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REPRODUCING KERNELS AND RICCATI EQUATIONS

Harry DYM
∗

The purpose of this paper is to exhibit a connection between the Hermitian so-
lutions of matrix Riccati equations and a class of finite dimensional reproducing
kernel Krein spaces. This connection is then exploited to obtain minimal factor-
izations of rational matrix valued functions that are J-unitary on the imaginary
axis in a natural way.
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1. Introduction

The purpose of this article is to present a brief exposition of the role of Riccati equa-
tions in the theory of reproducing kernel spaces. In particular, we shall exhibit a
connection between positive semidefinite solutions of matrix Riccati equations and a
class of finite dimensional reproducing kernel Hilbert spaces of rational vector val-
ued functions, and an analogous (but more general) connection between selfadjoint
solutions of matrix Riccati equations and finite dimensional reproducing kernel Krein
spaces of rational vector valued functions. The reproducing kernels of the former are
expressed in terms of a rational J inner matrix valued function Θ(λ) (see formu-
la (15) below), whereas the reproducing kernels of the latter are expressed in terms of
the same formula, but now Θ(λ) is only J unitary on the boundary of the region of
interest. A more comprehensive account of parts of this analysis will appear in (Dym,
2001).

The paper is organized as follows: In Sections 2–4 we will review a number of
concepts from the theory of reproducing kernel spaces. Much of this analysis is carried
out in a general notation that permits one to develop the theory simultaneously for
a general region Ω+ in the complex plane

�
that can be taken equal to either the

open unit disc � , the open upper half plane
�
+ , or the open right half plane +.

The symbol ρω(λ) is then defined by the rule

ρω(λ) =





1− λω if Ω+ = � ,

−2πi(λ− ω) if Ω+ =
�
+ ,

2π(λ+ ω) if Ω+ = +.

(1)
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In Section 5 we specialize in the case when Ω+ = + and treat this case only
in the rest of the paper; additional information for the case Ω+ = � is furnished
in (Dym, 2001). We then show that every rational matrix valued function Θ(λ)
that is J unitary on the boundary Ω0 of Ω+ corresponds to a finite dimensional
reproducing kernel Krein space space M of vector valued rational functions, and
subsequently obtain factorizations of the given Θ(λ) in terms of certain subspaces of
M. The innovation here is the use of the solutions of a Riccati equation to identify
the relevant reproducing kernel subspaces.

The notation is fairly standard:
�
n×m denotes the set of n×m matrices,

�
n

is an abbreviated form of
�
n×1 , the set of n × 1 column vectors, and � stands for

the real numbers. The symbol A∗ denotes the adjoint of an operator A on a Hilbert
space, with respect to the inner product of the space. If A is a finite matrix, then
the adjoint will always be computed with respect to the standard inner product so
that, in this case, A∗ will be the Hermitian transpose, or just the complex conjugate
if A is a number. However, the complex conjugate of a complex number λ will also
be designated by λ. The symbol σ(A) denotes the spectrum of a matrix A, RA
denotes the range of A and J is an m×m signature matrix, i.e.,

J = U

[
Ip 0

0 −Iq

]
U∗,

where U is unitary and p + q = m. If F (λ) is a matrix valued function, then AF
denotes its domain of analyticity. The following acronyms will be used: mvf = matrix
valued function, vvf = vector valued function, RKHS = reproducing kernel Hilbert
space, RKKS = reproducing kernel Krein space and RK = reproducing kernel. Also,
when clear from the context, an mvf that is J-unitary on Ω0 will be referred to as a
J-unitary mvf.

2. Preliminaries

In this section we shall review a number of definitions and concepts for the convenience
of the reader. This will also help us to put the subsequent development into context.

2.1. Linear Independence

The n columns of an m×n meromorphic mvf F (λ) are said to be linearly indepen-
dent if they are linearly independent in the vector space of continuous m× 1 vector
valued functions on the domain of analyticity of F , i.e., if F (λ) is meromorphic and
F (λ)u = 0 for some u ∈

�
n and all points λ ∈ AF , then u = 0. If

F (λ) = C(In − λA)
−1 or F (λ) = C(λIn −A)

−1,

this is easily seen to be equivalent to

n−1⋂

j=0

kerCAj = 0,
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i.e., that the pair (C,A) is observable. Such a realization for F is minimal in the
sense of Kalman because (in the usual terminology, see, e.g., (Zhou et al., 1996)) the
pair (A,B) is automatically controllable, since B = In.

