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A ROUGH SET-BASED KNOWLEDGE

DISCOVERY PROCESS

Ning ZHONG∗, Andrzej SKOWRON∗∗

The knowledge discovery from real-life databases is a multi-phase process con-
sisting of numerous steps, including attribute selection, discretization of real-
valued attributes, and rule induction. In the paper, we discuss a rule discovery
process that is based on rough set theory. The core of the process is a soft hybrid
induction system called the Generalized Distribution Table and Rough Set Sys-
tem (GDT-RS) for discovering classification rules from databases with uncertain
and incomplete data. The system is based on a combination of Generalization
Distribution Table (GDT) and the Rough Set methodologies. In the preprocess-
ing, two modules, i.e. Rough Sets with Heuristics (RSH) and Rough Sets with
Boolean Reasoning (RSBR), are used for attribute selection and discretization
of real-valued attributes, respectively. We use a slope-collapse database as an
example showing how rules can be discovered from a large, real-life database.

Keywords: rough sets, KDD process, hybrid systems

1. Introduction

The Knowledge Discovery from Databases (KDD) is usually a multi-phase process
involving numerous steps, like data preparation, preprocessing, search for hypothesis
generation, pattern formation, knowledge evaluation, representation, refinement and
management. Furthermore, the process may be repeated at different stages when a
database is updated (Fayyad et al., 1996).

The multi-phase process is an important methodology for the knowledge discov-
ery from real-life data (Zhong et al., 1997). Although the process-centric view has
recently been widely accepted by researchers in the KDD community, few KDD sys-
tems provide capabilities that a more complete process should possess.

Rough set theory constitutes a sound basis for KDD. It offers useful tools for
discovering patterns hidden in data in many aspects (Lin and Cercone, 1997; Pal and
Skowron, 1999; Pawlak, 1982; 1991; Skowron and Rauszer, 1992). It can be used in
different phases of the knowledge discovery process, like attribute selection, attribute
extraction, data reduction, decision rule generation and pattern extraction (templates,
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association rules) (Komorowski et al., 1999). Furthermore, recent extensions of rough
set theory (rough mereology) have brought new methods of decomposition of large
data sets, data mining in distributed and multi-agent based environments and granular
computing (Polkowski and Skowron, 1996; Polkowski and Skowron, 1999; Yao and
Zhong, 1999; Zhong et al., 1999).

In the paper, we discuss a rule discovery process that is based on the rough
set approach. In a sense, the rule discovery process described in this paper can be
regarded as a demonstration of the process-centered KDD methodology and applica-
tions of rough set theory in this process. Section 2 describes a soft hybrid induction
system GDT-RS constituting the core in the discovery of classification rules from
databases with uncertain and incomplete data. The system is based on a combination
of the Generalization Distribution Table (GDT) and the Rough Set methodology.
Furthermore, in Sections 3 and 4 we introduce two systems: Rough Sets with Heuris-
tics (RSH) for attribute selection and Rough Sets with Boolean Reasoning (RSBR)
for discretization of real-valued attributes, respectively. They are responsible for two
steps in the preprocessing realized before the GDT-RS starts. Then, in Section 5, we
present an illustrative example of the application of our system for discovering rules
from a large, real-life slope-collapse database. Finally, Section 6 gives conclusions and
outlines further research directions.

2. Generalized Distribution Table and Rough Set System
(GDT-RS)

GDT-RS is a soft hybrid induction system for discovering classification rules from
databases with uncertain and incomplete data (Zhong et al., 1998; Dong et al.,
1999a). The system is based on a hybridization of the Generalization Distribution Ta-
ble (GDT) and the Rough Set methodology. The GDT-RS system can generate, from
noisy and incomplete training data, a set of rules with the minimal (semi-minimal)
description length, having large strength and covering all instances.

2.1. Generalization Distribution Table (GDT)

We distinguish two kinds of attributes, namely condition attributes and decision at-
tributes (sometimes called class attributes) in a database. The condition attributes
are used to describe possible instances in GDT, while the decision attributes corre-
spond to concepts (classes) described in a rule. Usually, a single decision attribute is
all what is required.

Any GDT consists of three components: possible instances, possible generaliza-
tions of instances, and probabilistic relationships between possible instances and pos-
sible generalizations.

