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THE ASYMPTOTICAL STABILITY OF A DYNAMIC SYSTEM
WITH STRUCTURAL DAMPING

XUEZHANG HOU*
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A dynamic system with structural damping described by partial differential equations is investigated. The system is first
converted to an abstract evolution equation in an appropriate Hilbert space, and the spectral and semigroup properties of
the system operator are discussed. Finally, the well-posedness and the asymptotical stability of the system are obtained by
means of a semigroup of linear operators.

Keywords: dynamic system, evolution equation, asymptotic stability

1. Introduction Let H, = span{l,z}. Then L?[0,l]] = H; &

) ) H,, where H, is the orthogonal complement df/; in
We shall be concerned with the following system of par- 12(g 7], Suppose thatP; is the operator of projection
tial differential equations with initial and boundary condi- onto 77, and 7 — P, is the operator of projection onto

tions: H,, so that the system (1) can be rewritten as

0*u(x,t) n Odu(x,t) )
o " otoat Ou@ ) _ p ),
oa &z, t) ot 2
ox ox Ou(x,t)
1) u(x,0) = P, ot o = Pry.
O*u(x,t) o} 0*u(z,t)
T 022 w0y Oz (P(x) 02 ) w01 0, Itis clear that the solution of (2) can be described as
1) —
Ou(x,t u'(z,t) = a1 + axx + ast + agtz, 3)

u(w,0) = go@). 28Dy,

. where a1, as, az and ay are determined byP; ¢y,
So far, we have been concerned with clamped beam equaplwo' and Py f(t, u)

tions in (Hou and Tsui, 1998; 1999; 2000; 2003), in which )
the systems are different from (1). The system (1) stands ~ For the system (1) inf,, we have
for a typical beam equation with two free ends (Komkov,

2 5
1978; Kéhne, 1978; Li and Zhu, 1988), whetéz, t) is 0(z,1) | Ou(a,1)
the transverse displacement of the paingt the timet, or’ 828153334 52
. . . . . . u x7 t
lis the_ length of the beanp(x) is the bending rigidity at s ( () (2 ) — (I — P))f(t,u),
the pointz, and f (¢, u) represents the controlled moment ox ox

of the system.

2 2

Suppose thap(x) € C2[0,1], and0 < py < p(x) < %@;’f) _9 (p(@%“;t)) —0,
p1 < —+oo, Where py and p; are constants. Now, we 0z la=01 Oz Ox z=0,1
take L2[0,1] as the state space, with the inner product and

: : . Ou(x,t)
norm respectively defined as follows: u(z,0) = (I — Py)po 7‘ = (I — Py)to.
’ ’ ot li=o
I , (4)
{f:9)0 = /0 f(x)g(z)de,  f,g € L7[0,1], If we denote byu(?)(z,t) the solution of (4), then the

solution of the system (1) can be represented as

l
113 = [ 1f@)Pdz. 1 € 0.0, went) — a0 (0,) & (1) -
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It should be noted that the form ai*) (z,t) is given
by (3), andu® (z,t) will play a key role in investigat-
ing the solution of the system (1).

We now define differential operatord and T' as
follows:

Ap = (pla)¢"(2))", ¢ € D(A),

D(A) = {¢| ¢ € Hy,¢"(0) = ¢"(I) = 0,
(p@)¢") ] ,_y, = 0, (p(2)¢" (2))" € Ha},
Ty =n¢""(x), »e€D(T), D(T)=D(A).

From the definitions ofA and T' it can be seen that
H, =span{1,z} isthe null space of4, and bothA and
T are positive definite self-adjoint operators hf,, and
there is a greatest positive numbkrsuch that

(Ap,0)0 > Alell3, ¢ € D(A). (6)
It is easy to show that
Popca<Piy @)

n n

In fact, integrating by parts and taking account of the def-
initions of A and T as well as the boundary conditions,
we have

(Ap, oo = / (p(2)¢" (2))"9(@) da

From the inequalities) < py < p(z) < p; < oo it
follows that

l
P / " (2)" @) dz < (Ag, 9)o

l
<m / o (2)" (@) da.
0

In other words,

polle” I3 < (A, @)o < pulle”l5.