2.2. Reproducing Kernel Spaces

A Hilbert space H of m× 1 vector valued functions that are defined on some subset
∆ of

�
is said to be an RKHS (reproducing kernel Hilbert space) if there exists an

m ×m mvf Kω(λ) on ∆ × ∆ such that for every choice of ω ∈ ∆, u ∈
�
m and

f ∈ H we have

Kωu ∈ H (as a function of λ) (2)

and

〈f,Kωu〉H = u
∗f(ω). (3)

The RK (reproducing kernel) is unique, i.e., if Kω(λ) and Lω(λ) are both RK’s
for the same RKHS, then Kω(λ) = Lω(λ) for every choice of ω and λ in ∆.
Moreover,

Kα(β)
∗ = Kβ(α) (4)

and
n∑

i,j=1

u∗jKi(ωj)ui ≥ 0 (5)

for every choice of ω1, . . . , ωn in ∆ and u1, . . . , un in
�
m .

Example 1. The Hardy space Hm2 (Ω+) is an RKHS with RK

Kω(λ) = Im/ρω(λ) (6)

for each of the classical choices of Ω+, where ρω(λ) is specified in (1). The verification
of (3) is just Cauchy’s theorem for H2(Ω+). �

Example 2. Let

M =
{
F (λ)u : u ∈

� n}, (7)

where F (λ) is an m × n mvf that is meromorphic in some open nonempty subset
∆ of

�
and has n linearly independent columns f1(λ), . . . , fn(λ) (in the sense of

Subsection 2.1), and let P be any n× n positive definite matrix (i.e., P > 0). Then
the space M endowed with the inner product

〈
F (λ)u, F (λ)v

〉
M
= v∗Pu (8)

for every choice of u and v in
�
n , is an n dimensional RKHS with RK

Kω(λ) = F (λ)P
−1F (ω)∗ (9)

(at the points of analyticity). The verification is by direct computation. �
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2.3. Reproducing Kernel Krein Spaces

Formulas (8) and (9) in Example 2 remain valid if the matrix P is Hermitian and
invertible rather than positive definite. In this case, the space M is a reproducing
kernel Krein space (RKKS) with respect to the indefinite inner product (8). That is
to say, the space M admits a direct sum decomposition

M =M+ +M− with M+ ∩M− = {0}

such that:

1. M+ is a Hilbert space with respect to the indefinite inner product (8),

2. M− is a Hilbert space with respect to the negative of the indefinite inner
product (8), and

3. M+ is orthogonal to M− with respect to the indefinite inner product (8).

This is easily verified by setting

M± =
{
F (λ)Π±u : u ∈

� n},

where Π± denotes the orthogonal projection of
�
n onto the span of the eigenvectors

of P corresponding to the eigenvalues that fall in the interval between 0 and ±∞.

For ease of future reference, we shall summarize this more general setting in the
next example.

Example 3. Let M be the space defined in Example 2 endowed with the indefinite
inner product (8) that is defined in terms of an invertible Hermitian matrix P . Then
M is an n dimensional RKKS with RK given by (9). �

2.4. RRRααα Invariance

A major role in this subject is played by the generalized backwards shift operator Rα
that acts on matrix valued meromorphic functions by the rule

RαF (λ) =
F (λ)− F (α)

λ− α
(10)

for every point α ∈ AF . In the next subsection we shall consider finite dimensional
spaces of vector valued functions that are invariant under the action of Rα for at
least one appropriately chosen point α ∈

�
.

2.5. Some Implications of RRRααα Invariance

The results reported on in this subsection are taken largely from Section 3 of (Dym,
1994) and Section 4 of (Dym, 1998), where the proofs of the following statements can
be found.
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Theorem 1. Let M be an n dimensional vector space of m × 1 vvf ’s which are
meromorphic in some open nonempty set ∆ ⊂

�
, and suppose further that M is

Rα invariant for some point α ∈ ∆ in the domain of analyticity of M. Then M is
spanned by the columns of a rational m× n matrix valued function of the form

F (λ) = V {M − λN}−1, (11)

where V ∈
�
m×n , M,N ∈

�
n×n ,

MN = NM and M − αN = In. (12)

Moreover, λ ∈ ∆ is a point of analyticity of F if and only if the n × n matrix
M − λN is invertible.

Corollary 1. If det(M − λN) 6≡ 0 and F (λ) = V (M − λN)−1 is a rational m× n
matrix valued function with n linearly independent columns, then:

(i) M is invertible if and only if F is analytic at zero.

(ii) N is invertible if and only if F is analytic at infinity and F (∞) = 0.

Moreover, in case (i) F can be expressed in the form

F (λ) = C(In − λA)
−1 (13)

whereas in case (ii) it takes the form

F (λ) = C(λIn −A)
−1. (14)

Corollary 2. Let f be an m × 1 vector valued function which is meromorphic in
some open nonempty set ∆ ⊂

�
, and let α ∈ ∆ be a point of analyticity of f . Then

f is an eigenfunction of Rα if and only if it can be expressed in the form

f(λ) =
v

ρω(λ)

for one or more choices of ρω(λ) in (1) with ρω(α) 6= 0 and some nonzero constant
vector v ∈

�
m .