Possible instances, represented at the top row of GDT, are defined by all possible
combinations of attribute values from a database. Possible generalizations of instances,
represented by the left column of a GDT, are all possible cases of generalization
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for all possible instances. A wild card ‘∗’ denotes the generalization for instances1.
For example, the generalization ∗b0c0 means that the attribute a is superfluous
(irrelevant) for the concept description. In other words, if an attribute a takes values
from {a0, a1} and both a0b0c0 and a1b0c0 describe the same concept, the attribute
a is superfluous, i.e. the concept can be described by b0c0. Therefore, we use the
generalization ∗b0c0 to describe the set {a0b0c0, a1b0c0}.

The probabilistic relationships between possible instances and possible general-
izations, represented by entries Gij of a given GDT, are defined by means of a
probabilistic distribution describing the strength of the relationship between any pos-
sible instance and any possible generalization. The prior distribution is assumed to
be uniform if background knowledge is not available2. Thus, it is defined by

Gij = p(PIj |PGi)

=











1

NPGi
if PGi is a generalization of PIj ,

0 otherwise,

(1)

where PIj is the j-th possible instance, PGi is the i-th possible generalization, and
NPGi is the number of the possible instances satisfying the i-th possible generaliza-
tion, i.e.

NPGi =
∏

k∈{l| PGi[l]=∗}

nk, (2)

where PGi[l] is the value of the l-th attribute in the possible generalization PGi,
and nk is the number of values of the k-th attribute. Certainly, we have

∑

j Gij = 1
for any i.

Assuming E =
∏m
k=1 nk, (1) can be rewritten in the following form:

Gij = p(PIj |PGi)

=



















∏

k∈{l| PGi[l]6=∗}

nk

E
if PGi is a generalization of PIj ,

0 otherwise.

(3)

Furthermore, the rule discovery can be constrained by three types of biases cor-
responding to three components of the GDT, so that the user can select more general
concept descriptions from an upper level or more specific ones from a lower level,
adjust the strength of the relationship between instances and their generalizations,
and define/select possible instances (Zhong et al., 1998).

1 For simplicity, the wild card will sometimes be omitted in the paper.
2 How to use background knowledge in the rule discovery process is not discussed here due to
the limitation on the paper volume. For such a discussion, see the paper (Zhong et al., 2000).



606 N. Zhong and A. Skowron

2.2. Rule Strength

Let us recall some basic notions regarding rule discovery from databases represented
by decision tables (Komorowski et al., 1999). A decision table (DT) is the quadruple
T = (U,A,C,D), where U is a nonempty finite set of objects called the universe,
A is a nonempty finite set of primitive attributes, and C,D ⊆ A are two subsets of
attributes that are called the condition and decision attributes, respectively (Pawlak,
1991; Skowron and Rauszer, 1992). By IND(B) we denote the indiscernibility relation
defined by B ⊆ A, [x]IND(B) denotes the indiscernibility (equivalence) class defined
by x, and U/B denotes the set of all indiscernibility classes of IND(B). A descriptor
over B ⊆ A is any pair (a, v) where a ∈ A and v is a value of a. If P is a
conjunction of some descriptors over B ⊆ A, then we denote by [P ]B (or [P ]) the
set of all the objects in DT satisfying P .

In our approach, the rules are expressed in the following form:

P → Q with S,

i.e. ‘if P then Q with strength S ′, where P denotes a conjunction of descriptors
over C (with non-empty set [P ]DT ), Q denotes a concept that the rule describes,
and S is a ‘measure of the strength’ of the rule, defined by

S(P → Q) = s(P )× (1− r(P → Q)) , (4)

where s(P ) is the strength of the generalization P (i.e. the condition of the rule) and
r is the noise rate function. The strength of a given rule reflects the incompleteness
and uncertainty in the process of rule inducing influenced by both unseen instances
and noise.

On the assumption that the prior distribution is uniform, the strength of the
generalization P = PG is given by

s(P ) =
∑

l

p(PIl|P ) =
1

NP
card ([P ]DT ), (5)

where card ([P ]DT ) is the number of the observed instances satisfying the general-
ization P . The strength of the generalization P represents explicitly the prediction
for unseen instances. On the other hand, the noise rate is given by

r(P → Q) = 1−
card([P ]DT ∩ [Q]DT )

card([P ]DT )
. (6)

It shows the quality of classification measured by the number of the instances
satisfying the generalization P which cannot be classified into class Q. The user can
specify an allowed noise level as a threshold value. Thus, the rule candidates with a
noise level larger than the given threshold value will be deleted.