Similarly, we have

"

(T, 0)0 = (™ 0o = (", "o

//H2

= (ne"”,¢"o =nll¢" Il

and )
o"ll5 = 5<Ts0,<p>o-

Hence

p P1
<*Ts0,<p> < (Ap, )0 < <—TWP>
n 0 n 0

and therefore
Popca<ctiy
n n
In terms of the operatorgl and 7' we can rewrite
the system (4) as follows:

2
(leg + %(Tu) + Au = (I - Pl)f(t7u)7

8)
u(0) = (I — Py)epo, dugxt,t) — (I = P1)vo.

Let us now introduce the Hilbert spadé = Hy x
H> equipped with the general inner product. Set

S w _ 4l _ du
U= LLJ , up = A2u,  ug a
0 Az L
A= A —T] , D(A)=D(Az2) x D(A),
_ 0
Ft7_’ = )
D= pysta)

o {m(m} _ [A35T= Piyeo
0 u3(0) (I — Pr)yo
Then the evolution equation (8), or the original sys-

tem (1), is equivalent to the following first-order evolution
equation:

du(t) 2o o
= Ai(t) + F(t, @),
- (1) + F(t,9) o
(0) = dy,
and the corresponding equation is given by
da(t) .
— = Au(t),
dt ®) (10)
@(0) = .

2. Main Results

We shall first discuss the semigroup properties of the op-
erator A, and then investigate the well-posedness and
asymptotical stability of the system (1). The following
results will be obtained:

Theorem 1. The linear operatorA in the system (9) is
the infinitesimal generator of &, semigroupT'(t) sat-
isfying

IT(®)] < Me™, >0,

where M and § are positive constants.
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Theorem 2. If f(t,u) : [0,7] x L?[0,I] — L2[0,]]

is continuous int for any T > 0 on [0,7] and uni-
formly Lipschitz continuous inu on L2[0,1], then for
every iy € H, the evolution equation (9) has a unique
weak solution inC([0,T]; H). Moreover, the mapping
iy — u IS Lipschitz continuous.

Theorem 3. Suppose thay (¢, u) meets the conditions of
Theorem 2 with the Lipschitz constait satisfying

0
N<M\f)\,

where M and ¢ are the same as those in Theorem 1,

It follows that the numerical range of (A+ 7+ + A) has
the form

V(—(A+T+§A))
:{7<(>\+T+§A>z,x> el =1,

xED(AnLTJr%A)}g{MRe)\gfw}.

This implies that0 € p(—(A + T + $4)) (see (Bal-
askrishnan, 1981)), and b€ p(\? + AT + A). Thus,
(A2 + AT + A)~! exists and is bounded. =

Lemma 2. If X isa complex number witlRe A > 0,

and X is the same as that in the equality (6). Then the A # 0, then (5 +AA™! + A3TA-2)7! exists and is
solution of the system (9) (and therefore the solution of bounded.

the system (1)) is exponentially stable.

3. Proofs of the Main Results

In this section, we shall prove Theorems 1-3. To prove

Theorem 1, we shall first prove the following lemmas.

Lemma 1.If X\ is a complex number with Re > 0, then
(A2 + AT + A)~! exists and is bounded.

Proof. Clearly, the result is true fon = 0. If A
then for anyz € D(A), welet A = o +ir, o
Consequently,

# 0,
>0

e i
> ‘<<)\—|—T—&— %A)x,xﬂ ’a||a:\|2 + (Tz,x)

g : 2
+ mmx’@ + i[7 ||z

T

- s (A2l 2 (T, @) 2 wlal?,

wherew > 0 is the smallest eigenvalue @f.
Sincex € D(A), it can be seen that

<()\+T+ %A):L‘,x>

+ (T, ) +

+i[rall? -

_ 2 g
*JHIH 0_2+7_2 <AI,.§C>

ﬁ@élx .Z’)}

and

Re< - ()\ +T+ %A)JJ,J?> < —(Tx,z) < —w|z|?

Proof. First, it should be noted thatt=2TA~% can be
extended to a bounded linear operator Ha, for every
xr € Hy, A\=0 + 17, 0 > 0. Since

H( FAA 4 AT A Yo

> ‘<(§ + XA+ AiéTAfé):c,xM

= |5 llal? + oA e a) + (AT A Ee )

o -T 2 -1
+Z[02—|—72Hx” +r(4 x,:v)”
g 2 -1 -1
> ——|z||I* + (A7 z,2) + (AT 2TA 22, 1)
o2+ 12
Ui
> 7”IH27
P1

the operator: + A\A~! + A~3T A~z is invertible. We
also see that its image is densefify. In fact, if yo € Ha,
then

<(§ FAAT 4 A’%TA’%>x,y0> =0, z¢€H.