3. A Special Class of Reproducing Kernel Spaces

We shall be particularly interested in RKKS’s of m × 1 vector valued meromorphic
functions in

�
with RK’s of a special form, which will be described below in the

statement of Theorem 2. The theorem is an elaboration of a fundamental result that
is due to de Branges (1963). For the sake of definiteness it is formulated with respect
to the right half plane. For a more comprehensive statement, see Theorem 2.3 of
(Dym, 2001). The latter is a special case of the analysis in (Alpay and Dym, 1993a).

Theorem 2. Let K be an RKKS of m× 1 vector valued functions that are analytic
in an open subset ∆ of

�
that is symmetric with respect to Ω0 = i � , and assume
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that ∆ ∩ Ω0 6= ∅. Then the reproducing kernel Kω(λ) of K can be expressed in the
form

Kω(λ) =
J −Θ(λ)JΘ(ω)∗

ρω(λ)
, (15)

for some choice of the m×m mvf Θ(λ) which is analytic in ∆ and ρω(λ) as in (1)
for Ω+ = +, if and only if the following two conditions hold:

(i) K is Rα invariant for every α ∈ ∆.

(ii) The structural identity

〈Rαf, g〉K + 〈f,Rβg〉K + (α+ β
∗)〈Rαf,Rβg〉K = −2πg(β)

∗Jf(α) (16)

holds for every choice of α, β in ∆ and f, g in K.

Moreover, in this case, the function Θ(λ) that appears in (29) is unique up to a
J unitary constant factor on the right hand side; it can be taken equal to

Θ(λ) = Im − ρµ(λ)Kµ(λ)J (17)

for any point µ ∈ ∆ ∩ Ω0.

This formulation is adapted from (Alpay and Dym, 1993a); see especially The-
orems 4.1, 4.2, and 4.3. Some simplifications are possible when the region Ω+ is
restricted to be one of the three classical regions, because then the terms r(a, b;α)f
and r(b, a;α)f that appear in the formulation in (Alpay and Dym, 1993a) can be
reexpressed as constant multiples of Rα(af) and Rα(bf), respectively; see Section 8
of (Dym, 1998), or Theorem 2.3 of (Dym, 2001).

The restriction ∆∩Ω0 = ∅ can be relaxed at the expense of a more sophisticated
formulation. However, since we shall be dealing with finite dimensional spaces and
rational functions, there is no need for this extra complication. The interested reader
can refer to (Alpay and Dym, 1993a) for more information.

For the other two classical choices of Ω+, the structural identity (16) is replaced
by

〈
(I + αRα)f, (I + βRβ)g

〉
K
− 〈Rαf,Rβg〉K = g(β)

∗Jf(α) (18)

if Ω+ = � and

〈Rαf, g〉K − 〈f,Rβg〉K − (α− β
∗)〈Rαf,Rβg〉K = 2πig(β)

∗Jf(α) (19)

if Ω+ =
�
+ . Then Ω0 is taken to be equal to the boundary of Ω+ and ρω(λ) is

selected from formula (1).

Formula (19) appears in (de Branges, 1963); formula (18) is equivalent to a
formula which appears in (Ball, 1975), where de Branges’ work was adapted to the disc
and an important technical improvement due to Rovnyak (1968) was incorporated.
All the three references deal with the Hilbert space case only.

From time to time we shall refer to an RKKS with an RK of the form (15) as a
dBK space K(Θ), and to an RKHS with an RK of this form as a de Branges space
H(Θ).
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4. An Important Conclusion

The role of the two conditions in Theorem 2 becomes particularly transparent when K
is finite dimensional. Indeed, if the n dimensional space M considered in Example 3
is Rα invariant for some point α in the domain of analyticity of F (λ), then, by
Theorem 1, F (λ) can be expressed in the form

F (λ) = V (M − λN)−1 (20)

with M and N satisfying (12). Thus Rα invariance forces the elements of M to be
rational of the indicated form. Since

(RβF )(λ) = F (λ)N(M − βN)
−1

for every point β at which the matrix M − βN is invertible, i.e., for every β ∈ AF ,
the domain of analyticity of F , it is readily checked that

〈RαFu, Fv〉M =
〈
FN(M − αN)−1u, Fv

〉
M

= v∗PN(M − αN)−1u, (21)

and similarly that

〈Fu,RβFv〉M = v
∗(M∗ − β∗N∗)−1N∗Pu, (22)

and

〈RαFu,Rβv〉M = v
∗(M∗ − β∗N∗)−1N∗PN(M − αN)−1u (23)

for every choice of α, β in AF and u, v in
�
n . It is now easily seen that, for each of

the three special choices of Ω+ under consideration, the associated structural identity
reduces to a matrix equation for P by working out (16), (18) and (19) with the aid
of (21)–(23). In other words:

In a finite dimensional Rα invariant RKKS M with Gram matrix P , each of the
structural identities (16), (18) and (19) is equivalent to a Lyapunov-Stein equation
for P .

