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In this paper, for multiple different chaotic systems with fully unknown parameters, a novel synchronization scheme called
‘modified function projective multi-lag generalized compound synchronization’ is put forward. As an advantage of the
new method, not only the addition and subtraction, but also the multiplication of multiple chaotic systems are taken into
consideration. This makes the signal hidden channels more abundant and the signal hidden methods more flexible. By
virtue of finite-time stability theory and an adaptive control technique, a finite-time adaptive control scheme is established
to realize the finite-time synchronization and to properly evaluate the unknown parameters. A detailed theoretical derivation
and a specific numerical simulation demonstrate the feasibility and validity of the advanced scheme.

Keywords: finite-time adaptive control, modified function projective multiple-lag generalized compound synchronization,
unknown parameter, chaotic systems.

1. Introduction

Due to its potential applications in secure communication,
engineering science, biological systems and other
fields, the chaotic synchronization problem has attracted
increasing attention. The main idea of synchronization is
to design an appropriate controller to make the state of
the response system track the state of the drive system
asymptotically (Song et al., 2010; Lu et al., 2010;
Grzybowski et al., 2009; Wang and Liu, 2007; Lee et al.,
2008; Liu et al., 2012; Chen et al., 2010; 2015; Mu and
Chen, 2016).

Nevertheless, most of the previous research was
primarily concerned with the asymptotic stability or
exponential stability of the synchronization error system.
In practice, especially in the field of engineering,
optimizing the synchronization time is more important
than achieving asymptotic synchronization. This implies
optimality in settling time (Haimo, 1986). To realize
fast synchronization, a finite-time control technique which

∗Corresponding author

can drive the controlled system to its target within
finite time has been formulated (Bhat and Bernstein,
2000). Moreover, compared with asymptotic control,
the finite-time control method has many advanced
properties, such as fast and finite-time convergence,
robustness, the disturbance rejection ability and high
tracking precision. Therefore, finite-time synchronization
has attracted increasing attention in recent years (Liu
et al., 2018; Yu and Man, 2002; Wang et al., 2009;
Aghababa et al.,2011).

So far, different synchronization schemes for chaotic
systems have been proposed and abundant research
and application results have been obtained, such as
complete synchronization (CS) (Pecora and Carroll, 1990;
Yu and Liu, 2003), anti-synchronization (AS) (Kim
et al., 2003), lag synchronization (Rosenblum et al.,
1997), intermittent lag synchronization (Boccaletti and
Valladares, 2000), phase synchronization (Park et al.,
1999), generalized synchronization (Yang and Duan,
1998), projective synchronization (PS) (Mainieri and
Rehacek, 1999; Wen and Xu, 2005), modified projective
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synchronization (MPS) (Cai et al., 2010), function
projective synchronization (FPS) (Du et al., 2008), time
scale synchronization (Hramov and Koronovskii, 2004),
and so on. Recently, due to its higher security in
secure communication, a more general FPS, called
‘modified function projective synchronization’ (MFPS)
(Du et al., 2009; Sudheer and Sabir, 2011), in which the
drive system and the response system are synchronized
up to a desired scaling function matrix, has attracted
researchers attention. Therefore, research on MFPS is
more valuable in practice. What is more, considering that
time-delays exist widely in engineering, more recently, a
general method called ‘modified function projective lag
synchronization’ (MFPLS) for chaotic systems has been
developed (Du et al., 2010; Gao et al., 2013; Wang and
Wei, 2015; Wang et al., 2016).

In practice, the level of communication security is
dependent on the complexity level of the drive dynamical
system and the signal loading scheme. If the driving
system involves more chaotic subsystems and the way
of combining subsystems is more complex, then the
geometry topological manifold of the compound driving
system becomes more complex. Further, the transmitted
signal can be separated into several parts carried by
different subsystems to improve the anti-attack ability and
anti-translated capability.

The previous synchronization methods mentioned
above involved only one drive system and one response
system. To further improve the security of the
synchronization technique in secure communication,
combination synchronization containing two drive
systems and one response system was proposed (Luo
et al., 2011; Luo and Wang, 2012). By adding another
response system, Sun et al. (2014) extended combination
synchronization to combination-combination
synchronization among four chaotic systems. In order to
further improve the anti-attack ability and anti-translated
capability of the transmitted signals, Sun et al. (2015)
introduced compound synchronization, in which the
multiplication of two chaotic systems was considered to
be the drive system. However, it is a pity that parameter
uncertainty and the existence of synchronization-delay
have not been taken into consideration in that article.
Besides, it should be noted that chaotic systems and the
controller studied in that paper are all specific. Thus the
control method proposed is not general.

