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This paper studies iterative learning control (ILC) for under-determined and over-determined systems, i.e., systems for
which the control action to produce the desired output is not unique, or for which exact tracking of the desired trajectory
is not feasible. For both cases we recommend the use of the pseudoinverse or its approximation as a learning operator.
The Tikhonov regularization technique is discussed for computing the pseudoinverse to handle numerical instability. It is
shown that for over-determined systems, the minimum error is never reached by a repetition invariant learning controller
unless one knows the system exactly. For discrete time uniquely determined systems it is indicated that the inverse is usually
ill-conditioned, and hence an approximate inverse based on a pseudoinverse is appropriate, treating the system as over-
determined. Using the structure of the system matrix, an enhanced Tikhonov regularization technique is developed which
converges to zero tracking error. It is shown that the Tikhonov regularization is a form of linear quadratic ILC, and that
the regularization approach solves the important practical problem of how to intelligently pick the weighting matrices in
the quadratic cost. It is also shown how to use a modification of the Tikhonov-based quadratic cost in order to produce a
frequency cutoff. This robustifies good learning transients, by reformulating the problem as an over-determined system.
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1. Introduction and Problem Formulation

In this paper we study general Iterative Learning Con-
trol (ILC) laws for over-determined and under-determined
systems as well as the regularization technique for ill-
conditioned discrete time systems. Over- (under-) de-
termined systems are systems where the desired output
cannot be exactly achieved by any control, or systems
in which several input control values can be chosen to
obtain the desired output. There are many applications
of iterative learning control: robotic manipulators, hard
disk drives, chemical processing, etc. (Arimotoet al.,
1984; Longman, 1998; Moore, 1993; 1997; Owenset al.,
1995; Pervozvansky, 1995b; Rogers and Owens, 1992)
Some of them, such as robotic manipulators, can clearly
be either under-determined or over-determined systems.

Iterative learning control is designed to improve the
performance of cyclical systems, and its basic idea is to

use the information from the previous cycles to improve
the system performance on the current cycle (Arimoto
et al., 1984; Longman, 1998; Moore, 1997; Rogers and
Owens, 1992).

As in (Avrachenkov, 1998; Avrachenkovet al.,
1999), let us consider a controlled system represented by
the operatorF acting on Hilbert spacesU and Y , that
is F : U → Y , where U is the control space andY is
the space of observations or system outputs. Unless noted
explicitly, the vector norm is given by the scalar product
(‖x‖ =

√
〈x, x〉) and the operator norm is induced by this

scalar product norm. Since we consider a cyclical system,
the system evolution is given by

yk = F (uk), k = 0, 1, . . . , (1)

where uk ∈ U and yk ∈ Y are the control input and
the observed output of the system at thek-th cycle, re-
spectively. Letyd be the desired output of the system.
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Our aim is to find a controlud which is a solution of the
operator equation

yd = F (u). (2)

Of course, we suppose that we do not know exactly the
operatorF , otherwise Eqn. (2) can be solved by classi-
cal methods (Dennis and Schnabel, 1983) provided the
computation is not too ill-conditioned. Since we are deal-
ing with cyclically operating systems, iterative learning
control can be used to solve the operator equation (2)on
line. Here we consider the linear iterative learning control
scheme (Arimotoet al., 1984; Longman, 1998; Owens
et al., 1995; Pervozvansky, 1995a; Rogers and Owens,
1992):

uk+1 = uk − Lzk, k = 0, 1, . . . (3)

where zk = yk − yd is the error at thek-th cycle andL
is a linearlearningoperator.

Now let us give a strict definition of over-determined
and under-determined systems. We say that a sys-
tem isunder-determinedif for some outputs there is no
unique control action, and we say that a system isover-
determinedif there exist some values of the output that
cannot be achieved, i.e., the range of operatorF is a strict
subset of the observation spaceY . In the case of under-
determined systems we are interested in the solution of
Eqn. (2) which minimizes the norm‖u‖, whereas in the
case of over-determined systems we are interested in the
minimization of ‖yd−F (u)‖ (Longmanet al., 1989). Of
course, in general, the minimum of‖yd − F (u)‖ is not
zero. Moreover, we show that for over-determined sys-
tems one cannot achieve this minimum using the learn-
ing procedure (3). This is a sharp contrast to the systems
which are in one-to-one correspondence with the control
actions and outputs. In the latter case the minimum of
‖yd − F (u)‖ is equal to zero and can be achieved by the
appropriate choice of the learning operator.