This last conclusion seems to have been first established explicitly in (Dym,
1989b) by a considerably lengthier calculation. The present, more appealing argument
is adapted from (Dym, 1994; Dym, 1998).

If F is analytic at zero, then we may presume that M = In in (20) and take
α = β = 0 in the structural identity (18).

Theorem 3. Let M denote the finite dimensional RKHS that was introduced in
Example 3 and let F (λ) be given by (20). Then the RK of M can be expressed in
the form

Kω(λ) =
J −Θ(λ)JΘ(ω)∗

ρω(λ)
(24)
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with ρω(λ) as in (1) if and only if P is a solution of the equation

M∗PM −N∗PN = V ∗JV when Ω+ = � , (25)

M∗PN −N∗PM = 2πiV ∗JV when Ω+ =
�
+ , (26)

M∗PN +N∗PM = −2πV ∗JV when Ω+ = +. (27)

Moreover, in each of these cases Θ(λ) is uniquely specified up to a J unitary constant
multiplier on the right hand side by the formula

Θ(λ) = Im − ρµ(λ)F (λ)P
−1F (µ)∗J (28)

for any choice of the point µ ∈ Ω0 ∩ AF .

Note that (28) is a realization formula for Θ(λ), and that in the usual notation
of (13) and (14) it depends only upon A,C and P . It can be reexpressed in one of
the standard A,B,C,D forms by elementary manipulations. A very general class of
realization formulas of the form (28) and extensions thereof can be found in (Alpay
and Dym, 1996).

5. Specialization of the Setting

From now on we shall restrict our attention to the case where the fundamental region
of interest is the right half plane. Accordingly, we shall set

M =
{
F (λ)u : u ∈

� n}, (29)

where

F (λ) = C(λIn −A)
−1, (30)

(C,A) is an observable pair and the space M is endowed with the indefinite inner
product

〈
F (λ)u, F (λ)v

〉
M
= v∗Pu (31)

for every choice of u and v in
�
n , and P is an n× n invertible Hermitian matrix

solution of the Lyapunov equation

A∗P + PA = −2πC∗JC. (32)

Thus, in view of the preceding discussion, M is a dBK space based on the m ×m
mvf

Θ(λ) = Im − 2πC(λIn −A)
−1P−1C∗J. (33)

Now, let M̃ be a k dimensional subspace of the vector space M. Then there
exists an m× k matrix B such that

M̃ =
{
F (λ)Bu : u ∈

� k}.
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However, since RB = RBB∗ , we may assume that

M̃ =
{
F (λ)Xu : u ∈

� n},
for some n × n Hermitian matrix X . There are clearly many choices of X that
generate the same vector space M̃, some of which are positive semidefinite. Our next
objective is to characterize those X for which M̃ is a dBK space that is isometrically
embedded into M. This will involve three conditions that are not independent of one
another, i.e., (38), (42) and (44).

6. The Spaces Underlying the Riccati Equation

Let

MX =
{
F (λ)Xu : u ∈

� n}, (34)

denote the vector space that is constructed from the columns of the m× n mvf

F (λ) = C(λIn −A)
−1, (35)

where C ∈
�
m×n , A,X ∈

�
n×n , X is Hermitian and it is assumed throughout that

the pair (C,A) is observable.

The next result is a special case of Theorem 2.1 of (Dym, 2001). We repeat the
proof for the convenience of the reader, because it is central to what follows.

Theorem 4. Let the pair (C,A) be observable and let X ∈
�
n×n be a nonzero

Hermitian matrix. Then the linear space MX defined by (34) and (35) is an RKKS
with respect to the indefinite inner product

〈FXu, FXv〉MX
= v∗Xu. (36)

The RK Kω(λ) of this RKKS is given by the formula

Kω(λ) = F (λ)XF (ω)
∗. (37)

Moreover, MX is included isometrically inside M if and only if

XPX = X. (38)

Proof. The first order of business is to check that the indicated inner product is well
defined. But if

FXu1 = FXu2 and FXv1 = FXv2

for some choice of u1, u2, v1, v2 in
�
n , then the presumed observability guarantees

that

Xu1 = Xu2 and Xv1 = Xv2.

Thus,

〈FXu1, FXv1〉MX
= 〈FXu2, FXv2〉MX

as needed.