Moreover, as is well known, system parameters are
probably partially unknown or even completely unknown,
which may destroy the stability of the system. The
adaptive control technique is considered to be an effective
method to deal with uncertainties (Srinivasarengan et al.,
2018; Liu et al., 2014; Li and Liu, 2017; Ben Brahim
et al., 2015; Kaczorek, 2016).

Therefore, how to combine finite time
synchronization, and compound synchronization together
with the adaptive control technique is an important issue.
To the best of our knowledge, it is still open, which
motivates our work.

In this paper, for a series of different chaotic systems
with fully unknown parameters, finite-time adaptive
modified function projective multi-lag generalized
compound synchronization is investigated. Compared
with the existing literature, there are two advantages
which make the proposed scheme attractive. First,
the modified function projective multi-lag generalized
compound synchronization (MFPMGCS) is more general
and more complex; it covers almost all of the existing
synchronization methods. Second, the drive system is
the compound of multiple chaotic systems by arithmetic
operations of addition, subtraction and multiplication.
In the process of secret communication, the transmitted
signals can be split into several different parts and loaded
in different sub-drive systems to improve the security
of signal transmission. In addition, by adopting the
multiplication of chaotic systems, the diameter of the
compound chaotic topological manifold become much
longer, which means that more types of signals can be
transmitted.

The rest of this paper is organized as follows.
Section 2 formulates the system model to be studied.
In Section 3 some basic definitions and useful lemmas
are introduced, and then the synchronization problem
under investigation is proposed. In Section 4, based
on Lyapunov stability theory, a controller is designed
to realize finite-time compound synchronization, while
an adaptive law is proposed to accurately estimate the
unknown parameters. Section 5 presents a simulation
example, and Section 6 concludes the paper and outlines
and the future work.

2. System description

In our drive-response type compound synchronization
scheme, N1 + N2 + N3 different chaotic systems with
unknown parameters are considered as the drive systems.

The l-th base drive system is given as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋl1(t) = F l1(x
l(t))θl + f l1(x

l(t)),

ẋl2(t) = F l2(x
l(t))θl + f l2(x

l(t)),
...

ẋln(t) = F ln(x
l(t))θl + f ln(x

l(t)),

l = 1, 2, . . . , N1. (1)
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The m-th scaling drive system is written as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẏm1 (t) = Gm1 (ym(t))φm + gm1 (ym(t)),

ẏm2 (t) = Gm2 (ym(t))φm + gm2 (ym(t)),
...

ẏmn (t) = Gmn (ym(t))φm + gmn (ym(t)),

m = 1, 2, . . . , N2. (2)

The j-th additive drive system is described as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

żj1(t) = Hj
1(z

j(t))ηj + hj1(z
j(t)),

żj2(t) = Hj
2(z

j(t))ηj + hj2(z
j(t)),

...

żjn(t) = Hj
n(z

j(t))ηj + hjn(z
j(t)),

j = 1, 2, . . . , N3. (3)

Meanwhile, the response system is described as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẇ1(t) = R1(w(t))ψ + r1(w(t)) + u1(t),

ẇ2(t) = R2(w(t))ψ + r2(w(t)) + u2(t),
...

ẇn(t) = Rn(w(t))ψ + rn(w(t)) + un(t),

(4)

where xl = [xl1, x
l
2, . . . , x

l
n]
T ∈ R

n represents the
state vector of the l-th base drive system, ym =
[ym1 , y

m
2 , . . . , y

m
n ]T ∈ R

n denotes the state vector of the
m-th scaling system, zj = [zj1, z

j
2t, . . . , z

j
n]
T ∈ R

n refers
to the state vector of the j-th additive drive system, w =
[w1, w2, . . . , wn]

T ∈ R
n stands for the state vector of the

response system, f li (x
l(t)), gmi (ym(t)), hji (z

j(t)), and
ri(w(t)) are continuous nonlinear functions, F li (x

l(t)),
Gmi (ym(t)), Hj

i (z(t)) and Ri(w(t)) are the i-th rows
of the continuous linear function matrices F l(xl(t)),
Gm(ym(t)), Hj(zj(t)) and R(w(t)), respectively, θl =
[θl1, θ

l
2, . . . , θ

l
n]
T , φm = [φm1 , φ

m
2 , . . . , φ

m
n ]T , η =

[ηj1, η
j
2, . . . , η

j
n]
T and ψ = [ψ1, ψ2, . . . , ψn]

T are unknown
parameter vectors, u = [u1, u2, . . . , un]

T is the control
input.

3. Preliminary definition and lemmas

In this section, we introduce several precise definitions
and important lemmas which are necessary for our further
study.

