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This paper studies iterative learning control (ILC) for under-determined and over-determined systems, i.e., systems for
which the control action to produce the desired output is not unique, or for which exact tracking of the desired trajectory
is not feasible. For both cases we recommend the use of the pseudoinverse or its approximation as a learning operator.
The Tikhonov regularization technique is discussed for computing the pseudoinverse to handle numerical instability. It is
shown that for over-determined systems, the minimum error is never reached by a repetition invariant learning controller
unless one knows the system exactly. For discrete time uniquely determined systems it is indicated that the inverse is usually
ill-conditioned, and hence an approximate inverse based on a pseudoinverse is appropriate, treating the system as over-
determined. Using the structure of the system matrix, an enhanced Tikhonov regularization technique is developed which
converges to zero tracking error. It is shown that the Tikhonov regularization is a form of linear quadratic ILC, and that
the regularization approach solves the important practical problem of how to intelligently pick the weighting matrices in
the quadratic cost. It is also shown how to use a modification of the Tikhonov-based quadratic cost in order to produce a
frequency cutoff. This robustifies good learning transients, by reformulating the problem as an over-determined system.

Keywords: Iterative Learning Control, over-determined, under-determined, ill-conditioned systems, pseudoinverse

1. Introduction and Problem Formulation use the information from the previous cycles to improve
the system performance on the current cycle (Arimoto
In this paper we study general Iterative Learning Con- et al, 1984; Longman, 1998; Moore, 1997; Rogers and
trol (ILC) laws for over-determined and under-determined Owens, 1992).
systems as well as the regularization technique for ill- As in (Avrachenkov, 1998; Avrachenkoet al,
conditioned discrete time systems. Over- (under-) de-1999), let us consider a controlled system represented by
termined systems are systems where the desired outputhe operatorF acting on Hilbert space#’ and Y, that
cannot be exactly achieved by any control, or systemsis [’ : U — Y, whereU is the control space antl’ is
in which several input control values can be chosen to the space of observations or system outputs. Unless noted
obtain the desired output. There are many applicationsexplicitly, the vector norm is given by the scalar product
of iterative learning control: robotic manipulators, hard (||z|| = \/{x, z)) and the operator norm is induced by this

disk drives, chemical processing, etc. (Arimago al, scalar product norm. Since we consider a cyclical system,
1984; Longman, 1998; Moore, 1993; 1997; Owenbal,, the system evolution is given by

1995; Pervozvansky, 1995b; Rogers and Owens, 1992)

Some of them, such as robotic manipulators, can clearly yr = Fug), k=0,1,..., 1)

be either under-determined or over-determined systems. .
y whereu;, € U and y, € Y are the control input and

Iterative learning control is designed to improve the the observed output of the system at theh cycle, re-
performance of cyclical systems, and its basic idea is to spectively. Lety, be the desired output of the system.
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Our aim is to find a controk; which is a solution of the  and Huang, 1996). In this paper we make an extensive use
operator equation of the Moore-Penrose generalized inverse. A comprehen-
ya = F(u). 2 sive study of the Moore-Penrose generalized inverse can

be found in the book of Campbell and Meyer (1979).

By straightforward calculations one can obtain
from (1) and (3) the following recursion formula (Long-
man, 1998; Moore, 1997; Rogers and Owens, 1992):

Of course, we suppose that we do not know exactly the
operator F', otherwise Eqgn. (2) can be solved by classi-
cal methods (Dennis and Schnabel, 1983) provided the
computation is not too ill-conditioned. Since we are deal-
ing with cyclically operating systems, iterative learning
control can be used to solve the operator equatiomii2)

line. Here we consider the linear iterative learning control Note that if F is a one-to-one operator, then the condition
scheme (Arimotoet al., 1984; Longman, 1998; Owens

2ky1 = I — FL]zx, k=0,1,.... (4)

et al, 1995; Pervozvansky, 1995a; Rogers and Owens, I - FL| <1 (5)
1992):
Ugr1 = up — Lz, k=0,1,... (3) is satisfied for a large class of learning operators. In par-
_ ticular, this condition implies that the sequenis, } con-
where z;, = yr — yq IS the error at thek-th cycle andL verges to zero in norm.

is a linearlearningoperator. . .
gop Now let us consider over-determined systems. The