In the next section we study linear systems. The lin-
ear theory can be easily understood and it clearly demon-
strates the essence of the problems as well as possible
approaches to their solution. Then, in the third section,
we discuss the regularization technique as well as gener-
alization to non-linear systems. Finally, in the last section
we show that the pseudoinverse method and regularization
techniques can also be applied to discrete time systems
with ill-conditioned operators.

2. Linear Systems

In this section we study the case of a general linear sys-
tem described by a bounded linear operatorF . We as-
sume that the rangeR(F ) of the system operator is
closed. This ensures the existence of a pseudoinverse (or
Moore-Penrose generalized inverse) operatorF † (Ding

and Huang, 1996). In this paper we make an extensive use
of the Moore-Penrose generalized inverse. A comprehen-
sive study of the Moore-Penrose generalized inverse can
be found in the book of Campbell and Meyer (1979).

By straightforward calculations one can obtain
from (1) and (3) the following recursion formula (Long-
man, 1998; Moore, 1997; Rogers and Owens, 1992):

zk+1 = [I − FL]zk, k = 0, 1, . . . . (4)

Note that if F is a one-to-one operator, then the condition

‖I − FL‖ < 1 (5)

is satisfied for a large class of learning operators. In par-
ticular, this condition implies that the sequence{zk} con-
verges to zero in norm.

Now let us consider over-determined systems. The
recurrent equation (4) still holds, but the condition‖I −
FL‖ < 1 cannot be satisfied by choosing anyL. Let us
show this in the case of finite-dimensional spacesU and
Y . It is known (Beklemishev, 1983) that if we take the Eu-
clidean norm, i.e.‖A‖E = (

∑n
j=1

∑n
i=1 |aij |2)1/2, then

‖I−FL‖E achieves its minimum atL = F †, whereF †

is the pseudoinverse (or the Moore-Penrose generalized
inverse) of the operatorF . That is,

‖I − FF †‖E ≤ ‖I − FL‖E (6)

for any operatorL. Note thatFF † is an orthogonal pro-
jection mappingY onto R(F ). ThereforeI − FF † is
equal to zero only for systems described by a one-to-one
operator or for under-determined systems. Next we con-
sider over-determined systems for whichI − FF † 6= 0.
We note that‖A‖2 ≤ ‖A‖E , where‖ · ‖2 is the norm in-
duced by the scalar product (Dennis and Schnabel, 1983).
Next we recall thatI − FF † is an orthogonal projection
and hence‖I − FF †‖2 = 1. Thus

1 = ‖I − FF †‖2 ≤ ‖I − FF †‖E ≤ ‖I − FL‖E

and, consequently, the condition (5) cannot be satisfied
for over-determined systems. Also, we conclude from
inequality (6) that probably the best strategy for over-
determined systems is to choose the learning operatorL
as close to the pseudoinverseF † as possible.

An intuitive explanation of the fact that‖I−FL‖ ≥
1 for over-determined systems is clear: There exists such
values of the output which cannot be achieved by the
system using any control action and hence the sequence
{zk} cannot converge to zero with anyL. However, if
yd 6∈ R(F ), we are interested in the minimization of
‖yd − Fu‖. That is, ideally we want to choose a learning
operator such that the sequence{zk} converges tozd :=
Fud − yd 6= 0, whereud = arg min ‖yd − Fu‖. Recall
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that ud = F †yd provides a solution to the optimization
problemminu ‖yd−Fu‖ (Beklemishev, 1983; Campbell
and Meyer, 1979). Thus

zd = Fud − yd = FF †yd − yd = [FF † − I]yd. (7)

In the next theorem we give convergence conditions of
the general iterative learning procedure (3) for linear over-
determined systems. In particular, we will show that
unless one knows the system exactly, the limit of the
sequence{zk} does not equalzd. Namely, by using
the learning algorithm (3) we are not able to minimize
‖yd − Fu‖. Nevertheless, as the theorem shows, we are
able to find a good approximation of the optimal solution.

Theorem 1. Let the learning operator satisfy the condi-
tion

‖F † − L‖ <
1

‖F‖
. (8)

Then the iterative learning procedure (3) converges, i.e.

lim
k→∞

zk = z∞ =
[
I − F (F † − L)

]−1
zd, (9)

wherezd is given by (7). Furthermore, ifyd ∈ R(F ),

lim
k→∞

zk = 0.

Proof. Let us consider the recursion formula (4) and
rewrite the operatorI − FL as follows:

I − FL = I − FF † + FF † − FL

= I − FF † + F (F † − L).

Next we consider the product

[I − FF †]F (F † − L) = [F − FF †F ](F † − L).

Since the pseudoinverse operatorF † satisfies the equa-
tion FF †F = F (Campbell and Meyer, 1979), we have

[I − FF †]F (F † − L) = 0.