44 H. Dym

Next, setting

R+X = span{eigenvectors of X with positive eigenvalues},

R−X = span{eigenvectors of X with negative eigenvalues}

and

M±X =
{
F (λ)Xu : u ∈ R±X

}
,

it is easily verified that:

1. MX =M
+

X +M
−
X .

2. M+X ∩M
−
X = {0}.

3. M+X is a Hilbert space with respect to the inner product defined by the restric-
tion of (36) to u, v in R+X .

4. M−X is a Hilbert space with respect to the inner product defined by the negative
of the restriction of (36) to u, v in R−X .

5. M+X is orthogonal to M
−
X with respect to the indefinite inner product (36).

Thus, MX is a Krein space. Next, it is readily checked that if Kω(λ) is defined
by (37), then the conditions (2) and (3) are met. Therefore, MX is an RKKS and its
RK is given by (37). Finally, the asserted condition for isometric inclusion is follows
immediately from (8) and (36).

In the sequel, we shall be particularly interested in the case when the RK Kω(λ)
of the RKKS MX can be expressed in the form (15). If such a representation for
Kω(λ) exists, then the mvf Θ(λ) which appears in (15) is unique up to a right J-
unitary constant factor. It is a rational m × m mvf, and both Kω(λ) and Θ(λ)
depend upon X . We do not always indicate this dependence in the notation in order
to keep the typography simple. However, it should be noted that:

1. The number of negative squares of the kernel Kω(λ) is equal to the number of
negative eigenvalues of X , counting multiplicities.

2. The mvf Θ(λ) in (15) will be J-inner if and only if X ≥ 0.

3. The McMillan degree of Θ(λ) is equal to the rank of X .

Thus, we see that if the RK Kω(λ) of the RKKS MX can be expressed in the
form (15), then:

MX is a de Branges space H(Θ) if X ≥ 0.

MX is a dBK space K(Θ) if X is only Hermitian.
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7. RRR
ααα
Invariance Again

In this section we characterize those Hermitian matrices X for which the RKKS’s
MX are Rα invariant for any one point α (and hence, in fact, every point α) at
which G(α) = αIn −A is invertible.

Let X† denote the Moore-Penrose inverse of X . Then, since X is Hermitian
and hence admits a representation of the form

X = U

[
X1 0

0 0

]
U∗ (39)

with U unitary and X1 both Hermitian and invertible, it follows that

X† = U

[
X−11 0

0 0

]
U∗. (40)

Thus, X† commutes with X and

X†X = XX† (41)

is an orthogonal projection: XX† = ΠX , the orthogonal projection of
�
n onto RX .

Lemma 1. Assume that G(α) = αIn − A is invertible. Then the space MX is Rα
invariant if and only if

AX = XX†AX, (42)

i.e., if and only if RX is invariant under A.

Proof. By direct calculation, we have

(RαF )(λ)X = −F (λ)G(α)
−1X.

Therefore, MX will be Rα invariant if and only if there exists a matrix Qα ∈
�
n×n

such that

−G(α)−1X = XQα.

If Qα is invertible, then this is the same as to require

AX = X(In + αQα)(Qα)
−1. (43)

We thus get

XX†AX = XX†X(In + αQα)(Qα)
−1 = X(In + αQα)(Qα)

−1 = AX.

This yields the desired result when Qα is invertible. The same conclusion holds even
if Qα is not invertible, but the proof is more elaborate; see Lemma 3.1 of (Dym,
2001).

The proof of the sufficiency of (42) for Rα invariance is a straightforward calcu-
lation that is left for the reader.
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Remark 1. At first glance the conclusions of the last lemma seem to contradict the
conditions for Rα invariance that were established in Theorem 1. Notice, however,
that if A is subject to (42), then

C(λIn −A)
−1X = CX(λIn −X

†AX)−1,

which is of the requisite form.

8. The Riccati Equation

Theorem 5. Let F (λ) be given by (30) with (C,A) observable. Then the RKKS
MX is a dBK space K(Θ) if and only if the Hermitian matrix X is a solution of
the Riccati equation

AX +XA∗ = −2πXC∗JCX. (44)

Moreover, in this case the mvf Θ(λ) = ΘX(λ) is uniquely determined by the formula

ΘX(λ) = Im − 2πC(λIn −A)
−1XC∗J (45)

up to a J-unitary constant multiplier on the right, and the following identity holds:

J −ΘX(λ)JΘX (ω)
∗

ρω(λ)
= F (λ)XF (ω)∗. (46)

Thus, the mvf ΘX(λ) is J-inner iff X ≥ 0; it can be expressed in terms of

Â = −(A∗ + 2πC∗JCX) (47)

as

ΘX(λ) = Im − 2πCX(λIn − Â)
−1C∗J. (48)

Proof. Suppose first that MX is a dBK space. Then, in view of Theorem 2 and
Lemma 1,

AX = XX†AX (49)

and the structural identity (16) holds.

