
Int. J. Appl. Math. Comput. Sci., 2005, Vol. 15, No. 2, 275–285

CORRECTING SPELLING ERRORS BY MODELLING THEIR CAUSES

SEBASTIAN DEOROWICZ, MARCIN G. CIURA

Silesian University of Technology, Institute of Computer Science
ul. Akademicka 16, 44–100 Gliwice, Poland

e-mail: {Sebastian.Deorowicz, Marcin.Ciura}@polsl.pl

This paper accounts for a new technique of correcting isolated words in typed texts. A language-dependent set of string
substitutions reflects the surface form of errors that result from vocabulary incompetence, misspellings, or mistypings. Can-
didate corrections are formed by applying the substitutions to text words absent from the computer lexicon. A minimal
acyclic deterministic finite automaton storing the lexicon allows quick rejection of nonsense corrections, while costs asso-
ciated with the substitutions serve to rank the remaining ones. A comparison of the correction lists generated by several
spellcheckers for two corpora of English spelling errors shows that our technique suggests the right words more accurately
than the others.

Keywords: spelling correction, finite state automata, spelling errors

1. Introduction

Introducing texts into computer memory always entails a
possibility of making errors. The state of the art in auto-
mated finding and correcting these errors is reviewed in
(Kukich, 1992; Mitton, 1996).

Spelling correction consists of detecting and correct-
ing errors. These subproblems can be addressed in two
ways. In isolated-word error detection and correction,
each word is checked separately, abstracting from its con-
text. To detect an error, it suffices to search for a word in
the set of all correct words, i.e., a lexicon. This approach
fails when a spelling error produces another correct word,
as when, e.g., *then1 is written instead of than.2 Besides,
candidates of correct forms, i.e., suggestions may be con-
textually inappropriate. Notwithstanding this, many con-
temporary spellcheckers use this approach, since the al-
ternative, context-dependent error detection and correc-
tion, requires grammatical analysis and is thus more com-
plex and language dependent. Even in context-dependent
methods, though, the list of suggestions is obtained from
an isolated-word method before making a choice depend-
ing on the context. In this paper, we focus on isolated-
word methods only.

Error correction means providing correct words that
could have been misspelled as a given non-word. In in-
teractive spelling correction, the accurate word is chosen

1 Through the paper, the incorrect examples are denoted by an aster-
isk in front of the word to distinguish them from the correct ones.

2 Our approach can be applied to many languages but for clear pre-
sentation, we provide examples in English only.

by the user and to make this task easier the corrections
should be ranked in order of a decreasing probability. In
automatic spelling correction, the correct word is chosen
without user interaction, therefore only one correct word
should be generated.

In this paper, we use a minimal acyclic determinis-
tic finite automaton (ADFA) as an effective representation
of the lexicon, and employ a method for its making and
searching introduced in our paper (Ciura and Deorowicz,
2001). We also present methods of correcting non-words,
traversing the word space, and ranking suggestions. We
show how the proposed rules can be used to cover many
types of common spelling errors. Our approach is evalu-
ated on two corpora of typical spelling errors against other
popular methods.

2. Spelling Errors

2.1. Detecting Non-Word Spelling Errors

Detecting whether or not a word is correct seems simple—
why not to look up the word in a set of all words? Unfortu-
nately, there are some problems with this simple strategy.
Firstly, a lexicon containing all correct words could be ex-
tremely large, which entails space and time inefficiency.
Secondly, in some languages it is practically impossible to
list all correct words, because they are highly productive.
Thirdly, making a spelling error can sometimes result in
a real word, which belongs to the lexicon—such an error
is called a real-word error. It is impossible to decide that
this word is wrong without some contextual information.



S. Deorowicz and M.G. Ciura276

Fourthly, the bigger the lexicon, the more esoteric words
it contains, making real-word errors more likely.

The appropriate lexicon size is dependent on the
language. In only slightly inflective languages as En-
glish, lexicons of size �� ���–��� ���words were recom-
mended (Damerau, 1990; Damerau and Mays, 1989; Pe-
terson, 1986). For highly inflective languages, the lexicon
has to be much larger, and typically contains millions of
words.

The classic data structure offering a fast search is a
hash table (Knuth, 1973). Its disadvantage is the need to
properly choose the hash function and the size of the hash
table to mitigate the problem of collisions. Minimal per-
fect hashing (Czech et al., 1997) eliminates collisions but
requires storing the hash table of a size equal to the num-
ber of words in the lexicon and the whole lexicon (possi-
bly compressed by some method).