Next, using the above property and the fact thatI −FF †

is an orthogonal projection, we can give the following ex-
pression of the powers ofI − FL:

[I − FL]k =
[
(I − FF †) + F (F † − L)

]k

= (I − FF †) + F (F † − L)(I − FF †)

+ · · ·+
[
F (F † − L)

]k−1(I − FF †)

+
[
F (F † − L)

]k

= (I + F (F † − L)

+ · · ·+
[
F (F † − L)

]k−1)(I − FF †)

+
[
F (F † − L)

]k
.

From the condition (8) we conclude that the seriesI +
F (F †−L)+[F (F †−L)]2 + · · · is absolutely convergent
and, consequently

[I − FL]k →
[
I − F (F † − L)

]−1(I − FF †),

as k →∞. Then we show that(I − FF †)z0 = zd:

(I − FF †)z0 = (I − FF †)(Fu0 − yd)

= (F − FF †F )u0 + [FF † − I]yd

= [FF † − I]yd = zd.

Finally, if yd ∈ R(F ), zd = FF †yd − yd = yd − yd =
0, sinceFF † is an orthogonal projection onR(F ), and
hencez∞ = 0. This completes the proof.

The following straightforward norm estimation of
the limiting error can be immediately obtained.

Corollary 1. The upper bound on the norm of the error in
the limit in the case of an over-determined system is given
by

‖z∞‖ ≤
1

1− ‖F‖‖F † − L‖
‖zd‖.

There are several useful conclusions that can be
drawn from the results of Theorem 1. First, the expres-
sion (9) for the limiting error suggests that the learning
operator L should be chosen as close to the pseudoin-
verse F † of the system operator as possible. The later
guarantees that we will find a good approximation of the
solution to the minimization problemmin ‖yd − Fu‖.
Second, the convergence of (3) takes place if the condi-
tion (8) is satisfied. This condition can be easily satis-
fied in the case when the operatorsL and F † act on the
same subspaces. However, it is not the case in the pres-
ence of singular perturbations (Avrachenkov and Pervoz-
vansky, 1998a; 1998b; Pervozvansky and Avrachenkov,
1997). The updating ILC procedures discussed below
could be a solution to this problem.

Finally, one can see that whenyd 6∈ R(F ), un-
less one knows exactly the system operatorF , it is not
possible to achieve the minimum of‖yd − Fu‖ using
the learning procedure (3) with any choice ofL. There-
fore, ILC procedures with theupdating learning opera-
tor (Avrachenkovet al., 1999; Beigi, 1997; Longmanet
al., 1989) can be very useful for over-determined sys-
tems. Namely, the updating methods (Avrachenkovet al.,
1999; Beigi, 1997; Longmanet al., 1989) construct the
sequence of learning operators{Lk} which converge to
F †, thus one may expect that the updating learning pro-
cedure will provide an exact solution to the optimization
problemminu ‖yd − Fu‖.
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As was mentioned at the beginning of the section,
for systems described by a one-to-one operator the learn-
ing procedure (3) converges (under certain conditions on
L) to a solution of the operator equation (2). The next
theorem demonstrates that the application of the learning
procedure (3) to under-determined systems produces sim-
ilar results.

Theorem 2. Let the controlled system be under-
determined, i.e.,R(F ) = Y , and let the following condi-
tion be satisfied:

‖F † − L‖ <
1

‖F‖
.

Then the learning procedure (3) converges to a solution
of (2) and the following next norm bound holds:

‖zk+1‖ ≤ ‖F‖‖F † − L‖‖zk‖, k = 0, 1, . . . . (10)

Proof. Recall thatFF † is an orthogonal projection onto
R(F ), the range of the system operator. Since the system
is under-determined,R(F ) = Y and henceFF † = I.
Thus we can write

I − FL = FF † − FL = F [F † − L].

This immediately implies (10). Next, the norm inequal-
ity (10) ensures convergence if‖F †−L‖ < 1/‖F‖.

Note that the convergence condition in Theorem 2
is the same as the condition (8) in Theorem 1. This
shows that in the cases of both over-determined and under-
determined systems, one should try to choose the learning
operator as close to the pseudoinverseF † as possible.