One can observe that the rule strength we propose is equal to its confi-
dence (Agrawal et al., 1996) modified by the strength of the generalization appearing
on the left-hand side of the rule. The reader can find in the literature other criteria
for rule strength estimation (Bazan, 1998; Grzymała-Busse, 1998; Mitchell, 1997).
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2.3. Simplification of the Decision Table by GDT-RS

The process of rule discovery consists of the decision table preprocessing, including
selection and extraction of the relevant attributes (features), and the appropriate
decision rule generation. The relevant decision rules can be induced from the min-
imal rules (i.e. with the minimal length of their left-hand sides with respect to the
discernibility between decisions) by tuning them (e.g. dropping some conditions to
obtain more general rules which are better predisposed to classify new objects even
if they do not classify properly some objects from the training set). The relevant
rules can be induced from the set of all minimal rules, or from its subset covering
the set of objects of a given decision table (Komorowski et al., 1999; Pawlak and
Skowron, 1993). A representative approach to the problem of generation of the so-
called local relative reducts of condition attributes is the one to represent knowledge
to be preserved about the discernibility between objects by means of the discernibility
functions (Pawlak, 1991; Skowron and Rauszer, 1992).

It is obvious that by using the GDT one instance can be matched by several
possible generalizations, and several instances can be generalized into one possible
generalization. Simplifying a decision table by means of the GDT-RS system leads to
a minimal (or sub-minimal) set of generalizations covering all instances. The main goal
is to find a relevant (i.e. minimal or semi-minimal with respect to the description size)
covering of instances still allowing us to resolve conflicts between different decision
rules recognizing new objects. The first step in the GDT-RS system for decision rule
generation is based on computing local relative reducts of condition attributes by
means of the discernibility matrix method (Bazan and Szczuka, 2000; Pawlak, 1991;
Skowron and Rauszer, 1992).

Moreover, instead of searching for dispensable attributes, we are rather search-
ing for relevant attributes using a bottom-up method. Any generalization matching
instances with different decisions should be checked by means of (6). If the noise level
is smaller than a threshold value, such a generalization is regarded as a reasonable
one. Otherwise, the generalization is contradictory.

Furthermore, a rule in the GDT-RS is selected according to its priority. The
priority can be defined by the number of instances covered (matched) by a rule (i.e.
the more instances are covered, the higher the priority is), by the number of attributes
occurring on the left-hand side of the rule (i.e. the fewer attributes, the higher the
priority is), or by the rule strength (Zhong et al., 1998).

2.4. Searching Algorithm for an Optimal Set of Rules

We now outline the idea of a searching algorithm for a set of rules developed in (Dong
et al., 1999a) and based on the GDT-RS methodology. We use a sample decision table
shown in Table 1 to illustrate the idea. Let Tnoise be a threshold value.

Step 1. Create the GDT.

If prior background knowledge is not available, the prior distribution of a gen-
eralization is calculated using eqns. (1) and (2).
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Table 1. A sample database.

�
�

�

U
A a b c d

u1 a0 b0 c1 y

u2 a0 b1 c1 y

u3 a0 b0 c1 y

u4 a1 b1 c0 n

u5 a0 b0 c1 n

u6 a0 b2 c1 n

u7 a1 b1 c1 y

Step 2. Consider the indiscernibility classes with respect to the condition attribute set
C (such as u1, u3 and u5 in the sample database of Table 1) as one instance,
called the compound instance (such as u

′

1 = [u1]IND(a,b,c) in the following table).
Then the probabilities of generalizations can be calculated correctly.