Now let us give_z a strict definition of over-determined ocirrent equation (4) still holds, but the conditig —
and _under-determln_ed .systems. We say that. a sys-FLH < 1 cannot be satisfied by choosing afy Let us
tem isunder-determinedf for some outputs there is N0 gpow this in the case of finite-dimensional spaéesand

unique control action, and we say that a systeraver-  y-_tjs known (Beklemishev, 1983) that if we take the Eu-
determinedf there exist some values of the output that jigean norm. i ellAlz = (0, 3o lai;|?)Y/2, then
y e Jj= i= 1, 1

cannot be achieved, i.e., the range of operdtois a strict
subset of the observation spate In the case of under-
determined systems we are interested in the solution of
Eqgn. (2) which minimizes the nornfju||, whereas in the
case of over-determined systems we are interested in the |l — FF'|g < ||I - FL||g (6)
minimization of ||y, — F'(u)|| (Longmanet al, 1989). Of -

course, in general, the minimum dfy; — F(v)|| isnot  for any operatorL. Note thatFF'! is an orthogonal pro-
zero. Moreover, we show that for over-determined sys- jection mappingY” onto R(F). Thereforel — FFT is
tems one cannot achieve this minimum using the learn- equal to zero only for systems described by a one-to-one
ing procedure (3). This is a sharp contrast to the systemsoperator or for under-determined systems. Next we con-
which are in one-to-one correspondence with the control sider over-determined systems for whigh- FET £ 0.
actions and outputs. In the latter case the minimum of \Wwe note that||A||> < ||A||z, where]| - |2 is the norm in-

lya — F(u)|| is equal to zero and can be achieved by the duced by the scalar product (Dennis and Schnabel, 1983).
appropriate choice of the learning operator. Next we recall that/ — FF' is an orthogonal projection

In the next section we study linear systems. The lin- and hencd|l — FF ||y = 1. Thus
ear theory can be easily understood and it clearly demon-
strates the essence of the problems as well as possible
approaches to their solution. Then, in the third section, . -
we discuss the regularization technique as well as gener—?nd’ conjequer)tlyathe condmonl (5) cannot ble dsatf|sf|ed
alization to non-linear systems. Finally, in the last section for over-determined systems. Also, we conclude from
we show that the pseudoinverse method and reguIarizationmequal_Ity (6) that pr_obably the best strat_egy for over-

determined systems is to choose the learning operator

techniques can also be applied to discrete time systems . .
with ill-conditioned operators. as close to the pseudoinver$g as possible.

An intuitive explanation of the fact thgtl — FL|| >

1 for over-determined systems is clear: There exists such
2. Linear Systems values of the output which cannot be achieved by the

system using any control action and hence the sequence
In this section we study the case of a general linear sys-{z;} cannot converge to zero with any. However, if
tem described by a bounded linear operatar We as- ya € R(F), we are interested in the minimization of
sume that the rangék(F) of the system operator is |ys — Ful|. Thatis, ideally we want to choose a learning
closed. This ensures the existence of a pseudoinverse (ooperator such that the sequengg,} converges toz, :=
Moore-Penrose generalized inverse) operalior (Ding Fug —yq # 0, whereuy = argmin ||yq — Ful|. Recall

|I — FL| g achieves its minimum at = F'T, where F'f
is the pseudoinverse (or the Moore-Penrose generalized
inverse) of the operatof'. That is,

L= |1~ FFYy < |I - FFYp < |l - FL||g
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that uy; = F'y, provides a solution to the optimization From the condition (8) we conclude that the series-

problemmin,, ||ys — Fu|| (Beklemishev, 1983; Campbell F(FT—L)+[F(FT—L)]?>+--- is absolutely convergent

and Meyer, 1979). Thus and, consequently
Zd:Fud—yd:FFTyd_yd:[FFT_I]yd. (7) [I_FL]k_)[I_F(FT_L)}—l(I_FFT),

In the next theorem we give convergence conditions of

the general iterative learning procedure (3) for linear over- @s k — co. Then we show thafl — FFT)z = z4:

determined systems. In particular, we will show that

unless one knows the system exactly, the limit of the (I = FF')z = (I = FF")(Fuo — ya)

sequence{z;} does not equak,. Namely, by using _

the Iearnir{19 z}:ugorithm (3) we are not able to minimize = (F ~ FF'Fjuo + [FF' ~Iya

llya — Ful|. Nevertheless, as the theorem shows, we are — [FF' — I)yq = 2.

able to find a good approximation of the optimal solution.

