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ONE-DIMENSIONAL KOHONEN LVQ NETS FOR
MULTIDIMENSIONAL PATTERN RECOGNITION

Ewa SKUBALSKA-RAFAJLOWICZ*

A new neural network based pattern recognition algorithm is proposed. The
method consists in preprocessing the multidimensional data, using a space-filling
curve based transformation into the unit interval, and employing Kohonen’s vec-
tor quantization algorithms (of SOM and LVQ types) in one dimension. The
space-filling based transformation preserves the theoretical Bayes risk. Experi-
ments show that such an approach can produce good or even better error rates
than the classical LVQ performed in a multidimensional space.

Keywords: space-filling curve, pattern recognition, léarning vector quantiza-
tion, reduction of dimension

1. Introduction

We consider a classification problem with M classes and a training sequence L,
consisting of n d-dimensional feature vectors and their known class labels. It is
known that any nonsingular transformation of the feature space including both linear
and nonlinear mappings retains critical properties of the data such as the overlap or
class separability among distributions (Fukunaga, 1972). These transformations do
not reduce the dimensionality of the feature space. Fortunately, it is possible to obtain
a class of mappings from a multidimensional bounded space into the unit interval,
which preserves crucial (from the classification point of view) properties of the space.
This class of mappings is based on space-filling curves.

A space-filling curve (SFC) is a continuous function which passes through every
point in the unit hypercube. Examples were given by Peano (1890), Hilbert (1891)
and Sierpinski (1912), among others (Sagan, 1994).

An SFC performs a transformation between an interval and a d-dimensional
bounded space, resulting in a substantial compression of the information and retaining
some of the spatially associative properties of the space. The key idea is to apply a
quasi-inverse of the SFC in order to transform multidimensional learning data to one
dimension.

The transformation has the property that the points which are close to one
another after transformation must be so in the original d-dimensional space. Essential
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properties of the classical SFCs can be found in (Milne, 1980; Sagan, 1994; Skubal-
ska-Rafajlowicz, 1997a; 1997b; 1999; Skubalska-Rafajlowicz and Krzyzak, 1996). The
space-filling curve to be discussed here is a Lipschitz continuous (of the order 1/d) and
Lebesgue measure-preserving transformation from the unit interval onto the multi-
dimensional cube, i.e. it is a continuous curve which passes through every point in
the unit hypercube.

Applications of space-filling curves include image scanning and coding (Quwei-
der and Salaeri, 1995; Stevens et al., 1983), computer display of real-valued func-
tions with multidimensional bounded domains (Patrick et al., 1968), image processing
(Lamarque and Robert, 1996), combinatorial optimization (Bartholdi and Platzman,
1988; Platzman and Bartholdi, 1989) and pattern recognition (Patrick et al., 1968).

The idea of using space-filling curves for statistical pattern recognition dates
back to the paper of Patrick et al. (1968). Unfortunately, this idea was not further
developed, because the space-filling curve based transformation cannot be one-to-one
(Patrick, 1972, p.355). :

Fortunately, a detailed examination of other possible properties of the space-
filling curves confirms the possibility of using such a type of transformations in pattern
recognition without spoiling the Bayes error (Skubalska-Rafajlowicz, 1997a; 1997b;
1999).

The LVQ algorithm with data in one dimension allows us to obtain a simple neural
network structure with a small number of weights and nice asymptotic properties in
the Bayesian framework.

2. Classification of Multidimensional Patterns and the
Bayes Risk

We confine ourselves to the statistical pattern recognition problem (Fukunaga, 1972;
Kulkarni et al., 1998). Let L, = {(X,Y%), k=1,2,...,n} be the learning sequence
which consists of independent, identically distributed (i.i.d.) pairs (Xj,Y%) of random
vectors, where X3 € R* is the k-th pattern (feature vector), while V3 € {1,2,..., M}
indicates its correct classification to one of M classes. Further, (X,Y) denotes a
generic pair which is independent of L, and has the same probability distribution

s (Xk,Y%). The problem is to classify X, using only Ly, i.e., to decide against ¥
when the distribution of (X,Y) is unknown.