Noticing that L AA~t+ A—2T A= is self-adjoint, we
have

<x, (% FAA 4 A—%TA—%)y0> —0, x€H.

Since + + AA™! + A=2TA~*% isinvertible, yo = 0, and
therefore the range of; + XA~ + A":TA"z) isdense
in Ho. Thus, (1 + A" + A=3TA3)"! exists and is
bounded. =

Lemma 3. If X\ is a complex number witlRe A > 0,
A # 0, then the resolvent ofl can be expressed by

Ry,
Ray,

Ri»

B A) = R

1
y

& ac
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where
Ry =1- ;2 (A2 +AT iA*fTA") |
1 I 1
ngzx()\Q—s—A + A‘ETA") A3
1 1 1
R :—XA‘E(AQJrA + A‘ETA“) ,
1 1
Rop = A"(A2 AT 4 /\ATTA") ATE,
Proof. From Lemma 2 we know thatR()\, A) is a

bounded linear operator oY and the expression for
R(A, A) can be obtained by a direct calculation. m

Lemma 4. If )\ is complex number witiRe A > 0 and
A £ 0, the family of the operators with the parameter

-1
F(\) +A A"TA“)

CRRRAS

—1

1 1 _1 _1
(5 +ra7t+ai7473)
is uniformly bounded.

Proof. Let

1 1
ZA:<X+)\A‘1+A‘%TA‘5) z, x€Hy

Then {||Z,||} is bounded for all\. Otherwise, there is a
Ao such that

lim [|Zy\]] = +o0.

A—>>\U

As regards the inner product of the sequenge=
Zx/||1Zx]| with A = o + i, we have

<(% + AT+ A_%TA_%)yA,yA>

T 02472
T -7 _
+@[W+T<A 1yx,yx>}-

Obviously, the real part of the right-hand side (11) is
greater tharn;/po > 0. On the other hand,

oAy, yn) + <A_%TA_%?J,\» Yx)

11

lim
)\—>/\0

)

1 1 1

T AT ATITATE )y, = i
()\ W N
so that a contradiction occurs. HenddéZ,|} is uni-
formly bounded for everyr € H,, and the result of this
lemma follows from the Principle of Uniform Bounded-
ness. N

Lemma 5. If X\ is complex number witliRe A > 0, \ #
0, and there is a\y > 0 such that if |[A\| > )y, then
(+ +TA™' + XA~1)~! is uniformly bounded.

Proof. For everyx € H,, itis easy to see that

H( FTA 4 AA- )H2

<(§ FTA 4+ AA*l)a:, (% FTA 4+ /\A’l)m>

1

A
|)\|2 v, A7) +

Jal® + 3

%(A_lm,:@
+APA 2|2+ NTA P, A )

1
+ ~(x, TA 'z)

+4+MAT e, TA ) X

(TA 'z, z) + | TA 2|

N+ %(TA‘%:,@ +|TA )% (12)
SinceTA~! is bounded, there is & > 0, such that

if |A| > Ao, the right-hand side of the above inequality has

the form

l(gc,TA_1 )+

5 (TA 'z,z) + | TA 2|

>/H =

1 _ 1
L S = 7 )
where dg > 0, and the last inequality is due to the invert-
ibility of T A~L. This follows from

1 1 1 1
- > = .
H(A FTAT 2 )xH > Soollall (14)
Hence(+ + TA~! + AA~1) isinvertible.
Next, we shall show by contradiction that the range
of (+ + TA™! + AA™') is dense inH,. If the range
of (+ + TA™! + XA~1) is not dense inH>, there is a
yo € Ha, yo # 0 such that

<(% +TA '+ )\A_l)x,y0> =0, x€ H,.

This implies

<(§ +T+/\>y7yo> =0, ye D),

wherey = A7 1z.

In view of Lemma 1,(+ A+ T+ A)~! is a bounded
linear operator, and its range is densein. Henceyy =
0, but this contradictgy, # 0. Thus the range o(% +
TA™! + AA~1) isdense inHs. If |[A| > Ao, Re X # 0,
and for a fixedr € H, we set

1 -1 1\ 7!
Zy\ = (X+)\A +TA ) X, |)\| > Ao,
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then it can be shown thdt| Z, ||} is bounded. Otherwise,
there isasequencg\,, } with |A,| > \g andRe A, >0
such that

lim ||Z)\

n—oo

= 00,

n H
and
Z)\n X

— 0, n— oo.