��������

U
A

a b c d

u
′

1
, (u1, u3, u5) a0 b0 c1 y, y, n

u2 a0 b1 c1 y

u4 a1 b1 c0 n

u6 a0 b2 c1 n

u7 a1 b1 c1 y

Step 3. For any compound instance u′ (such as the instance u
′

1 in the above table),
let d(u′) be the set of the decision classes to which the instances in u′ belong.
Furthermore, let Xv = {x ∈ U : d(x) = v} be the decision class corresponding
to the decision value v. The rate rv can be calculated by (6). If there exists a
v ∈ d(u′) such that rv(u′) = min{rv′(u′)|v′ ∈ d(u′)} < Tnoise, then we let the
compound instance u′ point to the decision class corresponding to v. If there
is no v ∈ d(u′) such that rv(u′) < Tnoise, we treat the compound instance u

′

as a contradictory one, and set the decision class of u′ to ⊥(uncertain). For
example, we have

��������

U
A

a b c d

u
′

1
(u1, u3, u5) a0 b0 c1 ⊥

Let U
′

be the set of all the instances except the contradictory ones.

Step 4. Select one instance u from U
′

. Using the idea of the discernibility matrix,
create a discernibility vector (i.e. the row or the column with respect to u in the
discernibility matrix) for u. For example, the discernibility vector for instance
u2 : a0b1c1 is as follows:

�
�

�
�

U
U u

′

1
(⊥) u2(y) u4(n) u6(n) u7(y)

u2(y) b ∅ a, c b ∅
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Step 5. Compute all the so-called local relative reducts for instance u by using the
discernibility function. For example, from instance u2 : a0b1c1, we obtain two
reducts, {a, b} and {b, c}:

fT (u2) = (b) ∧ > ∧ (a ∨ c) ∧ (b) ∧ > = (a ∧ b) ∨ (b ∧ c).

Step 6. Construct rules from the local reducts for instance u, and revise the strength
of each rule using (4). For example, the following rules are acquired:

{a0b1} → y with S = 1×
1

2
= 0.5, and

{b1c1} → y with S = 2×
1

2
= 1

for instance u2 : a0b1c1.

Step 7. Select the best rules from the rules (for u) obtained in Step 6 according to
its priority (Zhong et al., 1998). For example, the rule ‘{b1c1} → y’ is selected
for the instance u2 : a0b1c1 because it matches more instances than the rule
‘{a0b1} → y’.

Step 8. U
′

= U
′

− {u}. If U
′

6= ∅, then go back to Step 4. Otherwise, go to Step 9.

Step 9. If any rule selected in Step 7 covers exactly one instance, then STOP, other-
wise, using the method from Section 2.3, select a minimal set of rules covering
all instances in the decision table.

The following table shows the result for the sample database shown in Table 1:

U rules strengths

u2, u7 b1 ∧ c1 → y 1

u4 c0 → n 0.167

u6 b2 → n 0.25

The time complexity of the algorithm is O(mn2Nrmax), where n is the number of
instances in a given database, m stands for the number of attributes, Nrmax is the
maximal number of reducts for instances.

One can see that the algorithm is not suitable for databases with large numbers of
attributes or reducts. A possible way of settling the issue is to use another algorithm
called the Sub-Optimal Solution, which is more suitable for such databases (Dong et
al., 1999a). Another method to solving the problem is to find a reduct (subset) of
condition attributes in preprocessing before the algorithm of (Dong et al., 1999b) is
used. We describe such a method in the following section.

3. Rough Sets with Heuristics (RSH)

RSH is a system for an attribute subset selection. It is based on rough sets with
heuristics (Dong et al., 1999b). The development of the RSH is based on the following
observations: (i) a database always contains a lot of attributes that are redundant and
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not necessary for rule discovery; (ii) if these redundant attributes are not removed,
not only does the time complexity of the rule discovery increase, but also the quality
of the discovered rules can be significantly decreased.

The goal of attribute selection is to find an optimal subset of attributes according
to some criterion so that a classifier with the highest possible accuracy can be induced
by an inductive learning algorithm using information about data available only from
the subset of attributes.

3.1. Rough Sets with Heuristics

In this section we explain some concepts of rough sets related to attribute selection
in preprocessing (Pawlak, 1991). Let C and D denote the condition and decision
attribute sets of the decision table T , respectively. The C-positive region of D is the
set of all objects from the universe U which can be classified with certainty to classes
of U/D employing attributes from C, i.e.

POSC(D) =
⋃

X∈U/D

CX,

where CX denotes the lower approximation of the set X with respect to C, i.e. the
set of all objects from U that can be classified with certainty as elements of X based
on attributes from C.