Finally, if y4 € R(F), 24 = FFlyq —ya = Y4 — ya =

0, since FFT is an orthogonal projection o (F), and

hencez,, = 0. This completes the proof. =

Theorem 1. Let the learning operator satisfy the condi-
tion
+ 1
|F' = L] < TEl 8 . ) L
1l The following straightforward norm estimation of
Then the iterative learning procedure (3) converges, i.e. the limiting error can be immediately obtained.

lim 2 = 2o = [I — F(FT - L)]_l?«’(h 9)

k—oo

Corollary 1. The upper bound on the norm of the error in
the limit in the case of an over-determined system is given
by
lim z, = 0. 1
i l[2ooll <

> 1—[|[F[|IFT = L]

where z,; is given by (7). Furthermore, if; € R(F),

l[zall-

Proof. Let us consider the recursion formula (4) and

rewrite the operatol — F'L as follows: There are several useful conclusions that can be

I-FL=I-FF'+FF' - FL drawn from the results of Theorem 1. First, the expres-
sion (9) for the limiting error suggests that the learning
=I-FF' 4+ F(F' - L). operator . should be chosen as close to the pseudoin-

verse 't of the system operator as possible. The later
guarantees that we will find a good approximation of the
[[ - FFYF(Ft - L) =[F — FFTF|(FT - L). solution to the minimization problenmin |lyq — Ful.
Second, the convergence of (3) takes place if the condi-
Since the pseudoinverse operatbi satisfies the equa-  tion (8) is satisfied. This condition can be easily satis-
tion FF'F = F (Campbell and Meyer, 1979), we have  fied in the case when the operatdisand F' act on the
s . same subspaces. However, it is not the case in the pres-
- FFT]F(F - 1) =0 ence of singular perturbations (Avrachenkov and Pervoz-
Next, using the above property and the fact that F'F'f vansky, 1998a; 1998b; Pervozvansky and Avrachenkov,
is an orthogonal projection, we can give the following ex- 1997). The updating ILC procedures discussed below
pression of the powers of — F'L: could be a solution to this problem.

Finally, one can see that whepy ¢ R(F), un-
less one knows exactly the system operafqrit is not

Next we consider the product

I - FL* = [(I-FF)+F(F - 1)"

— (- FFY + F(F' — L)(I — FF) possible to achieve the minimum dfy; — Fu|| using
the learning procedure (3) with any choice bf There-
o [F(FT - L)]kfl(_f — FFY) fore, ILC procedures with thepdatinglearning opera-
tor (Avrachenkowet al, 1999; Beigi, 1997; Longmaast
+ [F(FT - L)]k al.,, 1989) can be very useful for over-determined sys-
tems. Namely, the updating methods (Avrachengbal,,
=+ F(FT - L) 1999; Beigi, 1997; Longmaset al, 1989) construct the
sequence of learning operatof.;} which converge to
o [F(FT - L)]kil)(I — FFT) FT, thus one may expect that the updating learning pro-

. cedure will provide an exact solution to the optimization
+ [F(FT - L)]". problemmin,, ||yq — Ful|.
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As was mentioned at the beginning of the section, where F* is the adjoint operator td". Thus, in practice
for systems described by a one-to-one operator the learn-one has to solve the next system iy, yu = w41 —ug:
ing procedure (3) converges (under certain conditions on - ) -

L) to a solution of the operator equation (2). The next (F*F + a"I)Agpru = —F 2z, (11)
theorem demonstrates that the application of the learning
procedure (3) to under-determined systems produces sim
ilar results.

where the parametet: is chosen in such a way that the
matrix F*F + oI is well conditioned. A regulariza-
tion for ILC similar to (11) was first proposed in the paper
Theorem 2. Let the controlled system be under- Of Pervozvansky (1995a). Note that (11) is the station-
determined, i.e.R(F) = Y, and let the following condi- &Y point equation for the minimization problem (Beklem-

tion be satisfied: ishev, 1983; Tikhonov and Arsenin, 1974)
17— ) < doin, e+ Pl + oA} (2)
[

The last formulation allows us to generalize the method
for the case of non-linear systems. That is, the control for
the next iteration is calculated by, 1 = ux + Axs1u,
lzia |l < IFINET = L||||z&l, k=0,1,.... (10) \;I)Vrrcﬁ)rlirﬁ-kﬂu is a solution of the following optimization

Then the learning procedure (3) converges to a solution
of (2) and the following next norm bound holds:

Proof. Recall that FF'T is an orthogonal projection onto
R(F), the range of the system operator. Since the system
is under-determinedR (F) = Y and henceFFf = I.

min {[|zg + DF(up) Apyru|? + o®|| Agpaul*},
Ak+1u

Thus we can write where DF (u;,) is the Fréchet derivative of the system op-
; ; erator F'(u) at u = u. One can also construct a learning
I-FL=FF' - FL=F[F'—L]. procedure which solvesn line the following non-linear

This immediately implies (10). Next, the norm inequal- (and not quadratic) optimization problem:

ity (10) ensures convergencelif""—L|| < 1/||F|. | min { ya — F(u)|2 + o?|[ul]}

Note that the convergence condition in Theorem 2
is the same as the condition (8) in Theorem 1. This instead of the operator equation (2). The convergence
shows that in the cases of both over-determined and underof theseregularizationlearning procedures for non-linear
determined systems, one should try to choose the learninggystems will be investigated in future publications.
operator as close to the pseudoinvefse as possible.