Let A1 be any matrix in
�
n×n which meets the equality

AX = XA1. (50)

(The existence of at least one such matrix is guaranteed by (49).) Then

(αIn −A)X = X(αIn −A1)

and thus,

(αIn −A)
−1X = X(αIn −A1)

−1
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for every point α ∈
�
for which the two inverses exist. Let

f(λ) = F (λ)Xu and g(λ) = F (λ)Xv

for any choice of u, v in
�
n , and suppose that α, β 6∈ σ(A)∪σ(A1). Then it is readily

checked that

(Rαf)(λ) = − F (λ)(αIn −A)
−1Xu = −F (λ)X(αIn −A1)

−1u,

(Rβg)(λ) = − F (λ)(βIn −A)
−1Xv = −F (λ)X(βIn −A1)

−1v,

f(α) = C(αIn − A)
−1Xu = CX(αIn −A1)

−1u,

g(β) = C(βIn −A)
−1Xv = CX(βIn −A1)

−1v.

Next, upon substituting these formulas into the structural identity (16) and invoking
the inner product rule (36), we see that

v∗
{
X(αIn −A1)−1 + (βIn −A∗1)

−1X − (α+ β)(βIn −A∗1)
−1X(αIn −A1)−1

}
u

= 2πv∗
{
(βIn −A

∗
1)
−1XC∗JCX(αIn −A1)

−1

}
u.

However, this last equality holds for every choice of u, v ∈
�
n if and only if

(βIn −A
∗
1)X +X(αIn −A1)− (α+ β)X = 2πXBJCX,

that is, if and only if

−A∗1X −XA1 = 2πXC
∗JCX.

But, in view of (50), this last identity implies that X is a solution of the Riccati
equation (44) and thus serves to complete the proof of the assertion that if MX is a
dBK space, then X is a solution of (44).

Conversely, if X is a solution of (44), then it follows easily that (49) and the
structural identity (16) hold and therefore, by Lemma 1 and Theorem 2, that MX
is a dBK space. Formula (45) for Θ(λ) = ΘX(λ) is obtained by letting µ −→ ∞
along the imaginary axis in the general formula (17). The fact that ΘX(λ) is J-inner
if and only if X ≥ 0 follows from (46). One direction is easy. The other exploits the
fact that if (C,A) is an observable pair, then there exist a set of points ω1, . . . , ωn in
the domain of analyticity of F (λ) and a set of vectors u1, . . . , un in

�
m such that

the n× n matrix

Y =
[
F (ω1)

∗u1 · · ·F (ωn)
∗un
]

is invertible. Now, if ΘX(λ) is J inner, then the n× n matrix

Y ∗XY =
[
u∗iKωj (ωi)uj

]

is positive semidefinite. Therefore X ≥ 0, since Y is invertible.

Finally, when X is a solution of the Riccati equation (44), we may define Â
by (47) and verify that

(λIn −A)
−1X = X(λIn − Â)

−1

for all points λ 6∈ σ(A) ∪ σ(Â). This leads easily to (48).
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9. Factorization

Let X and Y be nonzero Hermitian matrices such that

XPX = X and Y PY = Y. (51)

Then MX and MY are both included ‘isometrically’ inside the finite dimensional
Krein space M. Moreover, these two spaces will be orthogonal inside M iff

Y PX = XPY = 0. (52)

In this case,

(X + Y )P (X + Y ) = X + Y. (53)

Moreover, if these two spaces are also complementary, then X + Y is invertible and
hence

(X + Y )P = In. (54)

In general, MY is not Rα invariant and hence cannot be a dBK space. However, it
turns out that Θ−1X MY is Rα invariant; see e.g., (Alpay and Dym, 1986; Alpay and
Dym, 1993b). Indeed, by a direct calculation that exploits the Lyapunov equation (32),
we get

ΘX(λ)
−1C(λIn −A)

−1Y = C(In −XP )(λIn −A)
−1Y + CX(λIn +A

∗)−1PY.

But the second term on the right hand side is equal to zero, since

X(λIn +A
∗)−1PY = (λIn + Â

∗)−1XPY = 0.

Thus, we are left with the formula

ΘX(λ)
−1C(λIn −A)

−1Y = CY P (λIn −A)
−1Y (55)

which can also be reexpressed as

ΘX(λ)
−1C(λIn −A)

−1Y = CY P (λIn −A)
−1P−1, (56)

since P−1 = X + Y . This last form serves to clarify the asserted Rα invariance of
the space Θ−1X MY .