An attribute c (c ∈ C) is dispensable in a decision table T , if POS (C−{c})(D) =
POSC(D); otherwise the attribute c is indispensable in T . A set of attributes R ⊆ C
is called a reduct of C if it is a minimal attribute subset preserving the condition
POSR(D) = POSC(D). Furthermore, the set of all the attributes indispensable in C
is denoted by CORE (C). We have

CORE (C) =
⋂

RED(C),

where RED(C) is the set of all the reducts of C.

The quality of an attribute subset R in the GDT-RS depends on the strength
of the rules discovered by using this subset. The higher the strength, the better the
subset is. Searching for attributes that are of benefit to acquire rules with large cover
rate and strength is based on the selection strategy described in the following section.

3.2. Heuristic Algorithm for Feature Selection

We use the attributes from CORE as an initial attribute subset. Next, we select
attributes one by one from among the unselected ones using some strategies, and we
add them to the attribute subset until a reduct approximation is obtained.

Algorithm:
Let R be a set of selected condition attributes, P a set of unselected condition
attributes, U a set of all instances, and EXPECT an accuracy threshold. In the
initial state, we set R = CORE (C), P = C − CORE (C), k = 0.
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Table 2. Another sample database.

U \ A a b c d e

u1 a1 b0 c2 d1 e1

u2 a1 b0 c2 d0 e1

u3 a1 b2 c0 d0 e2

u4 a1 b2 c2 d1 e0

u5 a2 b1 c0 d0 e2

u6 a2 b1 c1 d0 e2

u7 a2 b1 c2 d1 e1

Step 1. Remove all consistent instances: U = U − POSR(D).

Step 2. If k ≥ EXPECT , where

k = γR(D) =
card (POSR(D))

card (U)
, then STOP

else if POSR(D) = POSC(D), return ‘only k = card (POSC(D))/card (U) is
available’ and STOP .

Step 3. Calculate

vp = card (POSR∪{p}(D)),

mp = max size (POS (R∪{p})(D))/(R ∪ {p} ∪D) for any p ∈ P .

Step 4. Choose the best attribute p, i.e. that with the largest vp ×mp, and set

R = R ∪ {p}, P = P − {p};

Step 5. Go back to Step 2.

Illustrative Example. We select an attribute subset using the above algorithm for
the sample database shown in Table 2. Here a, b, c and d are condition attributes,
e stands for the decision attribute, U = {u1, u2, u3, u4, u5, u6, u7}, b is the unique
indispensable attribute (deleting b will cause an inconsistency: {a1c2d1} → e1 and
{a1c2d1} → e0).

From the families of equivalence classes U/{b} = {{u1, u2}, {u5, u6, u7},
{u3, u4}} and U/{e} = {{u4}, {u1, u2, u7}, {u3, u5, u6}}, we obtain the

�
b � -positive

region of {e}: POS{b}({e}) = {u1, u2}. Hence, in the initial state we have R = {b},
P = {a, c, d} and U = {u3, u4, u5, u6, u7}. The initial state is shown in Table 3.

Setting EXPECT = 1, the termination condition will be k ≥ 1. Since k = 2/7 <
1, R is not a reduct, and we must continue to select condition attributes. The next
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Table 3. The initial state for attribute selection.

U \ A b e

u3 b2 e2

u4 b2 e0

u5 b1 e2

u6 b1 e2

u7 b1 e1

Table 4. Selecting the second attribute from R = {a, c, d}.

U \ A a b e

u3 a1 b2 e2

u4 a1 b2 e0

u5 a2 b1 e2

u6 a2 b1 e2

u7 a2 b1 e1

U \ A b c e

u3 b2 c0 e2

u4 b2 c2 e0

u5 b1 c0 e2

u6 b1 c1 e2

u7 b1 c2 e1

U \ A b d e

u3 b2 d0 e2

u4 b2 d1 e0

u5 b1 d0 e2

u6 b1 d0 e2

u7 b1 d1 e1

1. Selecting {a} 2. Selecting {c} 3. Selecting {d}

candidates are a, c or d. Table 4 gives the results of adding {a}, {c}, and {d} to
R, respectively.

From Table 4 we obtain the following families of equivalence classes:

U/{e} = {{u3, u5, u6}, {u4}, {u7}},

U/{a, b} = {{u3, u4}, {u5, u6, u7}},

U/{b, c} = {{u3}, {u4}, {u5}, {u6}, {u7}},

U/{b, d} = {{u3}, {u4}, {u5, u6}, {u7}}.