Assumption 1. The unknown parameters θl, φm, ηj and
ψ are all bounded, that is to say, there exist known positive
constants θ̄l, φ̄m, η̄j and ψ̄ such that

∥
∥θl
∥
∥ ≤ θ̄l, ‖φm‖ ≤ φ̄m,

∥
∥ηj
∥
∥ ≤ η̄j , ‖ψ‖ ≤ ψ̄, (5)

where l = 1, 2, . . . , N1, m = 1, 2, . . . , N2, j =
1, 2, . . . , N3, and ‖·‖ refers to the 2-norm.

Fig. 1. Framework of MFPMLGCS.

Lemma 1. (Xu et al., 2016) Assume that a continuous
and positive definite function V (t) is a Lyapunov candi-
date of a system. If V (t) satisfies

V̇ (t) ≤ −α1V (t)− α2V
ρ(t), t ≥ 0, V (0) ≥ 0, (6)

where α1 > 0, α2 > 0 and 0 < ρ < 1 are constants. Then
the system is exponentially stable in a finite time T which
is given by

T =
1

α1(1− ρ)
ln
(
1 +

α1V
1−ρ(0)
α2

)
. (7)

Lemma 2. (Wang et al., 2009) Suppose that a1, a2,
. . . , an, v are all real numbers and 0 < v < 2. Then

|a1|v + |a2|v + · · ·+ |an|v
≥ (a1

2 + a2
2 + · · ·+ an

2)
v
2 .

Before presenting the definitions, let us introduce the
following notation:

X l(t) = diag{xl1(t), xl2(t), . . . , xln(t)},
Y m(t) = diag{ym1 (t), ym2 (t), . . . , ymn (t)},
Zj(t) = diag{zj1(t), zj2(t), . . . , zjn(t)},
W (t) = diag{w1(t), w2(t), . . . , wn(t)}.

Definition 1. We say that the three groups of drive
systems (1)–(3) and the response system (4) are a modified
function projective multiple-lag generalized compound
synchronization (MFPMLGCS) if there exist N1 +N2 +
N3 different delay times τ l(l = 1, 2, . . . , N1), τ̄m(m =
1, 2, . . . , N2), τ̃ j(j = 1, 2, . . . , N3), N1 + N2 + N3

constant scaling diagonal matrices

Al = diag{al1, al2, . . . , aln},
Bm = diag{bm1 , bm2 , . . . , bmn },
Cj = diag{cj1, cj2, . . . , cjn, }
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and a function scaling diagonal matrix

Λ(t) = diag{λ1(t), λ2(t), . . . , λn(t), }

such that

lim
t→∞ ‖

N2∑

m=1

BmY m(t− τ̄m)

N1∑

l=1

AlX l(t− τ l)

+

N3∑

j=1

CjZj(t− τ̃ j)− Λ(t)W (t)‖ = 0, (8)

or

lim
t→∞ |

N2∑

m=1

N1∑

l=1

bmi a
l
ix
l
i(t− τ l)ymi (t− τ̄m)

+

N3∑

j=1

cjzj(t− τ̃ j)− λi(t)wi(t)|= 0,

i = 1, 2, . . . , n, (9)

where Λ(t) is a reversible function matrix and each
element of Λ(t) is a continuously differentiable nonzero
function with a bound. This novel synchronization
scheme is shown in Fig.1.

Definition 2. We say that N1+N2+N3 systems (1)–(3)
realize a finite-time modified function projective multi-lag
generalized compound synchronization with the response
system (4) if there exists a real constant T > 0 such that

lim
t→T−

‖
N2∑

m=1

BmY m(t− τ̄m)

N1∑

l=1

AlX l(t− τ l)

+

N3∑

j=1

CjZj(t− τ̃ j)− Λ(t)W (t)‖ = 0, (10)

and for any t ≥ T

‖
N2∑

m=1

BmY m(t− τ̄m)

N1∑

l=1

AlX l(t− τ l)

+

N3∑

j=1

CjZj(t− τ̃ j)− Λ(t)W (t)‖ = 0. (11)

It is easy to see that (10) is equivalent to

lim
t→T−

|
N2∑

m=1

N1∑

l=1

bmi a
l
ix
l
i(t− τ l)ymi (t− τ̄m)

+

N3∑

j=1

cjzj(t− τ̃ j)− λi(t)wi(t)| = 0,

i = 1, 2, . . . , n. (12)

Remark 1. As shown in Table 1, the proposed
MFPMLGCS is more general, and it covers most of the
previous synchronization schemes. Selecting a specific
scaling matrix and specific delay times, MFPMLGCS
will be reduced to different specific ones. Here Λ =
diag {λ1, . . . , λn} and I denotes an n× n unit matrix.