3. Regularization Methods and Extension
to Non-Linear Models

As was pointed out in the previous section, if the system
operator is not invertible, we should take a good approx-
imation of the pseudoinverse operator of the system as
the learning operator. Namely, let̃F be some approxi-
mation (or known part) of the controlled system. Then,
in theory, we must takeL = F̃ †. However, in prac-
tice, the computation of̃F † is quite demanding and often
numerically unstable (Campbell and Meyer, 1979). This
is especially the case for singularly perturbed systems
(Avrachenkov and Pervozvansky, 1998a; 1998b; Pervoz-
vansky and Avrachenkov, 1997). To overcome this prob-
lem, we suggest to use the Tikhonov regularization (Bek-
lemishev, 1983; Tikhonov and Arsenin, 1974). Namely, it
is known that the pseudoinverse operator can be expressed
as the following limit (Beklemishev, 1983; Campbell and
Meyer, 1979; Tikhonov and Arsenin, 1974):

F † = lim
α→0

(F ∗F + α2I)−1F ∗,

where F ∗ is the adjoint operator toF . Thus, in practice
one has to solve the next system for∆k+1u = uk+1−uk:

(F̃ ∗F̃ + α2I)∆k+1u = −F̃ ∗zk, (11)

where the parameterα is chosen in such a way that the
matrix F̃ ∗F̃ + α2I is well conditioned. A regulariza-
tion for ILC similar to (11) was first proposed in the paper
of Pervozvansky (1995a). Note that (11) is the station-
ary point equation for the minimization problem (Beklem-
ishev, 1983; Tikhonov and Arsenin, 1974)

min
∆k+1u

{
‖zk + F̃∆k+1u‖2 + α2‖∆k+1u‖2

}
. (12)

The last formulation allows us to generalize the method
for the case of non-linear systems. That is, the control for
the next iteration is calculated byuk+1 = uk + ∆k+1u,
where∆k+1u is a solution of the following optimization
problem:

min
∆k+1u

{
‖zk + DF̃ (uk)∆k+1u‖2 + α2‖∆k+1u‖2

}
,

whereDF̃ (uk) is the Fréchet derivative of the system op-
eratorF (u) at u = uk. One can also construct a learning
procedure which solveson line the following non-linear
(and not quadratic) optimization problem:

min
u

{
‖yd − F (u)‖2 + α2‖u‖2

}
instead of the operator equation (2). The convergence
of theseregularizationlearning procedures for non-linear
systems will be investigated in future publications.

4. Creating an Enhanced Tikhonov Regular-
ization for Ill-Conditioned Systems

The previous sections treated both under-determined and
over-determined systems, and established the importance
of using a pseudoinverse matrixF , as well the possible
need for regularization. Now we turn to uniquely deter-
mined systems, neither under- nor over-determined, with
the same number of inputs as outputs. Linear discrete
time system models are considered. First we discuss the
fact that the matrixF is nearly always ill-conditioned
in discrete time linear systems. The design of ILC laws
needs techniques to handle this difficulty. Here we dis-
cuss and develop several approaches. The first one gets
around the ill-conditioned nature of the problem by re-
placing it with an over-determined system. Then the re-
sults of the previous sections apply again. The second ap-
proach directly confronts the ill-conditioning and applies
the Tikhonov regularization. However, we have consider-
able insight into the structure of the problem. As a result,
an enhanced form of the Tikhonov regularization is devel-
oped that quickly learns what it can learn quickly, and uses
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regularization only for that part of the system that is hard
to invert. This forms a new, well tuned and promising ILC
law.

4.1. Ill-Conditioning of Inverse Control
in Discrete Time Systems

When a system governed by a linear differential equation
is fed by a zero order hold as in typical digital control, it
is possible to describe the input-output relationship by a
difference equation, and to do so without approximation.
When the pole excess of the continuous time transfer func-
tion is greater than one, this discretization process will
generically introduce enough zeros in thez-transfer func-
tion that it will have a pole excess of1. Asymptotically,
as the sample time gets large, when one new zero is intro-
duced, it will appear at−1; when two zeros are introduced
one will be inside the unit circle and the other will be out-
side of it; when three zeros are introduced one will be
inside, one outside and the third at−1, etc. (Astromet al.,
1980). This means that in the majority of practical appli-
cations, there are zeros in the discrete time model that are
outside the unit circle. If one wants to invert the system to
determine the control needed to produce a chosen output,
one substitutes the desired solution into the output terms
of the difference equation, and then must solve it for the
input that can make the sum of the input terms match the
sum of the output terms. But with a zero outside the unit
circle, this is the solution of an unstable difference equa-
tion, which usually precludes the use of inverse control. In
a matrix formulation, the same effect is manifested as the
ill-conditioning of a matrix inverse computation. The lin-
ear operatorF in this discrete time problem is a matrix of
Markov parameters giving the output history of the system
as the product ofF times the input history (plus an initial
condition term that is the same every repetition). Various
methods are available for finding Markov parameters, in-
cluding one sometimes described as a subspace method
and called OKID, or observer Kalman filter identification
(Juanget al., 1993). We assume in this paper that one is
able to find reasonable entries for this matrix, and that the
matrix is not so large as to preclude finding an inverse, ex-
cept when it is ill-conditioned. It is normally of the full
rank—all that is required is the first Markov parameter to
be non zero (or in the multi-input, multi-output case, the
first Markov block element to be of the full rank). Then
all singular values ofF are non zero. However, every
unstable zero of the systemz-transfer function is asso-
ciated with a small singular value that makes the matrix
ill-conditioned. For typical trajectory lengths with typi-
cal sample rates, the matrixF is large and sufficiently
ill-conditioned so that the computation of the inverse con-
trol become impossible. It is perhaps worth pointing out
that in spite of the ill-conditioning of the matrix, in typical