We also have

POS{a,b}({e}) = ∅,

POS{b,c}({e}) = POS {b,d}({e}) = {u3, u4, u5, u6, u7},

max size(POS {b,c}({e})/{b, c, e}) = 1,

max size(POS {b,d}({e})/{b, d, e}) = card ({u5, u6}) = 2.

One can see that by selecting the attribute a we cannot reduce the number of contra-
dictory instances, but if either c or d is chosen, then all instances become consistent.
Since the maximal set is in U/{b, d, e}, then, according to our selection strategies, d
should be selected first.

After adding d to R, all instances are consistent and must be removed from U .
Hence U becomes empty, k = 1, and the process is finished. Thus, the selected
attribute subset is {b, d}. �
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4. Rough Sets and Boolean Reasoning (RSBR)

RSBR is a system for discretization of real-valued attributes. Discretization of real-
valued attributes is an important preprocessing step in our rule discovery process.
The development of RSBR is based on the following observations: (i) real-life data
sets often contain mixed types of data such as real-valued, symbolic data, etc.; (ii)
real-valued attributes should be discretized in preprocessing; (iii) the choice of the
discretization method depends on the analyzed data.

The core module in our rule discovery process is the GDT-RS. In the GDT-RS,
the probabilistic distribution between possible instances and possible generalizations
depends on the number of the values of attributes. The rules induced without dis-
cretization are of low quality because they will usually not recognize new objects.

4.1. Discretization Based on RSBR

In order to solve the discretization problems, we have developed a discretization sys-
tem called the RSBR that is based on hybridization of rough sets and Boolean rea-
soning proposed in (Nguyen and Skowron, 1995; Nguyen and Skowron, 1997).

A great effort has been made (Fayyad and Irani, 1992; Chmielewski and
Grzymała-Busse, 1994; Dougherty et al., 1995; Nguyen and Nguyen, 1998) to find
effective methods of discretization of real-valued attributes. We may obtain different
results by using different discretization methods. The results of discretization affect
directly the quality of the discovered rules. Some of discretization methods totally ig-
nore the effect of the discretized attribute values on the performance of the induction
algorithm. The RSBR combines discretization of real-valued attributes and classifi-
cation. In the process of the discretization of real-valued attributes we should also
take into account the effect of the discretization on the performance of our induction
system GDT-RS.

Roughly speaking, the basic concepts of the discretization based on the RSBR can
be summarized as follows: (i) discretization of a decision table, where Vc = [vc, wc) is
an interval of real values taken by attribute c, is a searching process for a partition Pc
of Vc for any c ∈ C satisfying some optimization criteria (like a minimal partition)
while preserving some discernibility constraints (Nguyen and Skowron, 1995; Nguyen
and Skowron, 1997); (ii) any partition of Vc is defined by a sequence of the so-called
cuts v1 < v2 < · · · < vk from Vc; (iii) any family of partitions {Pc}c∈C can be
identified with a set of cuts.

Table 5 shows an example of discretization. The discretization process returns a
partition of the value sets of condition attributes into intervals:

P = {(a, 0.9), (a, 1.5), (b, 0.75), (b, 1.5)}.

4.2. Algorithm

The main steps of our algorithm can be described as follows:

Step 1. Define a set of Boolean variables BV (U). For the example shown in Table 5
we have BV (U) = {pa1, p

a
2 , p
a
3 , p
a
4 , p
b
1, p
b
2, p
b
3}, where p

a
1 corresponds to the inter-
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Table 5. An example of discretization.

U a b d

x1 0.8 2 1

x2 1 0.5 0

x3 1.3 3 0

x4 1.4 1 1

x5 1.4 2 0

x6 1.6 3 1

x7 1.3 1 1

=⇒

U ap bp d

x1 0 2 1

x2 1 0 0

x3 1 2 0

x4 1 1 1

x5 1 2 0

x6 2 2 1

x7 1 1 1

val [0.8, 1) of a; pa2 corresponds to the interval [1,1.3) of a; p
a
3 corresponds

to the interval [1.3, 1.4) of a; pa4 corresponds to the interval [1.4, 1.6) of a; p
b
1

corresponds to the interval [0.5, 1) of b; pb2 corresponds to the interval [1, 2)
of b; pb3 corresponds to the interval [2, 3) of b.