4. Creating an Enhanced Tikhonov Regular-
3. Regularization Methods and Extension ization for Ill-Conditioned Systems

to Non-Linear Models . : ,
The previous sections treated both under-determined and

As was pointed out in the previous section, if the system over-determined systems, and established the importance
operator is not invertible, we should take a good approx- of using a pseudoinverse matriX, as well the possible
imation of the pseudoinverse operator of the system asheed for regularization. Now we turn to uniquely deter-
the learning operator. Namely, |6t be some approxi- Mmined systems, neither under- nor over-determined, with
mation (or known part) of the controlled system. Then, the same number of inputs as outputs. Linear discrete
in theory, we must takel = FT. However, in prac- time system models are considered. First we discuss the
tice, the computation of’ is quite demanding and often  fact that the matrixF' is nearly always ill-conditioned
numerically unstable (Campbell and Meyer, 1979). This in discrete time linear systems. The design of ILC laws
is especially the case for singularly perturbed systemsneeds techniques to handle this difficulty. Here we dis-
(Avrachenkov and Pervozvansky, 1998a; 1998b; Pervoz-cuss and develop several approaches. The first one gets
vansky and Avrachenkov, 1997). To overcome this prob- around the ill-conditioned nature of the problem by re-
lem, we suggest to use the Tikhonov regularization (Bek- placing it with an over-determined system. Then the re-
lemishev, 1983; Tikhonov and Arsenin, 1974). Namely, it Sults of the previous sections apply again. The second ap-
is known that the pseudoinverse operator can be expressefiroach directly confronts the ill-conditioning and applies
as the following limit (Beklemishev, 1983; Campbell and the Tikhonov regularization. However, we have consider-
Meyer, 1979; Tikhonov and Arsenin, 1974): able insight into the structure of the problem. As a result,
an enhanced form of the Tikhonov regularization is devel-
Ff= Jm (F7F 4 o*I)7F, oped that quickly learns what it can learn quickly, and uses
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regularization only for that part of the system that is hard learning control applications this does not imply that there

to invert. This forms a new, well tuned and promising ILC may be large control actions needed. One normally asks

law. for a desired trajectory that is clearly feasible for the sys-
tem, and hence a true inverse of the ill-conditioned matrix

o produces reasonable control magnitudes.
4.1. lll-Conditioning of Inverse Control

in Discrete Time Systems . N
4.2. Treating lll-Conditioned Systems
When a system governed by a linear differential equation as Over-Determined Systems
is fed by a zero order hold as in typical digital control, it
is possible to describe the input-output relationship by a X .
difference equation, and to do so without approximation. that are particularly small, and which prevent one from

When the pole excess of the continuous time transfer func-t2king the inverse off”, it is natural to consider ignoring
tion is greater than one, this discretization process will thiS part of the input space. The dimension of the input

generically introduce enough zeros in theransfer func- ~ SPace is the number of inputs to the system model times

tion that it will have a pole excess af Asymptotically, the number of tim_e steps in the desired trajectory. This
as the sample time gets large, when one new zero is intro-NUMber could easily be of the order of 1000. The number

duced, it will appear at 1: when two zeros are introduced  ©f Particularly small singular values is very roughly one
one will be inside the unit circle and the other will be out- half the pole excess of the original continuous time sys-

side of it: when three zeros are introduced one will be tem, for a sufficiently fast sample rate. For a third order

inside, one outside and the third-at, etc. (Astromet al,, system with no zeros, the number of small singular val-
1980). This means that in the majority of practical appli- Y€S will be one. Ignoring one singular value out of 1000

cations, there are zeros in the discrete time model that are>6€MS reasonable, and this would produce an over deter-
outside the unit circle. If one wants to invert the system to Minéd problem with an input space of 999 values and an

determine the control needed to produce a chosen output®UtPut space of the dimension 1000.

one substitutes the desired solution into the output terms At the end of Section 2, it was discussed that in over-
of the difference equation, and then must solve it for the determined cases one should pick the learning operator as
input that can make the sum of the input terms match the close as possible to the pseudoinverse-ofHere we are
sum of the output terms. But with a zero outside the unit treating a limiting case of this, picking the learning oper-
circle, this is the solution of an unstable difference equa- ator as the best approximation to the true inverse that we
tion, which usually precludes the use of inverse control. In can find, a pseudoinverse that inverts all parts of the space
a matrix formulation, the same effect is manifested as the except those related to the particularly small singular val-
ill-conditioning of a matrix inverse computation. The lin- ues.