learning control applications this does not imply that there
may be large control actions needed. One normally asks
for a desired trajectory that is clearly feasible for the sys-
tem, and hence a true inverse of the ill-conditioned matrix
produces reasonable control magnitudes.

4.2. Treating Ill-Conditioned Systems
as Over-Determined Systems

Since there will normally be only a few singular values
that are particularly small, and which prevent one from
taking the inverse ofF , it is natural to consider ignoring
this part of the input space. The dimension of the input
space is the number of inputs to the system model times
the number of time steps in the desired trajectory. This
number could easily be of the order of 1000. The number
of particularly small singular values is very roughly one
half the pole excess of the original continuous time sys-
tem, for a sufficiently fast sample rate. For a third order
system with no zeros, the number of small singular val-
ues will be one. Ignoring one singular value out of 1000
seems reasonable, and this would produce an over deter-
mined problem with an input space of 999 values and an
output space of the dimension 1000.

At the end of Section 2, it was discussed that in over-
determined cases one should pick the learning operator as
close as possible to the pseudoinverse ofF . Here we are
treating a limiting case of this, picking the learning oper-
ator as the best approximation to the true inverse that we
can find, a pseudoinverse that inverts all parts of the space
except those related to the particularly small singular val-
ues.

This approach can be written in mathematical de-
tail as follows. Let the singular value decomposition of
F be F = UΣV ∗ = [U1 U2] diag(Σ1,Σ2)[V1 V2]∗,
where diag represents the square block diagonal ma-
trix with the diagonal blocks as indicated.Σ1 and
Σ2 are diagonal matrices of singular values, withΣ2

containing the small singular values that cause the ill-
conditioning. An approximation toF is given by F =
[U1 U2] diag(Σ1, 0)[V1 V2]∗ = U1Σ1V

∗
1 , obtained by set-

ting Σ2 to zero. Setting it to zero eliminates the ill-
conditioning, creating a singular matrix instead. Next we
pick the learning gain matrixL to be the Moore-Penrose
pseudoinverse ofF , i.e., L = V1Σ−1

1 U∗1 ((Oh et al.,
1997) uses this approach to create local learning strate-
gies). Then (4) can be rewritten as follows:

[U1 U2]∗zk+1 = diag(0, I)[U1 U2]∗zk, (13)

whereyk, uk, zk are column matrices of the output, input,
and error histories, respectively. This equation shows that
provided the model is perfect, the iterations converge in
one repetition, making the error zero in the space spanned
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by the orthonormal columns ofU1 and leaving the error
in the space spanned byU2 unaltered. The steady state
error is z∞ = U2U

∗
2 z0. To make Theorem 1 applicable

to this problem, replacẽF by F̃ in (7), (8) and (9). This
approach is a reasonable way to eliminate the problem of
ill-conditioning, and to produce a substantial decrease in
the tracking error. However, if we want a method that also
eliminates the error in the space spanned byU2, some
form of regularization is needed, as discussed in the next
section.

4.3. Development of an Enhanced Tikhonov Regular-
ization for Uniquely Determined Systems

Consider the learning law (11) based on the Tikhonov reg-
ularization and write it in terms of singular value decom-
position. SubstituteF for F̃ in (11), presuming we have
an accurate model. Then the learning law (11) givesL in
the form

L = V (Σ2 + α2I)−1ΣU∗, (14)

and the error as a function of repetitions satisfies

U∗zk+1 =
[
I − Σ(Σ2 + α2I)−1Σ

]
U∗zk

= diag
(

α2

σ2
i + α2

)
U∗zk. (15)

This converges to zero tracking error provided|α2/(σ2
i +

α2)| < 1 for all i.