Step 2. Create a new decision table T p by using the set of Boolean variables defined
in Step 1. Here T p is called the P-discretization of T, T p = (U,∪{d}, Ap, d),
pck is a propositional variable corresponding to the interval [v

c
k, v
c
k+1) for any

k ∈ {1, . . . , nc − 1} and c ∈ C.

Table 6 shows an example of T p. We set, e.g. pa1(x1, x2) = 1, because any cut
in the interval [0.8, 1) corresponding to pa1 discerns x1 and x2.

Step 3. Find a minimal subset of P that discerns all the objects in different decision
classes by using the discernibility formula

ΦU = ∧{ψ(i, j) : d(xi) 6= d(xj)},

where, e.g. ψ(i, j) = pa1 ∨ p
b
1 ∨ ∨p

b
2 means that in order to discern object x1

and x2, at least one of the following cuts must be selected: (i) a cut between
a(0.8) and a(1); (ii) a cut between b(0.5) and b(1); (iii) a cut between b(1)
and b(2).

From Table 6 we obtain the discernibility formula

ΦU = (pa1 ∨ p
b
1 ∨ p

b
2) ∧ (p

a
1 ∨ p

a
2 ∨ p

b
3)

∧ (pa1 ∨ p
a
2 ∨ p

a
3)

∧ (pa2 ∨ p
a
3 ∨ p

b
1) ∧ (p

a
2 ∨ p

b
2 ∨ p

b
3)

∧ (pa2 ∨ p
a
3 ∨ p

a
4 ∨ p

b
1 ∨ p

b
2 ∨ p

b
3)

∧ (pa3 ∨ p
a
4) ∧ (p

a
4 ∨ p

b
3) ∧ (p

a
2 ∨ p

b
1)

∧ (pb2 ∨ p
b
3) ∧ (p

a
3 ∨ p

b
2) ∧ p

b
2.
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Table 6. An example of T p.

U∗ pa
1

pa
2

pa
3

pa
4

pb
1

pb
2

pb
3

(x1, x2) 1 0 0 0 1 1 0

(x1, x3) 1 1 0 0 0 0 1

(x1, x5) 1 1 1 0 0 0 0

(x4, x2) 0 1 1 0 1 0 0

(x4, x3) 0 0 1 0 0 1 1

(x4, x5) 0 0 0 0 0 1 0

(x6, x2) 0 1 1 1 1 1 1

(x6, x3) 0 0 1 1 0 0 0

(x6, x5) 0 0 0 1 0 0 1

(x7, x2) 0 1 0 0 1 0 0

(x7, x3) 0 0 0 0 0 1 1

(x7, x5) 0 0 1 0 0 1 0

Finally, we obtain four prime implicants denoted by the discernibility formula
in DNF form,

ΦU = (pa2 ∧ p
a
4 ∧ p

b
2) ∨ (p

a
2 ∧ p

a
3 ∧ p

b
2) ∧ p

b
3)

∨ (pa3 ∧ p
b
1 ∧ p

b
2 ∧ p

b
3) ∨ (p

a
1 ∧ p

a
4 ∧ p

b
1 ∧ p

b
2).

Furthermore, we select {pa2 , p
a
4, p
b
2}, i.e. P = {(a, 1.2), (a, 1.5), (b, 1.5)} as the

optimal result, because it is the minimal subset of P preserving discernibility.

5. Application

We use a slope-collapse database as an example. The slope-collapse database consists
of data of the dangerous natural steep slopes in the Yamaguchi region, Japan. There
are 3436 instances in this database. Among them 430 places were collapsed, and 3006
were not. There are 32 condition attributes and 1 decision attribute. The task is to
find the reason that causes the slope to collapse.

The attributes are listed in Table 7, where collapse is a decision attribute and
the remaining 32 attributes are condition attributes. Eight attributes such as ‘col-
lapsing history of current slope’, ‘collapsing history of adjacent slope’, ‘no. of active
fault’, ‘countermeasure work’, etc. are obviously irrelevant for the rule discovery. They
are removed before attribute selection. From the remaining 24 condition attributes,
9 attributes were selected by using RSH (see Table 8).