ear operatotF' in this discrete time problem is a matrix of This approach can be written in mathematical de-
Markov parameters giving the output history of the system taj| a5 follows. Let the singular value decomposition of
as the product of” times the input history (plus aninitial  p pe p = UDV* = (U Us]diag(S1,52)[Va Val*,
condition term that is the same every repetition). Various where diag represents the square block diagonal ma-
methods are available for finding Markov parameters, in- tix with the diagonal blocks as indicated.X; and

cluding one sometimes described as a subspace methosh, are diagonal matrices of singular values, with

(Juanget al, 1993). We assume in this paper that one is conditioning. An approximation td is given by F =

able to find reasonable entries for this matrix, and that the [/, 17,] diag(2;,0)[Vy Va]* = U, V5, obtained by set-
matrix is not so large as to preclude finding an inverse, ex-ting 53, to zero. Setting it to zero eliminates the ill-
cept when it is ill-conditioned. It is normally of the full - congditioning, creating a singular matrix instead. Next we
rank—all that is required is the first Markov parameter to pjck the learning gain matrix. to be the Moore-Penrose
be non zero (or in the multi-input, multi-output case, the pseudoinverse off, i.e., L = Vis7'Ur ((Oh et al,

first Markov block element to be of the full rank). Then 1997) uses this approach to create local learning strate-
all singular values ofF" are non zero. However, every gies). Then (4) can be rewritten as follows:

unstable zero of the systemtransfer function is asso-

ciated with a small singular value that makes the matrix Uy Us]* 241 = diag(0,I)[U; Ua]* 2, (13)
ill-conditioned. For typical trajectory lengths with typi-

cal sample rates, the matrik' is large and sufficiently  wherey;, ux, zx are column matrices of the output, input,
ill-conditioned so that the computation of the inverse con- and error histories, respectively. This equation shows that
trol become impossible. It is perhaps worth pointing out provided the model is perfect, the iterations converge in
that in spite of the ill-conditioning of the matrix, in typical one repetition, making the error zero in the space spanned

Since there will normally be only a few singular values
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by the orthonormal columns dfl; and leaving the error  F = U diag(3;, X2 +diag(a;))V*, which adds any; to

in the space spanned Wy, unaltered. The steady state eacho; on the diagonal of:,, picking the «;; such that
error is z, = UsUs 2. To make Theorem 1 applicable the matrix is no longer ill-conditioned. Then choose the
to this problem, replacé” by F' in (7), (8) and (9). This  |earning matrixas, = F . Paralleling the development
approach is a reasonable way to eliminate the problem ofof Section 4.2 produces

ill-conditioning, and to produce a substantial decrease in

the tracking error. However, if we want a method that also U*zpy1 = diag (0, P (22 + diag(ai))_l) U*z.
eliminates the error in the space spannediyy, some (18)

form' of regularization is needed, as discussed in the nextag in Section 4.2, the components of the error in the space
section. spanned byU; are eliminated in the first repetition, but
this time the error for the-th column of U, a column ap-
4.3. Development of an Enhanced Tikhonov Regular-  pearing inUs, is multiplied by o;/(o; + «;) every repe-
ization for Uniquely Determined Systems tition. Hence, provided the model is correct, the learning

control law converges monotonically to zero tracking er-
Consider the Iearning law (11) based on the Tikhonov reg- ror when theai’s are chosen to Satisfy

ularization and write it in terms of singular value decom-
position. Substitutel” for F in (11), presuming we have
an accurate model. Then the learning law (11) gizem
the form

Q
o; + o,

<1, (29)

for all positive «;.
) N o Note what has been accomplished by this more de-
and the error as a function of repetitions satisfies tailed and sophisticated Tikhonov regularization. The
_ learning law immediately eliminates the error in that part
* _ . 2 2 1 ®
Uz = [I 27+’ E]U “k of the space for which we can obtain an inverse. Then the

L=V(2?4a’I)"'2U", (14)

o2 iterations of the learning control process converge to the
= diag (M) U 2. (15) inverse of the rest of the matrix, eventually eliminating the
! entire error. Equation (2) is finally solved, in spite of the
This converges to zero tracking error provid|eﬂ/(o-i2 + fact that the matrixZ' is too ill-conditioned to invert.

a?)| < 1 forall i.