Remark 2. In practice, the level of communication
security is dependent on the complexity level of the drive
dynamical system and the signal loading scheme. The
drive system in MFPMLGCS is a compound of multiple
chaotic systems. Not only the addition and subtraction,
but also the multiplication of multiple chaotic systems
is involved. This means the signal hidden channels are
more diversified and the signal hidden methods are more
flexible. Therefore, the complexity effectively improves
the anti-attack ability and the anti-translated capability of
the communication scheme.

To deal with the finite-time MFPMLGCS problem,
the error vector of synchronization is defined as follows:

e(t) =
[ N2∑

m=1

BmY m(t− τ̄m)

N1∑

l=1

AlX l(t− τ l)

+

N3∑

j=1

CjZj(t− τ̃ j)− Λ(t)W (t)
]
Γ, (13)

where Γ = [1, 1, . . . , 1]T ∈ R
n. Furthermore, the element

ei(t) of the vector e(t) can be obtained as

ei(t) =

N2∑

m=1

N1∑

l=1

bmi a
l
ix
l
i(t− τ l)ymi (t− τ̄m)

+

N3∑

j=1

cjzj(t− τ̃ j)− λi(t)wi(t), (14)

where i = 1, 2, . . . , n.
Taking the time derivative of ei(t) and applying

(1)–(4), the error dynamic system can be obtained as
follows:

ėi(t)

=

N2∑

m=1

N1∑

l=1

bmi a
l
i[x

l
i(t− τ l)gmi (ym(t− τ̄m))

+ ymi (t− τ̄m)f li (x
l(t− τ l))]

+

N2∑

m=1

N1∑

l=1

bmi a
l
i[x

l
i(t− τ l)Gmi (ym(t− τ̄m))φm

+ ymi (t− τ̄m)F li (x
l(t− τ l))θl]

+

N3∑

j=1

cjih
j
i (z

j(t− τ̃ j)) +

N3∑

j=1

cjiH
j
i (z

j(t− τ̃ j))ηj

− λ̇i(t)wi(t)− λi(t)ri(w(t)) − λi(t)Ri(w(t))ψ

− λi(t)ui(t). (15)
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Table 1. Comparison of the proposed synchronization scheme with other existing ones.
Parameter selection Synchronous name Mathematical model

MFPMLGCS e(t) = [
N2∑

m=1
BmY m(t− τ̄m)

N1∑

l=1
AlXl(t − τ l)

+
N3∑

j=1
CjZj(t − τ̃ j)− Λ(t)W (t)]Γ

Case 1 N1 = N2 = N3 = 2 a simple MFPMLGCS e(t) = {[B1Y 1(t− τ̄1) +B2Y 2(t − τ̄2)][A1X1(t − τ1)
+A2X2(t− τ2)] + [C1Z1(t − τ̃1) + C2Z2(t − τ̃2)]
−Λ(t)W (t)}Γ

Case 2 N2 = 1, N1 = 2, N3 = 0, compound synchronization e(t) = {BY (t)[A1X1(t) + A2X2(t)] − Λ(t)W (t)}Γ
τ̄1 = τ l = 0,Λ(t) = 0

Case 3 N1 = N2 = 0, N3 = 2, combination synchronization e(t) = C1z1(t) + C2z2(t) − Λw(t)
τ̃ j = 0,Λ(t) = 0

Case 4 N1 = N2 = 0, N3 = 1, MFPLS e(t) = z(t− τ̃) − Λ(t)w(t)
C1 = I

Case 5 N1 = N2 = 0, N3 = 1, MFPS e(t) = z(t)− Λ(t)w(t)
C1 = I, τ̃1 = 0

Case 6 N1 = N2 = 0, N3 = 1, PS e(t) = z(t)− Λw(t)
C1 = I, τ̃1 = 0,Λ(t) = Λ

Case 7 N1 = N2 = 0, N3 = 1, complete synchronization e(t) = z(t)− w(t)
C1 = Λ(t) = I, τ̃1 = 0

Case 8 N1 = N2 = 0, N3 = 1, anti-synchronization e(t) = z(t) + w(t)
C1 = −Λ(t) = I, τ̃1 = 0

For convenience, write

Si(x
l, ym, zj, w)

=

N2∑

m=1

N1∑

l=1

bmi a
l
i[x

l
i(t− τ l)gmi (ym(t− τ̄m))

+ ymi (t− τ̄m)f li (x
l(t− τ l))]