Let us denote by p; = P{Y = i} the a-priori probability of class i and by
pi(z) =P{Y =iX =z}, € R%, i = 1,2,..., M the a-posteriori class probabilities.
Let fi(z) be the density of class .

The Bayes classification rule, denoted by gt R? - {1,2,..., M}, minimizes
the probability of error by deciding

g’ () =i, if p(X)= max p;(X).

The Bayes risk J* is defined by P{g*(X) # Y} = inf, P{g(X) # Y}, where the
infimum is taken over all g: R? — {1,2,..., M}.
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We confine our attention to patterns with bounded components and, without
further loss of generality, we assume that X, Xy € Ig, where I; denotes the d-
dimensional unit cube, i.e., Iz = [0,1]%

Further we consider only the case M = 2, since a general case (M > 2) reduces
easily to a sequence of dichotomies if the patterns are one-dimensional.

3. Some Properties of the Space-Filling Curves Based Data
Transformation

Let ®: I, — I be a space-filling curve, i.e., a continuous mapping from the [0, 1]
interval onto the d-dimensional unit cube [0,1] % [0,1] x ---x [0,1] and let ¥ be the
pseudoinverse of @ (it is known that ® cannot be one-to-one).

It is not possible to define ®(t) in a direct form. The mapping is regarded as
the limit of a sequence of continuous functions (Sagan, 1994) which fill the space
more and more densely. The construction of the space-filling curve can be based
on the recursive partitioning of the multidimensional space into equal parts (elemen-
tary regions). The one-to-one correspondence is defined between elementary regions
and subintervals of [0,1] in such a way that neighboring subintervals have the corre-
sponding elementary regions that are neighboring. The broken-line curve with nodal
points in elementary regions forms some approximation of the space-filling curve a
continuous mapping from the unit interval into the multidimensional cube). When
the resolution of the decomposition approaches zero, the sequence of the broken-line
curves converges uniformly to a continuous function which maps the unit interval
onto the multidimensional unit cube (Milne, 1980; Sagan, 1994). For other construc-
tions, see e.g. (Milne, 1980; Skubalska-Rafajlowicz, 1994). Figures 1-3 show the first
three approximations of the Hilbert, Sierpinski and Peano space-filling curves in 2-D,
respectively.

Fig. 1. Approximations of the Hilbert space-filling curve in 2-D.

The idea of the square-filling curves can be traced back to Peano (Milne, 1980;
Sagan, 1994). For a long time, researchers have confined their attention to planar
curves only, although the existence of multidimensional SFCs has been established
(e.g., Steinhaus in 1936 (Sagan, 1994)). Milne (1980) showed how the Peano curve
can be generalized to the multidimensional case. He proved that his curve preserves
the Lebesgue measure and that the corresponding map is Lipschitz continuous with
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Fig. 2. Approximations of the Sierpinski (Knopp-Sierpifski) space-filling curve in 2-D.

Fig. 3. Approximations of the Peano space-filling curve in 2-D.

the exponent 1/d. In fact, all classical SFCs are Lebesgue measure-preserving (Sagan,
1994), i.e., subcurves of equal length fill multidimensional regions of equal volume.

Any space-filling curve satisfying the conditions C1-C4 given below is suitable
for our purposes:

C1) @ is a Lipschitz continuous mapping, i.e., ||®(t1) — ®(¢2)|| < Lalts — t2]'/¢,
t1, ta € I, where ||-|| denotes the norm in I, Ly > 0 is some constant which
depends on d.

We remark that for d > 2 the Lipschitz exponent 1/d < 1, which implies that &
is continuous, but is not differentiable (Sagan, 1994). We write ®~}(B) = {t € I :
®(t) € B} for B C I;. Denote by s the Lebesgue measure in Iy, which is treated
here as a dimensionless quantity.