($+)\HA*1+TA*1>

Let y, = Zy, /|| Z», ||. From (13) it follows that

n ‘

H (% +TAT 4+ 2,47 )y,

> Dl = 2 >0,
which contradicts (15). Hencé||Z,||} is bounded, for
every x € H,. From the Principle of Uniform Bounded-
ness it follows that( ; + AA~! + TA~1)~1 is uniformly
bounded for|A| > Ao andRe A > 0. [ |

Lemma 6. Under the condition of Lemma 5, jA| > Ay
and Re A > 0, the family of operators with\

-1 1

A 1<A2+A + A*ETA") Az

1 —1
- (72A+ XT+I)
is uniformly bounded.

Proof. If |A] > Ao and ReX > 0, from Lemma 5 we
have

1 1 1
(FA+XT+I> — A (A2 +ATA 4 A ol
Thus, the result of Lemma 6 is concluded by virtue of
Lemma5 =

Proof of Theorem 1Since

0 Az
_A3 T

and A and T are positive definite self-adjoint operators,
we can easily verify thatiA)* = iA. From the cele-
brated Stone Theorem (Pazy, 1983) it follows tbétis
the infinitesimal generator of &, semigroupT'(t) on
H. On the other hand, we can see that p(A4) gives us

A

1

—ATITA:  —A:

-1 _
AT = A3 0

If ReA > 0 and A # 0, we can show that the resolvent
R(\,A) of A satisfies

IR, A < M

1< M < 0.
Al

(15)

&

In fact, from Lemma 3 we deduce thak(\, .A)
is an analytic function ofA on the right-half complex
plane. According to the analyticity oR(\,.A), it suf-
fices to show that iffA| > Ao > 0 and Re A > 0, then
|R(A, A)|| < M;/|\|. However, this can be easily ob-
tained by Lemmas 4-6.

Since p(A) D {X | Re X > 0}, p(A) being an open
set on the complex plane, there is a constant 0 such
that

A) C {A|ReX < —¢}
and therefore from the stability theorem of the analytic

semigroup (Pazy, 1983) we conclude that there is a con-
stanté > 0 such that

Tt < Me™%, t>0.

The proof of Theorem 1 is thus complete. m

Proof of Theorem 2. For F(t, @) = [0,(I —
P)f(t,u)]T € H in (9), we have|F(t, || = ||(I —
Py)f(t,u)||. Sincel — P, is a bounded linear opera-
tor, and f(t,u) is continuous int on [0,7] and uni-
formly Lipschitz continuous in: on L2[0, 1], F(t, @) has
the same properties a§t, u). Applying Theorem 1.2 of
(Pazy, 1983) yields Theorem 2. =

In order to prove Theorem 3, we first introduce a
continuous function spacé€’[0, +o00) equipped with the
norm

lgllm = maxg(t)] < +o00, g € C[0, +00),

and define the linear operatd¢ through

t
Ko(t) = [ e g(s)ds,
0

whereé is the same as in Theorem 1.

We see thatK is a bounded linear operator on
C[0, +00). In fact,

t
HMMSAﬂHw@wSMMA

t

e 0(t=9) g

_ 1
HgHm (1=e™) < =llgllm

for any t > 0. Thus we have

1
1K gllm = %1§5<|Kg(t)| < g”g”ma

and
1

1K < 5. (16)

Proof of Theorem 3From Theorem 1 and (Pazy, 1983) we
know that the evolution equation (9) has a unique solution



x,t), and hence the system (4) has a unique solutionand from Theorem 1 it follows that
( t). We now decompose(z,t) as follows:
~ - _ 7(x,t §M/ e 00t=9) ﬁs,ﬂ's dz
Ho,t) = &l t) 4 Ao, It )l < M | |F (s, (s)]