A similar set of calculations leads to the supplementary identity

ΘX(λ)
−1Θ(λ) = Im − 2πCY P (λIn −A)

−1P−1C∗J, (57)

or equivalently,

ΘX(λ)
−1Θ(λ) = Im − 2πCY P (λIn −A)

−1Y C∗J, (58)

just as before.

Thus, as

Θ(λ) = ΘX(λ) · (Θ
−1
X Θ)(λ), (59)
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where the first factor has McMillan degree equal to the rank of X and the second
factor has McMillan degree equal to the rank of Y , we are led to the following con-
clusion:

Theorem 6. In the setting of Section 5, let X be a nonzero Hermitian solution of
the Riccati equation (44) such that XPX = X and let

Y = P−1 −X.

Then the mvf Θ(λ) defined by (33) admits the factorization

Θ(λ) =
{
Im − 2πC(λIn −A)

−1XC∗J
}{
Im − 2πCY P (λIn −A)

−1Y C∗J
}
. (60)

This factorization is minimal. Moreover, the first term on the right hand side is J-
inner if and only if X ≥ 0.

Remark 2. In the setting of Section 5, every Hermitian solution X of the Riccati
equation (44) is also a solution of the equation

(XPX −X)X†AX +XA∗X†(XPX −X) = 0.

Therefore, the condition XPX = X is automatically met provided that σ(X †AX)∩
σ(−XA∗X†) = ∅. However, since σ(X†AX) ⊂ σ(A) and σ(−XA∗X†) ⊂ σ(−A∗), it
is enough to have σ(A) ∩ σ(−A∗) = ∅.

10. Conclusions and Comparisons

The basic facts underlying the preceding calculations can be summarized as follows:

Theorem 7. Let X ∈
�
n×n be a nonzero Hermitian matrix and suppose that

σ(A) ∩ σ(−A∗) = ∅. Then, in the setting of Section 5, the following statements are
equivalent:

(i) MX is an Rα invariant subspace of M (with isometric inclusion, i.e.,
XPX = X),

(ii) AX = XX†AX and XPX = X,

(iii) AΠX = ΠXAΠX and XPX = X,

(iv) X is a solution of the Riccati equation (44).

If any one (and hence all) of the preceding four conditions are met, then the mapping
from X to MX is one-to-one and ΘX(λ) = Im − 2πC(λIn − A)

−1XC∗J is a left
J-unitary divisor of Θ(λ) such that the factorization (59) is minimal. Every minimal
factorization is obtained in this way.

Proof. (i) implies (ii) by Theorem 4 and Lemma 1. To obtain (iv) from (ii), multiply
the Lyapunov equation (32) by X and then invoke the two conditions in (ii) to get

−2πXC∗JCX = XPAX +XA∗PX = XPXX†AX +XA∗X†XPX

= XX†AX +XA∗X†X = AX +XA∗.
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Next, if (iv) holds, then MX is a dBK space that is included isometrically inside M,
owing to Theorem 5 and Remark 2. Thus, (iv) implies (i). The equivalence of (ii) and
(iii) is easy.

Suppose now that X1 ∈
�
n×n and X2 ∈

�
n×n are any two nonzero Hermitian

matrices that meet any one (and hence all) of the conditions (i)–(iv), and that MX1 =
MX2 . Then K(ΘX1) = K(ΘX2) and hence, as ΘX1(λ) = ΘX2(λ) for λ = ∞, the
equality prevails for all λ ∈

�
and thus, in view of the presumed observability,

X1C
∗ = X2C

∗. Therefore,

A(X2 −X1) + (X2 −X1)A
∗ = 2πX1C

∗JCX1 − 2πX2C
∗JCX2 = 0.

Consequently, X2 = X1.

Finally, Theorem 6 guarantees that the factorization (59) is minimal. Conversely,
if Θ = Θ1Θ2 is a minimal factorization of Θ(λ) with J-unitary factors, then, as
follows from either the construction in (Alpay and Dym, 1993b) that is discussed below
or by adapting the proof of Theorem 5.7 in (Alpay and Dym, 1986), the dBK space
K(Θ1) is embedded isometrically into M, i.e., K(Θ1) = MX = K(ΘX ) for some
Hermitian solution X of the Riccati equation (44). Therefore, assuming Θ1(∞) = Im,
as we may, it follows that Θ1(λ) = ΘX(λ) as claimed.

The connection between invariant subspaces of the principle operator A in the
realization of a J-inner matrix (and even operator) valued function Θ(λ) and the
factorization of Θ(λ) was already observed in the early work of Livsic and Brodskii,
see e.g. (Brodskii, 1971) and the notes and references therein. The equivalence of (i),
(iv) and the factorization of Θ(λ) were established for the definite case (J = Im)
with P > 0 and X ≥ 0 in Theorem 4.3 of (Fuhrmann, 1995). A generalization to the
indefinite J case was announced by Gombani and Weiland (2000) in their lecture at
the MTNS meeting in Perpignan.