C2) & preserves the Lebesgue measure, i.e., for every Borel set B C I; we have

pa(B) = (27(B)). o

Note that construction of ® depends on d, but this is not reflected in the notation.
This convention is retained below in the definition of the pseudoinverse of ®.

It is known that @ cannot be one-to-one (Steele, 1989), thus it is not invertible,
but it can be shown that it is a.e. one-to-one (Platzman and Bartholdi, 1989; Sku-
balska-Rafajlowicz, 1994). (We write a.e. if some property holds almost everywhere
with respect to the Lebesgue measure.)
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C3) @ is a.e. one-to-one and there exists ¥ : I; — I, which is an a.e. inverse of &.

C4) V¥ preserves the Lebesgue measure in the sense that for every Borel set A C I;
we have

i (AN W) = pa (T (AN T(L))) . ®)

In (Milne, 1980; Sagan, 1994), or (condition C4) in (Platzman and Bartholdi, 1989;
Skubalska-Rafajlowicz, 1994) the results are formulated for the Peano, Hilbert and
Sierpiniski curves, which imply that conditions C1-C4 hold for them.

The next properties follow immediately from C1-C2.

€.

C5) If f(z) is a continuous function defined in I, then g(t) def f(®(@), tel is
also continuous. Furthermore, if the Holder inequality holds for f(z) with an
exponent v, 0 < v < 1, then g(t) remains a Lipschitz continuous function
with the exponent v/d.

C6) For every measurable function f: I; — I; the following integrals, interpreted
in the Lebesgue sense, are equal:

| t@de= [ j@m)a 3)
BCI, ¥(B)CI

The idea of the space-filling curve based transformation of multidimensional data
is sketched in Fig. 4 in the case of two-dimensional observations.

Before describing the learning procedure, we point out an important property of
the space-filling curve transformation. Qur aim in this section is to underline that
applying space-filling based transformations we keep the same level of the Bayes risk.

Lemma 1. Let

0 if prfi(z) —pofol(z) <0,

1 otherwise

9" (z) =

be a Bayes rule with risk J*. Then the decision rule G*(t) wf g (®(t), t € I is the
Bayes rule for the classification problem with the same a-priori probabilities po, py

and the class densities fo(®(t)) and f1(®(t)), t € I1. Furthermore, the Bayes risk
of the transformed problem also equals J*.

The proof follows immediately from C2, C4 and C6 (Skubalska-Rafajtowicz,
1999).
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Fig. 4. Sketch of the idea of transforming patterns by a space-filling curve. Left panel: the
original learning sequence with patterns from two classes (marked by diamonds and
squares). The quasi-inverse of the Peano curve is used to transform the patterns to
a one-dimensional form, which is shown in the right panel, where class labels 1 and
2 are also added to increase the readability. The arrows between the panels remind
us that the transformations are realized by the ® and ®~! mappings.

4. One-Dimensional Learning Vector Quantization

The Learning Vector Quantization (LVQ) proposed by Kohonen (Kangas et al.,
1990; Kohonen, 1990; 1995) is a supervised learning algorithm for training vector
templates (prototypes, reference vectors) known as a codebook. A finite number of
codebook vectors, each labeled with a class identifier, are chosen in the input space.
During classification the distances between an input vector and all codebook vectors
are computed. The input vector is assigned to the class corresponding to the nearest
codebook vector (i.e. using 1-NN rule (Cover and Hart, 1967)). The learning process
modifies only the location of the codebook vectors. Each training vector is compared
with all prototypes and the nearest one is selected. If the class label of the winning
codebook vector has the same class membership as the training one, then the selected
prototype is moved in the direction of the training sample, otherwise it is moved in
the opposite direction. Thus, the algorithm known as LVQ1 (Kohonen, 1990; 1995),
performs both quantization and classification tasks. Unfortunately, the boundaries
between the classes do not approximate the optimal Bayes boundary. Also the conver-
gence of LVQ2 (Kohonen, 1995) is still an open problem (Diamantini and Spalvieri,
1998).