+

N3∑

j=1

cjih
j
i (z

j(t− τ̃ j))− λi(t)ri(w(t))

− λ̇i(t)wi(t), (16)

and
ūi(t) = λi(t)ui(t). (17)

Then, the error dynamic system (15) is reduced as follows:

ėi(t)

=

N2∑

m=1

N1∑

l=1

bmi a
l
i[x

l
i(t− τ l)Gmi (ym(t− τ̄m))φm

+ ymi (t− τ̄m)F li (x
l(t− τ l))θl]

+

N3∑

j=1

cjiH
j
i (z

j(t− τ̃ j))ηj − λi(t)Ri(w(t))ψ

+ Si(x
l, ym, zj , w)− ūi(t). (18)

4. Design of a finite-time adaptive control
scheme

In fact, the finite-time MFPMLGCS problem is directly
equivalent to finite-time stabilization of the error system
(18). In this section, we will devote our efforts to design

an adaptive control scheme to ensure the trajectory of each
error element ei(t) converges to zero within a finite time.

In order to achieve finite-time synchronization, the
controller is designed as follows:

ui(t)

=
1

λi(t)
{
N2∑

m=1

N1∑

l=1

bmi a
l
i[x

l
i(t− τ l)Gmi (ym(t− τ̄m))

· φ̂m + ymi (t− τ̄m)F li (x
l(t− τ l))θ̂l]

+

N3∑

j=1

[cjiH
j
i (z

j(t− τ̃ j))η̂j ] + Si(x
l, ym, zj, w)

− λi(t)Ri(w(t))ψ̂ + kiei + ρiei
q
p

+Ω ·Δi}, (19)

where the positive constants ki and ρi are the control gains
which will be designed according to the requirements of
the designer. θ̂l, φ̂m, η̂j and ψ̂ represent the estimations
of the unknown parameters θl, φm, ηj and ψ, respectively,
k∗ = min{k1, . . . , kn}, ρ∗ = min{ρ1, . . . , ρn}, i =
1, 2, . . . , n, and

Ω = σ1

[ N1∑

l=1

(
∥
∥θ̂l
∥
∥+ θ̄l)

2
+

N2∑

m=1

(
∥
∥φ̂m

∥
∥+ φ̄m)2

+

N3∑

j=1

(
∥
∥η̂j
∥
∥+ η̄j)

2
+ (
∥
∥ψ̂
∥
∥+ ψ̄)2] + σ2
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· [
N1∑

l=1

(
∥
∥θ̂l
∥
∥+ θ̄l)

p+q
p +

N2∑

m=1

(
∥
∥φ̂m

∥
∥+ φ̄m)

p+q
p

+

N3∑

j=1

(
∥
∥η̂j
∥
∥+ η̄j)

p+q
p + (

∥
∥ψ̂
∥
∥+ ψ̄)

p+q
p

]
,

Δi =

⎧
⎨

⎩

ei
‖e‖2 if ‖e‖ �= 0,

0 if ‖e‖ = 0.
(20)

Meanwhile, the following adaptive law is given to
estimate the unknown parameters:

˙̂
θl =

{
Al
[ N2∑

m=1

BmY m(t− τ̄m)
]
F l(xl(t− τ l))

}T
e,

θ̂l(0) = θ̂l0, l = 1, 2, . . . , N1,

˙̂
φm =

{
Bm
[ N1∑

l=1

AlX l(t− τ l)
]
Gm(ym(t− τ̄m))

}T
e,

φ̂m(0) = φ̂m0 , m = 1, 2, . . . , N2,

˙̂ηj = [CjHj(zj(t− τ̃ j))]T e, η̂j(0) = η̂j0,

j = 1, 2, . . . , s,

˙̂
ψ = −[Λ(t)R(w(t))]T e, ψ̂(0) = ψ̂0. (21)

Theorem 1. Under the actions of the controller (19) and
the adaptive law (21),N1 +N2 +N3 +1 systems (1)–(4)
can achieve MFPMLGCS in a finite time T given by

T =
p

μ(p− q)
ln

(

1 +
2μV

p−q
2p (0)

2
p+q
2p γ

)

, (22)

where μ = min{k∗, σ1}, γ = min{ρ∗, σ2}, p and q are
two positive odd integers satisfying p > q, and p+ q is an
even number.