We can create a more sophisticated regularization g Relationship between the Enhanced
law by using a different weightv; for each singular value - i
of F. In place of (11) use T|kh0n_0\{ Regularization and
the Existing ILC Laws

F*F +V diag(a?)V*)A = —F*z, 16 , . _ o :
( +V diag(a;) ) htt “k (16) In this section we consider again uniquely determined

which produces the learning lan. = VI[X? + systems, and show that there is a close connection be-
diag(a2)]~'SU*. Then the error as a function of repe- tween the enhanced Tikhonov regularization developed
titions satisfies above and several existing iterative learning control laws.

First we show that the contraction mapping ILC of (Jang
Urzpyr = diag (o /(07 + 7)) Uz, (17) and Longman, 1994) is a limiting case of the Tikhonov
regularization. Then we consider linear quadratic theory
The extra freedom of having many; to choose is help-  for |LC. There are many works that suggest the use of a
ful. quadratic cost functional in repetitions of learning control,
Now consider how one might use this more sophis- making a trade-off between the amount of change that is
ticated regularization. The first singular values are nor- made in the control action from one repetition to the next,
mally well determined and there is no need for regulariza- and the tracking error. This is a natural extension to the it-
tion with regard to this part of the system. The use of a erative learning control of linear quadratic theory for lin-
nonzeroc; for these singular values unnecessarily slows ear optimal control. Optimal control theory asks one to
down the convergence of this part of the error. Regulariza- state an optimality criterion, and then develops the corre-
tion becomes necessary for the particularly small singular sponding optimal control law. This works well when there
values in X5, the singular values that prevent an easy in- is a criterion that is well defined based on physical objec-
version of the full matrix 7. This way of thinking sug-  tives, such as time optimal or fuel optimal control. But
gests that we simply increase those small singular valueswhen using the usual quadratic cost functional, there are
by an amount that makes the matrix invertible, and leave two weighting matrices that must be specified, and one
the other singular values alone. Create a modiffedhs normally does not know how to specify them. One makes
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a choice, observes the resulting behavior, and repeatedlywvhere @ and R are symmetric positive-definite matri-
adjusts the choice until satisfied. It will be shown here that ces. This time the penalty is not on the actual control,
the enhanced Tikhonov regularization creates a specificbut on the change in control from the last repetition, and
guadratic cost functional and hence it picks these weightshence the purpose of the cost functional is to control the
in an optimized manner based on the properties of the systransients during the learning process by preventing too
tem. This gives considerable insight into the function of large a change in control from one repetition to the next.
guadratic cost ILC, and represents a contribution to the The iterations aim to converge to zero tracking error, not
LQ theory for ILC by telling the designer how to make to the control action generated by a normal quadratic cost
wise choices for the gains. Finally, we make a connec- optimal control problem.

tion betWeen the enhanced TikhOﬂOV regularization ILC Now Consider hOW the Standard Tikhonov regu'ariza_
design method of Section 4.3 and low pass filtering usedtjon is related to this linear quadratic ILC law. Note that
to robystify good learning transients against singular per- the termz;, + FA;, u in (12) is equal toz;1, So that
turbations. (12) can be rewritten as

poin (el + o Aeul?}. @D
5.1. Contraction Mapping ILC Law is a Limiting
Case of Tikhonov Regularization We conclude that the traditional Tikhonov regularization
for this problem produced a special case of the quadratic
Jang and Longman (1994) suggest the use of the learningcost ILC control problem (20), with th&€) and R ma-
law L = vF*. This law can be interpreted as performing trices chosen as the identity anef times the identity,
at each repetition a step along the steepest descent diregespectively (Frueh and Phan, 2003).
tion for minimizing the sum of the squares of the errors Now consider the more sophisticated regularization
for all time steps after the current one. K is known of (17) (with (18) as a special case). Analogous develop-
exactly, this produces a monotonic decay of the tracking ments show that this is associated with a quadratic cost of
error. Note that as the scalar becomes large, and makes the form
3 negligible, the Tikhonov based learning law (14) ap- ) . . . A
proaches this contraction mapping law with the learning ™" {zhp12041 + Apru’ [V diag(af) VT | Agpqu} .
gain v = a~2. Hence, the contraction mapping law is (22)
a spgcial case of the Tikhanov regularization and thus aThe weighting matrix( is still the identity, but by merg-
special case of quadratic cost ILC as discussed below. g the enhanced Tikhonov regularization with the linear
quadratic theory, we see that we could modipyto em-
phasize parts of the trajectory where good tracking early
in the learning process is important. This time the con-
trol weighting matrix R has a very specialized structure
making use of the knowledge of the system.