The role of the Rα invariant subspaces of a dBK space K(Θ) in the factorization
of Θ(λ), i.e., the connection between (i) and (ii), was explored in assorted degrees
of generality in (Alpay and Dym, 1986; 1993b; 1996), using the structural identity
and/or Lyapunov equations. The connection of these reproducing kernel spaces with
Riccati equations that was exhibited here and in (Dym, 2001) seems to be new.

The next theorem, which is adapted from Theorem 4.2 in (Alpay and Dym,
1993b), serves to exhibit the connection (in the setting of Section 5) between:

1. Rα-invariant subspaces of the finite dimensional RKKS M,

2. subblocks of the invertible structured Hermitian matrix P that serves to define
its indefinite inner product via (8), and

3. factors of the mvf Θ(λ).

Theorem 8. Let (C,A) be observable and P be an n× n invertible solution of the
Lyapunov equation (32). Assume that

P =

[
P11 P12

P21 P22

]
and A =

[
A11 A12

A21 A22

]
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are conformable block decompositions, where the upper left hand block in each of these
two matrices is k × k, and suppose that P11 is invertible and

A21 = 0. (61)

Write

Π1 =

[
Ik

0

]
, Π2 =

[
−P−111 P12

In−k

]
(62)

and let

Q = Π∗2PΠ2 = P22 − P21P
−1
11 P12 (63)

be the Schur complement of P11 with respect to P . Then the mvf

Θ(λ) = Im − 2πC(λIn −A)
−1P−1C∗J (64)

admits a factorization of the form

Θ(λ) = Θ1(λ)Θ2(λ), (65)

where

Θ1(λ) = Im − 2πC(λIn −A)
−1)Π1P

−1
11 Π

∗
1C
∗J, (66)

Θ2(λ) = Im − 2πCΠ2(λIn−k −A22)
−1Q−1Π∗2C

∗J. (67)

Moreover,

A∗22Q+QA22 = −2πΠ
∗
2C
∗JCΠ2. (68)

These formulas are obtained from the factorization formulas that are presented
in Theorem 4.2 of (Alpay and Dym, 1993b) for the case Ω+ = + upon (in the
notation of that paper) letting µ tend to ∞ along the i � axis. Comparing with the
present set of formulas for the factors of Θ, we expect that

X = Π1P
−1
11 Π

∗
1

is a solution of the Riccati equation (44). It is readily checked that this is truly the
case. Indeed, since A21 = 0, we have

AΠ1P
−1
11 Π

∗
1 +Π1P

−1
11 Π

∗
1A
∗ =


 A11P

−1
11 0

0 0


+


 P

−1
11 A

∗
11 0

0 0


 ,

whereas

−2πΠ1P
−1
11 Π

∗
1C
∗JCΠ1P

−1
11 Π

∗
1 = −2π


 P

−1
11 Π

∗
1C
∗JCΠ1P

−1
11 0

0 0


 .
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Thus, X = Π1P
−1
11 Π

∗
1 will be a solution of the Riccati equation (44) if and only if

P11 is a solution of the Lyapunov equation

P11A11 +A
∗
11P11 = −2πΠ

∗
1C
∗JCΠ1.

But this is just the 11 block of the Lyapunov equation (32). Furthermore, by invoking
the well known formulas for the inverse of a matrix in terms of its Schur complement
(see e.g., Chapter 0 of (Dym, 1989a)), we see that

Y = P−1 −X = Π2Q
−1Π∗2.

Substituting this choice of Y into (58), we obtain

ΘX(λ)
−1Θ(λ) = Im − 2πCΠ2Q

−1Π∗2P (λIn −A)
−1Π2Q

−1Π∗2C
∗J.

But now, as

Q−1Π∗2P = [0 Ik ],

it is readily checked that

Q−1Π∗2P (λIn −A)
−1Π2 = (λIn−k −A22)

−1

and hence (58) coincides with (67) for Θ2(λ). That is to say, (67) exhibits a minimum
realization for the second factor on the right hand side in (60). It is readily checked
that a minimal realization for the first factor on the right hand side in (60) (i.e., the
mvf defined by (66)) is given by the expression

Θ1(λ) = Im − 2πCΠ1(λIk −A11)
−1P−111 Π

∗
1C
∗J.

Note added in the proof: Some of the factorization formulas established here appear
to be closely related to results that were obtained earlier in (Lerer and Ran, 1997) by
other methods; see also the preprint (Karelin et al., 2001) for further developments.
I am indebted to Andrei Ran for calling my attention to these references.
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