Proof. Choosing the following Lyapunov function:

V (t) = V1(t) + V2(t), (23)

in which

V1(t) =
1

2

∥
∥e(t)

∥
∥2,

V2(t) =
1

2

( N1∑

l=1

∥
∥θ̂l − θl

∥
∥2 +

N2∑

m=1

∥
∥φ̂m − φm

∥
∥2

+

N3∑

j=1

∥
∥η̂j − ηj

∥
∥2 +

∥
∥ψ̂ − ψ

∥
∥
2
)
, (24)

when ‖e(t)‖ �= 0, and substituting the controller (19) into
(18), we get

ėi(t) =

N1∑

l=1

N2∑

m=1

bmi a
l
i[x

l
i(t− τ l)Gmi (ym(t− τ̄m))

· (φm − φ̂m) + ymi (t− τ̄m)F li (x
l(t− τ l))

· (θl − θ̂l)] +

N3∑

j=1

cjiH
j
i (z

j(t− τ̃ j))(ηj − η̂j)

− λi(t)Ri(w(t))(ψ − ψ̂)− kiei − ρiei
q
p

− Ω · ei
‖e(t)‖2 . (25)

Taking the time derivative of V1(t) along the error
system and using the fact that

n∑

i=1

ei· ei
‖e(t)‖2 = 1,

we obtain

V̇1(t)

= eT ė =
n∑

i=1

eiėi

=

N1∑

l=1

N2∑

m=1

n∑

i=1

eib
m
i a

l
ix
l
i(t− τ l)

·Gmi (ym(t− τ̄m))(φm − φ̂m)

+

N1∑

l=1

N2∑

m=1

n∑

i=1

eib
m
i a

l
iy
m
i (t− τ̄m)

· F li (xl(t− τ l))(θl − θ̂l)

+

N3∑

j=1

n∑

i=1

eic
j
iH

j
i (z

j(t− τ̃ j))(ηj − η̂j)

−
n∑

i=1

eiλi(t)Ri(w(t))(ψ − ψ̂)

−
n∑

i=1

kiei
2 −

n∑

i=1

ρiei
p+q
p − Ω. (26)

Meanwhile, the time derivative of V2(t)is calculated
as

V̇2(t) =

N1∑

l=1

(θ̂l − θl)
T ˙̂
θl +

N2∑

m=1

(φ̂m − φm)T
˙̂
φm

+

N3∑

j=1

(η̂j − ηj)T ˙̂ηj + (ψ̂ − ψ)T
˙̂
ψ (27)

=

N1∑

l=1

{(θ̂l − θl)
T

N2∑

m=1

[BmAlY m(t− τ̄m)
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· F l(xl(t− τ l))]T e}+
N2∑

m=1

{(φ̂m − φm)T

·
N1∑

l=1

[BmAlX l(t− τ l)Gm(ym(t− τ̄m))]T e}

+

N3∑

j=1

(ηj − η̂j)
T
[CjHj(zj(t− τ̃ j))]

T
e

− (ψ̂ − ψ)T [Λ(t)R(w(t))]T e. (28)

Combining (26) with (27), and using the facts that

N1∑

l=1

n∑

i=1

eib
m
i a

l
ix
l
i(t− tl)Gmi (ym(t− t̄m))

· (φm − φ̂m)

= (φm − φ̂m)T
{
Bm
[ N1∑

l=1

AlX l(t− tl)
]
Gm(ym(t

− t̄m))
}T
e,

N2∑

m=1

n∑

i=1

eib
m
i a

l
iy
m
i (t− t̄m)F li (x

l(t− tl))(θl − θ̂l)

= (θl − θ̂l)
T
{
Al
[ N2∑

m=1

BmY m(t− t̄m)
]

· F l(xl(t− tl))
}T

e,

N3∑

j=1

n∑

i=1

eic
j
iH

j
i (z

j(t− t̃j))(ηj − η̂j)

=

N3∑

j=1

(ηj − η̂j)
T
[CjZj(t− t̃j)Hj(zj(t− t̃j))]T e,

and

−
n∑

i=1

eiλi(t)Ri(w(t))(ψ − ψ̂)

= −(ψ − ψ̂)T [Λ(t)R(w(t))]T e,

we obtain

V̇ (t) = V̇1(t) + V̇2(t)

= −
n∑

i=1

[
ki(ei)

2 + ρi(ei)
p+q
p

]
− Ω

≤ −k∗
n∑

i=1

(ei)
2 − ρ∗

n∑

i=1

(ei)
p+q
p − Ω.