We can create a more sophisticated regularization
law by using a different weightαi for each singular value
of F . In place of (11) use(

F ∗F + V diag(α2
i )V

∗)∆k+1u = −F ∗zk, (16)

which produces the learning lawL = V [Σ2 +
diag(α2

i )]
−1ΣU∗. Then the error as a function of repe-

titions satisfies

U∗zk+1 = diag
(
α2

i /(σ2
i + α2

i )
)
U∗zk. (17)

The extra freedom of having manyαi to choose is help-
ful.

Now consider how one might use this more sophis-
ticated regularization. The first singular values are nor-
mally well determined and there is no need for regulariza-
tion with regard to this part of the system. The use of a
nonzeroαi for these singular values unnecessarily slows
down the convergence of this part of the error. Regulariza-
tion becomes necessary for the particularly small singular
values inΣ2, the singular values that prevent an easy in-
version of the full matrixF . This way of thinking sug-
gests that we simply increase those small singular values
by an amount that makes the matrix invertible, and leave
the other singular values alone. Create a modifiedF as

F = U diag(Σ1,Σ2 +diag(αi))V ∗, which adds anαi to
eachσi on the diagonal ofΣ2, picking theαi such that
the matrix is no longer ill-conditioned. Then choose the

learning matrix asL = F
−1

. Paralleling the development
of Section 4.2 produces

U∗zk+1 = diag
(
0,Σ2

(
Σ2 + diag(αi)

)−1
)

U∗zk.

(18)
As in Section 4.2, the components of the error in the space
spanned byU1 are eliminated in the first repetition, but
this time the error for thei-th column ofU , a column ap-
pearing inU2, is multiplied by αi/(σi + αi) every repe-
tition. Hence, provided the model is correct, the learning
control law converges monotonically to zero tracking er-
ror when theαi’s are chosen to satisfy∣∣∣∣ αi

σi + αi

∣∣∣∣ < 1, (19)

for all positive αi.

Note what has been accomplished by this more de-
tailed and sophisticated Tikhonov regularization. The
learning law immediately eliminates the error in that part
of the space for which we can obtain an inverse. Then the
iterations of the learning control process converge to the
inverse of the rest of the matrix, eventually eliminating the
entire error. Equation (2) is finally solved, in spite of the
fact that the matrixF is too ill-conditioned to invert.

5. Relationship between the Enhanced
Tikhonov Regularization and
the Existing ILC Laws

In this section we consider again uniquely determined
systems, and show that there is a close connection be-
tween the enhanced Tikhonov regularization developed
above and several existing iterative learning control laws.
First we show that the contraction mapping ILC of (Jang
and Longman, 1994) is a limiting case of the Tikhonov
regularization. Then we consider linear quadratic theory
for ILC. There are many works that suggest the use of a
quadratic cost functional in repetitions of learning control,
making a trade-off between the amount of change that is
made in the control action from one repetition to the next,
and the tracking error. This is a natural extension to the it-
erative learning control of linear quadratic theory for lin-
ear optimal control. Optimal control theory asks one to
state an optimality criterion, and then develops the corre-
sponding optimal control law. This works well when there
is a criterion that is well defined based on physical objec-
tives, such as time optimal or fuel optimal control. But
when using the usual quadratic cost functional, there are
two weighting matrices that must be specified, and one
normally does not know how to specify them. One makes
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a choice, observes the resulting behavior, and repeatedly
adjusts the choice until satisfied. It will be shown here that
the enhanced Tikhonov regularization creates a specific
quadratic cost functional and hence it picks these weights
in an optimized manner based on the properties of the sys-
tem. This gives considerable insight into the function of
quadratic cost ILC, and represents a contribution to the
LQ theory for ILC by telling the designer how to make
wise choices for the gains. Finally, we make a connec-
tion between the enhanced Tikhonov regularization ILC
design method of Section 4.3 and low pass filtering used
to robustify good learning transients against singular per-
turbations.

5.1. Contraction Mapping ILC Law is a Limiting
Case of Tikhonov Regularization

Jang and Longman (1994) suggest the use of the learning
law L = γF ∗. This law can be interpreted as performing
at each repetition a step along the steepest descent direc-
tion for minimizing the sum of the squares of the errors
for all time steps after the current one. IfF is known
exactly, this produces a monotonic decay of the tracking
error. Note that as the scalarα becomes large, and makes
Σ negligible, the Tikhonov based learning law (14) ap-
proaches this contraction mapping law with the learning
gain γ = α−2. Hence, the contraction mapping law is
a special case of the Tikhanov regularization and thus a
special case of quadratic cost ILC as discussed below.