. ) t
where{(z,t) andj(z,t) satisfy = M/ e =T = Py) f(,u(s)) o ds
0
%E(x,t) O°E(x, ) ai( (x)82£(gj,t)) _0 ’
o2 T otort " 922 o2 ) < M/ e 2| f(s,u(s))]lo ds
0
&€z, t) 9 % (x, t) B ¢
0r?  lz=04 %( () ox? ) 2=01 " < MN/ e 2 Ju(s)]|o ds
0
- B 65(3:,75) B t
Eo0) = (1= Py 5| = (=P, < [ 1gls )l
a7 0
and + IIn(s)llo) ds. (20)
2 = — 2 2 =
0 77(3? t) 778577(:1:,415) 4 iz (p(x) 9 77(352’ t)) By virtue of (6) and the definition of the inner prod-
ot Otox oz oz uct described before, we have
= (I - P1)f(t,u(a:,t)), S19 1 1 9
i . €12 = (61, 0) + (s &2) = (ade, Abe) + el
O%ij(x, 1) _ g(p(x)a £(a:,t)) —0
022 le=0i Oz 0x%  le=oy = (A& )0 + l1&2117 = NIEIE + &0 = M3,
- on(x,t
ij(x,0) =0, nfat )‘t:O =0, and so €l < 2 21)
(18) f 0> \/X 5 .
respectively. Herey(z, t) in f(t,u) is the solution of the o ; a2 s 2
system (4). Similarly, it can be shown thalt7j||* > A||n||g and

From Theorem 1 it should be noted that the sys- |
tem (17) in H is equivalent to the system (10), whose
solution &(x,t) = T'(t)&, satisfies

o < =l (22)
Combining (19)—(22) leads to

€z, )] < Me=*||&]l. (19) t

177z, )l < MN/O e ([1€() o + In(s)llo)ds

It is obvious that the system (18) iH is equivalent
to the system

MN
dif(t) . SV / o)l ds
T = Aij(t) + F(t, 4),
MN ' s
70) = iy = . 2 [ ) s
where MEN
. . < A 1ol
77: (771,772)T, m= Ai/’% e = E
MN [t s e
and 2 [ ) s
F(t, @) = [0, 1=P) f(t,w)] " = [0, (I=P) f(t,6+n)] " MEN, s+ MY o)
= 0 — s
Since A generates &, semigroupZ’(¢t) on H and VA VA
o = 0, we have and therefore

ant) = [ Tt =5)F(s.(s)) s, (1= T3 K)ol < e G @3
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Looking at (21) with the assumption thaf < §v/\/M
and (16), we find

MN
MV
H VA m
Hence (I — MTJXVK) is invertible, and
MN N1 /MN\"__
(I——\AK> _Z(iﬁ) K" (24)

n=0

Analysing the definition of/{', we see thatK' is a mono-
tonically increasing operator o0, +c0), and so is

(I - %K)‘l based on (24). Now, multiply two sides
of (23) by (I — ]‘/[—\/XJ\’K)*1 to find
M?N MN n —dot
Il < == Vg ( ) K,

n=0

Since

t
K(teét) :/ e 0(t=8) ge=0s qg
0

t t2
=e % | sds= e,
0 2!

it can be shown by induction that

K" (te™*") = -
" (n+1)!
Thus
M?N | =~~~ (MN g+l 5
iz, b)) < —— MNyn
i@ Dl < =7 '&’”;o(ﬁ) R
SR AN ||Z(MN)”“ AR
< M||&le™® VAl = M||50||e’(5*%)t.
Since
9 MN
N< VA §——=>0,
M N5
let
MN
oa=0— ——.
VA
Then

77z, )| < M||€olle™". (25)

137 JEe

t) + 7j(z, t), we have

(Alu @)

atw)

( l

(7717 772)T

—

As for i(x,t) = £(x,

—

U= (1L1,u2)

I\J‘H

A

(2t
<A ‘ >

= (51752)T +

dé
)
=&+
and
@, )| = 1€, t) + 7z, t)]| <

Combining (19) and (25) gives

I€C, )|+ 117, )]

(e, 8)l| < M|Elle™" + Ml|éofle™

Since0 < a < 6 , we have

d@(x, )] < 2M|[&lle™>", ¢ >0.
From & = i it follows that
[d@(x, )] < 2M [dolle™, ¢ >0.

This implies that the solutioni(z,t) to the evolution
equation (9) is exponentially stable, and thus the solution
to the original system (1) is also exponentially stable. The
proof is complete. =

4. Conclusion

The beam equation with two free ends (1) was studied by
means of functional analysis and semigroups of linear op-
erators. First, the system (1) was converted to an abstract
evolution equation (9). Second, the properties of the sys-
tem operatorA were investigated and a significant result
that A generates &,-semigroupT’(¢) with exponential
decay property thalT'()[| < Me=%" (M > 0,6 > 0)

was derived (Theorem 1). Then, the well-posedness of
the system (1) was discussed (Theorem 2) using the semi-
group technique. Finally, the exponential stability of the
system (1) was proved under appropriate conditions (The-
orem 3). In further research, concrete designs of the con-
trollers for this system to be asymptotically stable would
be quite significant.
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