Since

−Ω ≤ −σ1
[ N1∑

l=1

∥
∥θ̂l − θl

∥
∥
2
+

N2∑

m=1

∥
∥φ̂m − φm

∥
∥2

+

N3∑

j=1

∥
∥η̂j − ηj

∥
∥2 +

∥
∥ψ̂ − ψ

∥
∥2
]

− σ2

[ N1∑

l=1

∥
∥θ̂l − θl

∥
∥

p+q
p +

N2∑

m=1

∥
∥φ̂m − φm

∥
∥

p+q
p

+

s∑

j=1

∥
∥η̂j − ηj

∥
∥

p+q
p +

∥
∥ψ̂ − ψ

∥
∥

p+q
p

]
,

we have

V̇ (t)

≤ −μ
[ n∑

i=1

(ei)
2
+

N1∑

l=1

∥
∥θ̂l − θl

∥
∥
2

+

N2∑

m=1

∥
∥φ̂m − φm

∥
∥2 +

N3∑

j=1

∥
∥η̂j − ηj

∥
∥2

+
∥
∥ψ̂ − ψ

∥
∥2
]
− γ
[ n∑

i=1

(ei)
p+q
p +

N1∑

l=1

∥
∥θ̂l − θl

∥
∥

p+q
p

+

N2∑

m=1

∥
∥φ̂m − φm

∥
∥

p+q
p +

N3∑

j=1

∥
∥η̂j − ηj

∥
∥

p+q
p

+
∥
∥ψ̂ − ψ

∥
∥

p+q
p

]

= −2μV (t)− γ
[ n∑

i=1

(ei)
p+q
p +

N1∑

l=1

∥
∥θ̂l − θl

∥
∥

p+q
p

+

N2∑

m=1

∥
∥φ̂m − φm

∥
∥

p+q
p +

N3∑

j=1

∥
∥η̂j − ηj

∥
∥

p+q
p

+
∥
∥ψ̂ − ψ

∥
∥

p+q
p

]
. (29)

According to Lemma 2, we get

V̇ (t) ≤ −2μV (t)− γ
[ n∑

i=1

(ei)
2
+

N1∑

l=1

∥
∥θ̂l − θl

∥
∥
2

+

N2∑

m=1

∥
∥φ̂m − φm

∥
∥2 +

N3∑

j=1

∥
∥η̂l − ηl

∥
∥2

+
∥
∥ψ̂ − ψ

∥
∥2
] p+q

2p

= −2μV (t)− 2
p+q
2p γV

p+q
2p (t). (30)

From Lemma 1 it follows that the error trajectory
ei(t) converges to zero within a finite time T given
by (22), i.e., the finite time MFPMLGCS of (1)–(4) is
achieved. This completes the proof. �
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Remark 3. In the adaptive control laws (19)–(20),
the control gain vectors k = (k1, . . . , kn) and ρ =
(ρ1, . . . , ρn) determine the speed at which the error
approaches zero, while σ1 and σ2 determine the speed
at which the unknown parameters are tracked. If the
main purpose of controller design is to implement fast
synchronization, rather than fast tracking of parameters,
one can choose sufficiently small σ1 and σ2 to reduce the
cost.

Remark 4. In practice, the term Δi in Eqn. (20) is often
improved as ei/(‖e‖2 + ε) or

Δi =

⎧
⎨

⎩

ei
‖e‖2 if ‖e‖ ≥ δ,

0 if ‖e‖ < δ,
(31)

where the switching gain ε or δ is a sufficiently small
positive constant which can be preset according to the
accuracy requirement in a practical problem. This
method is commonly used in dealing with the problem
of finite-time control or sliding mode control (Liu et
al., 2013a; Liu et al., 2013b; Cheng et al., 2018; Fedele
et al., 2018; Xia et al., 2018).

5. Numerical simulation

In this section, a Rössler system and a Lü system with
fully unknown parameters are chosen as the base drive
systems, a Chen system is considered as the scaling drive
systems while a Liu system is used as the response system.

The above four famous chaotic systems can be
described as follows:

• Rössler system,
⎛

⎝
ẋ11
ẋ12
ẋ13

⎞

⎠ =

⎛

⎝
−x12 − x13

x11
0

0
x12
0

0
0

−x13

⎞

⎠

︸ ︷︷ ︸
F 1(x1(t))

⎛

⎝
1
0.2
5.7

⎞

⎠

︸ ︷︷ ︸
θ1

+

⎛

⎝
0
0

x11x
1
3 + 0.2

⎞

⎠

︸ ︷︷ ︸
f1(x1(t))

.

• Lü system,
⎛

⎝
ẋ21
ẋ22
ẋ23

⎞

⎠ =

⎛

⎝
x22 − x21

0
0

0
x22
0

0
0

−x23

⎞

⎠

︸ ︷︷ ︸
F 2(x2(t))

⎛

⎝
36
20
3

⎞

⎠

︸ ︷︷ ︸
θ2

+

⎛

⎝
0

−x21x23
x21x

2
2

⎞

⎠

︸ ︷︷ ︸
f2(x2(t))

.

