, 1997b) using the normal form approach of the singu-
larity theory. We believe that by a cross-section of the present approach with the
differential form approach elaborated in (Tchon, 1997a) one should be able to estab-
lish avoidability/unavoidability conditions for. arbitrary redundant kinematics with
singular configurations of arbitrary coranks.
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