In the approach proposed here each d-dimensional X input vector may be
thought of as a point ¥(X) on a unit interval I;. Thus the prototypes simply
form a set of numbers from I; labeled by its class-membership:

V = ((v1,c1),(v2,€2),...,(vn,en)), vi€l, c¢€{0,1}, i=12,...,N.
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The learning algorithm LVQ1 with an optimized learning rate, OLVQ1 (Kohonen,
1995), can be formulated in the following form:

ALGORITHM 0LSQ1

Step 1. Transform the observations (X;,Y;), to (¢;,Y;), t; = ¥(X;), i =1,2,...,n.
Initialize all of the reference numbers V = ((v1(0), 1), (v2(0),¢2),--., (un(0),cn))
and individual learning rates «a;, i =1,..., V.

Step 2. Generate randomly ¢t =t; = U(X;) ¢ =Y;. Find vy such that |vx(I) —¢| <
lv;(l) —t], ¢=1,...,N. :

Step 3. Adjust the position of the winning v; and its individual learning rate:

ve(l+ 1) = v (l) + s(Dae (D)t — vi(1)),
ap(l+1) = ax () /(1 + s(Dag (1)),

where s(l) =1 if the classification is correct, i.e., ¢ = ¢, and s(I) = —1 otherwise.

ALGORITHM OLSQm

To refine the position of V', we have used another modification of LVQ2, namely
OLSQm, which deals only with incorrectly classifying prototypes, i.e., vy (I + 1) =
vr(l) — ap ()t —vr (1)), if ¢ # ¢, otherwise do nothing.

Initialization of the codebook V' can be performed in many different ways (Dia-
mantini and Spalvieri, 1998; Kohonen, 1995). The prototypes can be randomly cho-
sen from the training set. A better solution is to organize the codebook vectors by
SOM or K-means, (for each class separately or for all training sequences (Diaman-
tini and Spalvieri, 1998)), but the reference vectors can also be initialized by other
algorithms, e.g., by finding a group of vectors which satisfy the K-NN riterion (Ko-
honen, 1995; Skubalska-Rafajlowicz and Krzyzak, 1996).

4.1. Compression of the Codebook Procedure

V' can be sorted, without further loss of generality, in such a way that v; < v;13. Thus,
in one-dimensional problems, the boundaries between decision regions are given by
points (v; +vit1)/2, ¢ # ¢it1, 1 =1,2,..., N — 1. The codebook which contains N
reference positions produces a decision rule which consists of at most N subintervals.
Moreover, each reference position v; with neighbors in the same class, i.e., such that
C; = Cj—1 = Cit1, can be removed from V. It is easy to see that such a compression
of V' does not change the classification rule induced by V.
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5. Examples

The data in the examples presented here have been transformed to one dimension
using the pseudoinverse of the Peano space-filling curve (Milne, 1980; Sagan, 1994).

In order to estimate the error rates of the classifier, the resubstitution and leave-
one-out method (Fukunaga, 1972) (averaged on 10 quantizers) were used for the real
data example. In the simulated situation 5 independent training series were performed
for each choice of the codebook length and the starting value of the learning parameter
in the OLSQ procedure. For each of these, an additional independent test sample
consisting of 2000 observations was generated.

The relative number of prototypes per class is chosen consistently with the ratio
between the different a-priori probabilities of classes for both the real and simulated
data.

Example 1. (Real data example—TIris data) The Iris data are measurements of three
species of iris: iris setosa, iris versicolor and iris virginica, consisting of 50 samples
each, with 4 measurements (Andrews and Hertzberg, 1985; Friedman, 1994). The
measurements are the septal length and width, and the petal length and width.

The best error rate obtained with the k-NN classifier (in 1-D) is about 2.66%
(Skubalska-Rafajlowicz and Krzyzak, 1996) and 5.33% with the k-NN classifier
(Cover and Hart, 1967) based on the original data (in 4 dimensions) (Friedman,
1994). The error rates obtained with OLSQ1 and OLSQm (used in the sequel) are
given in Table 1.