−20
−10

0
10

20

−20

0

20
0

20

40

60

80

x1
1

x1
2

x
1 3

−50
0

50

−50

0

50
0

20

40

60

x2
1

x2
2

x
2 3

−50
0

50

−50

0

50
−50

0

50

100

y1y2

y
3

−20
0

20

−50

0

50
0

50

100

150

w1w2

w
3

Fig. 2. Phase portraits of the chaotic systems involved.
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Fig. 3. Phase portrait of the combined drive system x1 + 2x2.
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Fig. 4. Phase portrait of the compound drive system y(x1 +
2x2).

• Chen system,

⎛

⎝
ẏ1
ẏ2
ẏ3

⎞

⎠ =

⎛

⎝
y2 − y1
−y1
0

0
y1 + y2

0

0
0

−y3

⎞

⎠

︸ ︷︷ ︸
G(y(t))

⎛

⎝
35
28
3

⎞

⎠

︸ ︷︷ ︸
φ

+

⎛

⎝
0

−y1y3
y1y2

⎞

⎠

︸ ︷︷ ︸
g(y(t))

.

• Liu system,

⎛

⎝
ẇ1

ẇ2

ẇ3

⎞

⎠ =

⎛

⎝
w2 − w1

0
0

0
w1

0

0
0

−w3

⎞

⎠

︸ ︷︷ ︸
R(w(t))

⎛

⎝
10
40
2.5

⎞

⎠

︸ ︷︷ ︸
ψ

+

⎛

⎝
0

−w1w3

4(w1)
2

⎞

⎠

︸ ︷︷ ︸
r(w(t))

+

⎛

⎝
u1(t)
u2(t)
u3(t)

⎞

⎠

︸ ︷︷ ︸
u(t)

.
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Fig. 5. Time response of the MFPMLGCS error e.

In the simulation, the drive systems are initialized
with x1(0) = x2(0) = (−5, 11, 4.5) and y(0) =
(−6,−6,−6), while the response system is started from
w(0) = (2, 2, 2); the control gains are selected as k =
(1500, 1500, 1500) , ρ = (60, 60, 60), p = 5, q = 1 and
σ1 = σ2 = 0.01, while the bound vectors are given as
θ̄l = 10, θ̄2 = φ̄ = ψ̄ = 50. Choose τ0 = τ1 = τ2 = 0.1
and take the following scaling matrices:

A1 = A2 = B =

⎛

⎝
1 0 0
0 2 0
0 0 −1

⎞

⎠ ,

and Λ(t) = diag{10 + 0.1 sin t, 10 − 0.1 sin t, 10 +
0.1 cos t}. The simulation results are shown in Figs. 2–6.

The comparison of Figs. 2 and 3 shows that the
compound drive system becomes more complex without
loss of its chaotic characteristic. In addition, Figs. 3
and 4 show that, compared with the combined drive
system, by replacing the constant proportional coefficient
with a scaling-driven system, the diameter of the chaotic
manifold under the compound scheme becomes much
longer, which means more types of signals can be
transmitted.

As revealed in Fig. 5, under the actions of the
controller (19) and the modified term Δi given by (30), in
which δ = 0.01, each MFPMLGCS error ei(t) converges
to zero within a very short time. This is revealed in
Fig. 5. Meanwhile, from Fig. 6 one can see that θ̂l, φ̂
and ψ̂ converge to the values θl, φ and ψ, respectively.
The simulation results illustrate the effectiveness of the
proposed synchronization scheme.

6. Conclusion

In this paper, the problem of finite-time MFPMLGCS
for multiple different chaotic systems with fully
unknown parameters was studied. Based on the
adaptive control technique and Lyapunov stability theory,
an adaptive control scheme was designed to realize



622 Q. Li et al.

0 20 40 60 80 100
0

5

10

15

t(second)

θ̂
1

 

 

θ̂11
θ̂12
θ̂13

0 20 40 60 80 100
−10

0

10

20

30

40

t(second)

θ̂
2

 

 

θ̂21
θ̂22
θ̂23

0 20 40 60 80 100
−20

0

20

40

60

t(second)

φ

 

 

φ̂1

φ̂2

φ̂3

0 20 40 60 80 100
0

10

20

30

40

50

t(second)

ψ̂

 

 

ψ̂1

ψ̂2

ψ̂3

Fig. 6. Estimated values of the unknown parameters.

finite-time synchronization and parameter tracking. A
theoretical proof and numerical simulation demonstrated
the correctness and effectiveness of the advanced scheme.
The future work covers application of this novel
synchronization scheme and improvement of the control
technology.
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