The rule discovery on the data set restricted to the selected attributes was realized
by using the GDT-RS. Table 9 shows conditions causing the slope to collapse. We list
only examples of rules with higher strength. In the table, Used denotes the number
of instances covered by the rule, Strength indicates the strengths of the generalization
(conditions), which can be calculated from (5). Here E =

∏m
i=1 ni, where ni is the

number of values of the i-th condition attribute, n = [2, 27, 9, 9, 10, 5, 5, 2, 6, 3].
The real-valued attributes were discretized using RSBR.
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Table 7. The condition attributes in the slope-collapse database.

Attribute name Number of values

extension of collapsed steep slope real

gradient real

altitude real

slope azimuthal 9

slope shape 9

direction of high rank topography 10

shape of transverse section 5

transition line 3

position of transition line 5

condition of earth surface 5

thickness of soil surface 2

condition of ground 6

condition of base rock 4

relation between slope and unsuccessive face 7

fault, broken region 4

condition of weather 5

kind of plant 6

age of tree 7

condition of lumbering 4

collapsing history of current slope 3

condition of current slope 5

collapsing history of adjacent slope 3

condition of adjacent slope 6

spring water 4

countermeasure work 3

state of upper part of countermeasure work 5

state of upper part of countermeasure work2 6

state of upper part of countermeasure work3 7

No. of active fault real

active fault traveling 7

distance between slope and active fault real

direction of slope and active fault 9

The results were evaluated by an expert who did the same work on similar data by
using a discriminant analysis. He picked out the important factors (attributes) about
the ‘collapse’ from the same data. The attributes selected by using our approach are
almost the same as the most important factors (attributes) selected by the expert.

6. Conclusion

We have presented a rule discovery process based on the rough set approach to dis-
covering classification rules in databases. The rule discovery process described in this
paper demonstrates the usefulness of rough set theory and is the basic one imple-
mented in the GLS discovery system (Zhong and Ohsuga, 1995; Zhong et al., 1997).
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Table 8. The attribute subset selected from the slope-collapse database.

Attribute name Short name Number of values

altitude altitude real

slope azimuthal s azimuthal 9

slope shape s shape 9

direction of high rank topography direction high 10

shape of transverse section t shape 5

position of transition line tl position 5

thickness of soil surface soil thick real

kind of plant plant kind 6

distance between slope and active fault s f distance real

Table 9. The results of the slope collapse.

Conditions Used Strength

s azimuthal(2) ∧ s shape(5) ∧ direction high(8) ∧ plant kind(3) 5 (4860/E)

altitude[21,25) ∧ s azimuthal(3) ∧ soil thick(≥ 45) 5 (486/E)

s azimuthal(4) ∧ direction high(4) ∧ t shape(1)

∧ tl position(2) ∧ s f distance(≥ 9) 4 (6750/E)

altitude[16,17) ∧ s azimuthal(3) ∧ soil thick(≥ 45) ∧ f distance(≥ 9) 4 (1458/E)

altitude[20,21) ∧ t shape(3) ∧ tl position(2)

∧ plant kind(6) ∧ s f distance(≥ 9) 4 (12150/E)

altitude[11,12) ∧ s azimuthal(2) ∧ tl position(1) 4 (1215/E)

altitude[12,13) ∧ direction high(9) ∧ tl position(4) ∧ s f distance[8,9) 4 (4050/E)

altitude[12,13) ∧ s azimuthal(5) ∧ t shape(5) ∧ s f distance[8,9) 4 (3645/E)

altitude[36,37) ∧ plant kind(5) 3 (162/E)

altitude[13,14) ∧ s shape(2) ∧ direction high(4) 3 (2430/E)

altitude[8,9) ∧ s azimuthal(3) ∧ s shape(2) 3 (2187/E)

altitude[18,19) ∧ s shape(4) ∧ plant kind(2) 3 (1458/E)

The process based on the rough set approach can be further extended by including
granular computing, decomposition of large databases, and rule discovery in distribut-
ed environments (Yao and Zhong, 1999; Polkowski and Skowron, 1996; Polkowski and
Skowron, 1999; Nguyen et al., 1999). Our paper constitutes a first step toward a
multi-strategy and multi-agent discovery system.
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