In the development of the ILC field one naturally asked The enhanced Tikhonov regularization of Section 4.3
how the most basic form of state variable control theory, 2ddresses one of the weakest aspects of LQ theory, i.e. that

the linear quadratic optimal control result, might be use- ©n€ has little guidance as to how to pick teand R ma-

ful for the learning control objective. This can take two trices, other than trial and error. Regularization makes use
forms. One is to ask for a learning control law that learns ©f the structure of the problem to come up with Znma-

to converge to the trajectory generated by linear quadratictfix With a very special structure specifically designed to
optimal control for a chosen quadratic cost function (see, 2ddress the source of the ill-conditioning in the ILC prob-
e.g., (Longmaret al, 1989; Longman and Chang, 1990)). lem. This structure is not that which one could simply
In this case, the quadratic cost is a trade-off between theSettle on while adjusting the weights according to the ob-
actual control effort and the tracking error. This is one so- S€rved behavior, and hence it represents a contribution to
lution to problems in which the desired trajectory is not the use of linear quadratic theory in ILC.

feasible due to actuator saturation constraints. By con-

trast, the_non-feasipility addr_essed by the over_-_determined5'3_ Achieving the Robustness of Good Learning
problem in the previous sections can be classified asage-  Transients to Model Uncertainties by Modifying
ometric non-feasibility. The second use is to create a cost the Enhanced Tikhonov Regularization

functional of the form

5.2. Enhanced Tikhonov Regularization Creates
a Special, Well-Designed Linear Quadratic
ILC Law

An importantissue in designing ILC laws is producing the
J(2kt1, App1u) = 2i 1 Qzky1 + Apy1u’ RAL 1w, robustness of good learning transients to singular pertur-
(20) bations (Avrachenkov and Pervozvansky, 1998a; 1998b)
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or, equivalently, to phase errors of the system model atcan numerically obtain a singular value decomposition is
high frequencies (Longman and Huang, 2003). Unlike less than the full dimension of the problem.

nprmal feedback control, parasitic poles at high freque_n— As a regularization procedure, the Tikhonov regular-
cies, far above the bandwidth of the controller, can easily j;ation aims to produce robustness. It naturally produces
destabilize a learning control system. In (Avrachenkov ,,p stness to errors in the knowledge of the frequency
and Pervozvansky, 1998a; 1998b; Longman, 1998; 2000, 5gnitude response of the system, i.e., singular values,
Pervozvansky and Avrachenkov, 1997) stability and good 44 addresses the issues of ill-conditioning. But no state-
transient robustness are obtained for such unmodeled highy,ants are made here relative to producing robustness to
frequency dynamics by cutting off the leamning above the gqrs in one’s knowledge of the singular vectorstin
frequency for which one no longer has confidence in the 5041/ These vectors contain the phase information, and
model (this cutoff can also be tuned based on observa-g gapility of the ILC iterations is sensitive to phase er-
tions of the frequency content of the response of the learn-,; s As the trajectory gets long compared to the time

ing process). In what follows, we discuss how the_fre- constants of the system, the column vectorg/irand V/
quency response, and hence a frequency cutoff, is re-iart 16 |00k rather like sine and cosine waves, or two sines
lated to singular values, and how to interpret the enhanced, i, gitferent phases. Thé’*z; finds the projection of
Tikhonov regularization in terms of a frequency weighted e error onto these sinusoids. Then the singular values
cost functional. Then we show how to modify the en- i ence the amplitude changes, and multiplying by the
hanced Tikhonov quadratic cost to create a frequt_ancy C_Ut'columns of U puts in the output sinusoid with the appro-
off. In the process, we see that a frequency cutoffis equiv- yjate phase change included for the associated discrete
alent to producing an over-determined ILC problem. frequency. It is important to have robustness to errors in
Jang and Longman (1996) discuss the relationship the phase information in the modE| and this advocates
between the singular values @ and the magnitude of  the use of a frequency cutoff.
the frequency response of the system at discrete frequen-
cies. As the trajectory becomes long, the singular val-
ues converge to the magnitude response. In other words
(22) is a finite time, time domain version of a frequency
weighted cost functional, with the?'s being weights for
different frequencies. There is a natural connection be-

tween tkée qugdrat!c cgst n thﬁ t![rrr]we domain and the fre- lem by iterations, the regularization produces robustness
quency domain u5|.ng arsgva s theorem. o to singular value or magnitude frequency response errors
In the quadratic cost Tikhonov regularization of (22) of the model, and then the truncation produces robustness

this kind of robustness can be accomplished as a limiting to errors in the phase information at high frequency.
case by letting thev; weights associated with the singu-

lar values above the cutoff frequency tend to infinity. Then

no control action is taken in this part of the space. To get 6. Conclusions

to the limit in this process, one can transform the control

variables to new coordinates = V*u, then delete those  This paper studies first the application of iterative learning
control variables associated with singular values that re- cgntrol to linear over-determined and under-determined
late to the frequencies above the cutoff, and then formulategystems. It is shown that in the case of either over-