5.2. Enhanced Tikhonov Regularization Creates
a Special, Well-Designed Linear Quadratic
ILC Law

In the development of the ILC field one naturally asked
how the most basic form of state variable control theory,
the linear quadratic optimal control result, might be use-
ful for the learning control objective. This can take two
forms. One is to ask for a learning control law that learns
to converge to the trajectory generated by linear quadratic
optimal control for a chosen quadratic cost function (see,
e.g., (Longmanet al., 1989; Longman and Chang, 1990)).
In this case, the quadratic cost is a trade-off between the
actual control effort and the tracking error. This is one so-
lution to problems in which the desired trajectory is not
feasible due to actuator saturation constraints. By con-
trast, the non-feasibility addressed by the over-determined
problem in the previous sections can be classified as a ge-
ometric non-feasibility. The second use is to create a cost
functional of the form

J(zk+1,∆k+1u) = zT
k+1Qzk+1 + ∆k+1u

T R∆k+1u,
(20)

where Q and R are symmetric positive-definite matri-
ces. This time the penalty is not on the actual control,
but on the change in control from the last repetition, and
hence the purpose of the cost functional is to control the
transients during the learning process by preventing too
large a change in control from one repetition to the next.
The iterations aim to converge to zero tracking error, not
to the control action generated by a normal quadratic cost
optimal control problem.

Now consider how the standard Tikhonov regulariza-
tion is related to this linear quadratic ILC law. Note that
the termzk + F∆k+1u in (12) is equal tozk+1, so that
(12) can be rewritten as

min
∆k+1u

{
‖zk+1‖2 + α2‖∆k+1u‖2

}
. (21)

We conclude that the traditional Tikhonov regularization
for this problem produced a special case of the quadratic
cost ILC control problem (20), with theQ and R ma-
trices chosen as the identity andα2 times the identity,
respectively (Frueh and Phan, 2003).

Now consider the more sophisticated regularization
of (17) (with (18) as a special case). Analogous develop-
ments show that this is associated with a quadratic cost of
the form

min
∆k+1u

{
zT
k+1zk+1 + ∆k+1u

T
[
V diag(α2

i )V
T
]
∆k+1u

}
.

(22)

The weighting matrixQ is still the identity, but by merg-
ing the enhanced Tikhonov regularization with the linear
quadratic theory, we see that we could modifyQ to em-
phasize parts of the trajectory where good tracking early
in the learning process is important. This time the con-
trol weighting matrixR has a very specialized structure
making use of the knowledge of the system.

The enhanced Tikhonov regularization of Section 4.3
addresses one of the weakest aspects of LQ theory, i.e. that
one has little guidance as to how to pick theQ andR ma-
trices, other than trial and error. Regularization makes use
of the structure of the problem to come up with anR ma-
trix with a very special structure specifically designed to
address the source of the ill-conditioning in the ILC prob-
lem. This structure is not that which one could simply
settle on while adjusting the weights according to the ob-
served behavior, and hence it represents a contribution to
the use of linear quadratic theory in ILC.

5.3. Achieving the Robustness of Good Learning
Transients to Model Uncertainties by Modifying
the Enhanced Tikhonov Regularization

An important issue in designing ILC laws is producing the
robustness of good learning transients to singular pertur-
bations (Avrachenkov and Pervozvansky, 1998a; 1998b)
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or, equivalently, to phase errors of the system model at
high frequencies (Longman and Huang, 2003). Unlike
normal feedback control, parasitic poles at high frequen-
cies, far above the bandwidth of the controller, can easily
destabilize a learning control system. In (Avrachenkov
and Pervozvansky, 1998a; 1998b; Longman, 1998; 2000;
Pervozvansky and Avrachenkov, 1997) stability and good
transient robustness are obtained for such unmodeled high
frequency dynamics by cutting off the learning above the
frequency for which one no longer has confidence in the
model (this cutoff can also be tuned based on observa-
tions of the frequency content of the response of the learn-
ing process). In what follows, we discuss how the fre-
quency response, and hence a frequency cutoff, is re-
lated to singular values, and how to interpret the enhanced
Tikhonov regularization in terms of a frequency weighted
cost functional. Then we show how to modify the en-
hanced Tikhonov quadratic cost to create a frequency cut-
off. In the process, we see that a frequency cutoff is equiv-
alent to producing an over-determined ILC problem.

Jang and Longman (1996) discuss the relationship
between the singular values ofF and the magnitude of
the frequency response of the system at discrete frequen-
cies. As the trajectory becomes long, the singular val-
ues converge to the magnitude response. In other words,
(22) is a finite time, time domain version of a frequency
weighted cost functional, with theα2

i ’s being weights for
different frequencies. There is a natural connection be-
tween the quadratic cost in the time domain and the fre-
quency domain using Parseval’s theorem.