Table 1. Averaged classification errors obtained by the OLSQ Algo-
rithm with the Peano curve applied to the iris benchmark.

% of misclassification
No. of prototypes | resubstitution | leave-one-out | best vs. worst result
in one dimension method method in the l-0-o0 method
12 4.0% 4.0% 4.0%4.0%
30 3.1% 4.5% 2.66%-5.3%
60 2.4% 3.9% 2.0%-5.3%

Furthermore, it turns out that the number of prototypes can be reduced to at
most 16 (with N = 60) using the compression procedure. For comparison, with the
classical LVQ (in 4-D) the best (average) result obtained was the 5% error rate for
the codebook size of 10 (multidimensional) prototypes (Blayo et al., 1995).

Example 2. (Simulated data—two triangles) The data were generated using a uni-
form distribution over the square I. There are d = 2 input variables and two classes
with the prior probability 1/2. The classes are defined by z; + z, < 1 = class 0,
otherwise = class 1.

The diagonal, which discriminates the classes, forms a Cantor-type set in I
after transformation by the Peano curve. The example is rather sophisticated and
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was aimed at examining an extremely difficult problem with a known optimal solution.
It should be mentioned that application of the Sierpiniski curve leads to a very simple

classification problem on Ij, with one discriminating point only.

The theoretical

Bayes error is 0%. Results of experiments (averaged error rates) are shown in Figs. 5

and 6.
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Fig. 5. Average rate of misclassifications obtained by the OLSQ algorithm (with « =
0.1) vs. the number of iterations obtained for Example 2 and N = 18. Left
panel: initialization from the learning sequence, OLSQl method; right panel:
initialization close to a local optimum, OLSQ1 followed by OLSQm (squares).
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Average rate of misclassifications obtained by the OLSQ1 algorithm vs. the num-
ber of iterations obtained for Example 2. Left panel: N = 18, initialization by
SOM, OLSQI with a different starting value of the learning rate o right panel:
N =162, initialization from the learning sequence, OLSQ1 with a = 0.1.
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Example 3. (Simulated data—a multidimensional ball) The data were generated
using a standard normal distribution. Here there are d = 10 input variables (i.i.d.
standard normal) and two classes with the prior probability 1/2. The classes are
defined by

10
fo < 9.8 = class0, otherwise = classl.

i=1

This example was taken from (Friedman, 1994) and is seen as more favorable to
the k-NN procedure. The theoretical (Bayes) error rate is 0.0%, but the problem is
rather difficult to deal with.

The error rate obtained by the k-NN procedure in d = 10 dimensions and based
on 500 observations is about 0.34. The best result reported by Friedman (1994) is
about 0.26 and was obtained with the machette method, a procedure which is hybrid
between the regular k-nearest neighbor method and the tree-structured recursive
partitioning technique, cf. (Friedman, 1994) for details. A similar result, i.e., 0.26
with standard deviation 0.01, can be attained using the LSQ algorithm with 40
neurons (20 prototypes per class).

The number of neurons can be reduced to about 25 using the compression proce-
dure. Increasing the codebook size does not improve the performance of the classifier.

6. Concluding Remarks

The pattern recognition algorithm based on transforming data by SFCs and apply-
ing the LVQ-type algorithm has been discussed. Essential features of the proposed
approach are: easy learning, fast recognition of testing patterns and a large degree of
compression of the codebook. Data preprocessing of one pattern based on a space-
filling curve can be performed in O(d) time, i.e. proportionally to the dimension of
the data (the number of features). Many interesting problems which seem to be worth
of further investigations are left beyond the scope of this paper. In particular, one
may consider application of the preprocessing of multidimensional data, using a space-
filling curve based transformation into the unit interval, to the analysis of properties
LVQ-based classification algorithms, which is easier to perform in one dimension.
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