the quadratic cost for the remaining control coordinates. getermined or under-determined linear systems the learn-
The truncation of singular values is a finite time version ing operator has to be chosen as close to the pseudoin-
of the cliff filtering in (Plotnik and Longman, 1999). (For  yerse operator of the system as possible. Conditions are
related developments for continuous time systems see alsyrovided for the convergence of the learning iterations.
(Avrachenkov and Pervozvansky, 1998a; 1998b; Pervoz-| the case of under-determined systems as well as in the
vansky and Avrachenkov, 1997).) This limiting case pro- case of an over-determined system with the condition that
duces an over-determined problem. the desired trajectory is feasiblg,(€ R(F)), the norm

In terms of the new control variables, we can cre- of error converges to zero as the iterations go to infinity.
ate a new rectangular matri¥’, and then the learning However, in the case of over-determined systems when
law, for example the one above Eqn. (17), becomes: ya € R(F), itis not possible to obtain an exact solution
VST + diag(a?)]~1$*U*. This L generates changes for min ||y, — Fu|| with any choice of the iteration in-
in the control actionz from those of the previous repe- variant learning operator. The generalized inverse method
tition, making use of the singular value decomposition of is shown to be closely related to the Tikhonov-type regu-
this new rectangulai’. A procedure of this kind is also  larization, which can be equally applied to non-linear sys-
appropriate when the dimension of dn for which one tems. Then we turn to uniquely determined systems and

Hence, itis recommended here that the enhanced reg-
ularization or LQ ILC law be used (Egns. (16) and (22))
and that it be combined with a singular value cutoff as de-
scribed above. This approach to learning control benefits
from the use of a system model, it involves regulariza-
tion that solves the ill-conditioned model inversion prob-



Iterative learning control for over-determined, under-determined, and ill-conditioned systems a ames

show that often the methods for over-determined systemsDing J. and Huang L.J. (1996Perturbation of generalized in-
are relevant, and that, in addition, several ILC laws can verses of linear operators in Hilbert spaces- J. Math.

be perceived as forms of the Tikhonov regularization. It is Anal. Appl., Vol. 198, No. 2, pp. 506-515.

said that computing the inverse for discrete time linear dy- Frueh J.A. and Phan M.Q. (2003)inear quadratic optimal

namic systems is normally ill-conditioned. A generalized learning control (LQL) — Int. J. Contr., Special Issue on
Tikhonov regularization technique is developed that in the Iterative Learning Control, (in print).

first iteration produces the pseudoinverse solution of theJang H.S. and Longman R.W. (1994): new learning control
part of the system that is easily invertible, and iterates to law with monotonic decay of the tracking error narm-
achieve the inverse for the rest of the system. It is shown Proc. 32-nd Ann. Allerton ConlCommunication, Control,

that quadratic cost iterative learning control can be seen ~ and Computing, Monticello, lllinois, pp. 314-323.
as a form of the Tikhonov regularization, and that the en- Jang H.S. and Longman R.W. (199@esign of digital learn-
hanced regularization approach solves the basic problem  ing controllers using a partial isometry— Adv. Astronaut.

in quadratic cost approaches, i.e. how to select the weight-  SCi-, Vol. 93, pp. 137-152.

ing matrices. The approach produces an intelligent choiceJuang J.-N., Phan M., Horta L.G. and Longman R.W. (1993):
precisely tuned to the problem at hand, and one that we Identification of observer/Kalman filter Markov parame-
would not find by a normal adjustment. The need for a fre- ters: Theory and experiments- J. Guid. Contr. Dynam.,

quency cutoff for robustness to model errors is discussed, YOl 16: No. 2, pp. 329_?29' . .
and it is shown how one can modify the Tikhonov-based Longman R.W. (1998)De3|gn|ng lterative Learning and Repet-
ILC in order to produce this cutoff. The approach converts itive Controllers In: lterative Learning Control: Analy-

he problem in n over- rmin ne. sis, Design, Integration and Applications (Z. Bien.and J.-
the proble to an over-dete ed one X. Xu, Eds.). — Boston: Kluwer Academic Publishers,

pp. 107—146.

Longman R.W. (2000):Iterative learning control and repeti-
tive control for engineering practice— Int. J. Contr., Spe-
cial Issue on lterative Learning Control, Vol. 73, No. 10,
Arimoto S., Kawamura S. and Miyazaki F. (1984Bettering pp. 930-954.
operation of robots by learning— J. Robot. Syst., Vol. 1,
No. 2, pp. 123-140.
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