In the quadratic cost Tikhonov regularization of (22)
this kind of robustness can be accomplished as a limiting
case by letting theαi weights associated with the singu-
lar values above the cutoff frequency tend to infinity. Then
no control action is taken in this part of the space. To get
to the limit in this process, one can transform the control
variables to new coordinates̄u = V ∗u, then delete those
control variables associated with singular values that re-
late to the frequencies above the cutoff, and then formulate
the quadratic cost for the remaining control coordinates.
The truncation of singular values is a finite time version
of the cliff filtering in (Plotnik and Longman, 1999). (For
related developments for continuous time systems see also
(Avrachenkov and Pervozvansky, 1998a; 1998b; Pervoz-
vansky and Avrachenkov, 1997).) This limiting case pro-
duces an over-determined problem.

In terms of the new control variables, we can cre-
ate a new rectangular matrixF , and then the learning
law, for example the one above Eqn. (17), becomesL =
V [ΣT Σ + diag(α2

i )]
−1Σ∗U∗. This L generates changes

in the control actionū from those of the previous repe-
tition, making use of the singular value decomposition of
this new rectangularF . A procedure of this kind is also
appropriate when the dimension of anF for which one

can numerically obtain a singular value decomposition is
less than the full dimension of the problem.

As a regularization procedure, the Tikhonov regular-
ization aims to produce robustness. It naturally produces
robustness to errors in the knowledge of the frequency
magnitude response of the system, i.e., singular values,
and addresses the issues of ill-conditioning. But no state-
ments are made here relative to producing robustness to
errors in one’s knowledge of the singular vectors inU
and V . These vectors contain the phase information, and
the stability of the ILC iterations is sensitive to phase er-
rors. As the trajectory gets long compared to the time
constants of the system, the column vectors inU and V
start to look rather like sine and cosine waves, or two sines
with different phases. TheV ∗zk finds the projection of
the error onto these sinusoids. Then the singular values
influence the amplitude changes, and multiplying by the
columns ofU puts in the output sinusoid with the appro-
priate phase change included for the associated discrete
frequency. It is important to have robustness to errors in
the phase information in the modelF , and this advocates
the use of a frequency cutoff.

Hence, it is recommended here that the enhanced reg-
ularization or LQ ILC law be used (Eqns. (16) and (22))
and that it be combined with a singular value cutoff as de-
scribed above. This approach to learning control benefits
from the use of a system model, it involves regulariza-
tion that solves the ill-conditioned model inversion prob-
lem by iterations, the regularization produces robustness
to singular value or magnitude frequency response errors
of the model, and then the truncation produces robustness
to errors in the phase information at high frequency.

6. Conclusions

This paper studies first the application of iterative learning
control to linear over-determined and under-determined
systems. It is shown that in the case of either over-
determined or under-determined linear systems the learn-
ing operator has to be chosen as close to the pseudoin-
verse operator of the system as possible. Conditions are
provided for the convergence of the learning iterations.
In the case of under-determined systems as well as in the
case of an over-determined system with the condition that
the desired trajectory is feasible (yd ∈ R(F )), the norm
of error converges to zero as the iterations go to infinity.
However, in the case of over-determined systems when
yd 6∈ R(F ), it is not possible to obtain an exact solution
for min ‖yd − Fu‖ with any choice of the iteration in-
variant learning operator. The generalized inverse method
is shown to be closely related to the Tikhonov-type regu-
larization, which can be equally applied to non-linear sys-
tems. Then we turn to uniquely determined systems and
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show that often the methods for over-determined systems
are relevant, and that, in addition, several ILC laws can
be perceived as forms of the Tikhonov regularization. It is
said that computing the inverse for discrete time linear dy-
namic systems is normally ill-conditioned. A generalized
Tikhonov regularization technique is developed that in the
first iteration produces the pseudoinverse solution of the
part of the system that is easily invertible, and iterates to
achieve the inverse for the rest of the system. It is shown
that quadratic cost iterative learning control can be seen
as a form of the Tikhonov regularization, and that the en-
hanced regularization approach solves the basic problem
in quadratic cost approaches, i.e. how to select the weight-
ing matrices. The approach produces an intelligent choice
precisely tuned to the problem at hand, and one that we
would not find by a normal adjustment. The need for a fre-
quency cutoff for robustness to model errors is discussed,
and it is shown how one can modify the Tikhonov-based
ILC in order to produce this cutoff. The approach converts
the problem into an over-determined one.
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