Another popular data structure used for lexicon stor-
age is a trie (Knuth, 1973). It is a character-oriented tree,
in which every path from a root to a leaf corresponds to
a key, and branching is based on successive characters. A
trie offers fast lookup and some compression of the lexi-
con. Its size, however, is typically comparable to the lex-
icon size due to the need of storing pointers to the nodes.
There are many works on reducing trie sizes; some of the
alternative versions of tries are the C-trie (Maly, 1976),
PATRICIA (Morrison, 1968), and Bonsai (Darragh et al.,
1993).

An acyclic deterministic finite automaton (ADFA)
can be considered a generalisation of the trie. If all equiva-
lent subtries of a full trie are merged, we obtain a minimal
ADFA. This data structure is discussed later in detail as
we use it in our solution.

Yet another approach is to store directly root forms
of each lexicon word and rules for stripping affixes exist-
ing in an actual language. If a text word is absent from
the lexicon, the existing affixes are stripped one by one
and the obtained forms are checked. For example, the
lexicon contains the word check, and judging the cor-
rectness of the text word uncheckable might go like this:
uncheckable is absent from the lexicon; stripping un- re-
sults in checkable which is also absent from the lexicon;
stripping -able results in check which is present in the lex-
icon, so the text word uncheckable is judged as correct.
Such a method requires low space but, unfortunately, may
lead to false acceptance of some words, as not all affixes
can be appended to all root forms. For example, a text
word *unmark is wrong, but stripping un- results in the
word mark so the text word *unmark is judged as correct.
This method will not work either for some languages like
Finnish and Turkish, since they need much more sophisti-
cated processing.

A similar approach is to store only a root form for
each word together with rules of its inflection. There-
fore, we know how to produce all correct forms of the
word. This solution is used in such spellcheckers as Ispell
(Kuenning, 2003) and Aspell (Atkinson, 2003). Some ex-
amples from Ispell are: boolean/S, which means that the
plural form, booleans, is also correct; frizzle/DGS, allow-
ing: frizzle, frizzled, frizzles, frizzling.

2.2. Types of Spelling Errors

Typing texts consists of three main stages (cf. Fig. 1). An
error may occur at each of them.

�

Idea
Verbalisation �

Thought
word Spelling �

Spelled
word Typing �

Typed
word

Fig. 1. From an idea to a typed word.

In the first stage, verbalisation, an idea crystallises
into a thought word. Usually it is simple, but sometimes
may not be such, e.g., one may want to write a negative
form of a word and is unsure which of the negative pre-
fixes should be used in that particular case. As there are a
few negative prefixes, e.g., im- (imperfect), in- (incorrect),
un- (unnatural), one may create a negative form choos-
ing the improper one like perfect � *inperfect. An error
can also appear when one tries to create a word from a
different part of speech, e.g., typical suffixes for adjec-
tives are -ical (cynical), -ly (mannerly), -ally (magically),
and when one does not know the correct adjective de-
rived from the adverb tragic, may write *tragicly instead
of tragically. Spelling errors of this kind, called vocabu-
lary incompetence, are typical for children and non-native
language users.

In the second stage, the thought word is converted
into its spelt form. In this stage, an error may appear when
one is unsure of its spelling or pronunciation. When the
pronunciation is known, one may use a different grapheme
(letters representing a phoneme) for the phoneme exist-
ing in the word. This is reflected in such errors like
*occurrance instead of occurrence, *fourty instead of forty,
*grammer instead of grammar. When the pronunciation is
known only approximately, one may try to write a differ-
ent phoneme, e.g., *egsistence instead of existence. Mis-
spellings are frequent in languages in which phonemes
are rendered by several graphemes. These error types are
usual for children and non-native language users.

The third stage is typing. In this stage, one knows
the word, knows its proper spelling, but makes a spelling
error, a mistyping, while pressing the keys. In our re-
search, we follow the works (Damerau, 1964; Pollock and
Zamora, 1984) and define four main kinds of mistypings:



Correcting spelling errors by modelling their causes 277

insertion of a letter, e.g., *speklling instead of spelling;
deletion of a letter, e.g., *spellng instead of spelling; sub-
stitution of one letter by another, e.g., *spellong instead
of spelling; transposition of two adjacent letters, e.g.,
*seplling instead of spelling. All these errors appear when
one types a word, so the keyboard layout influences the
introduced mistypings. It is much more likely to press the
wrong key which is close to the one in question than other,
e.g., many people use QWERTY keyboards, so pressing
the letter e instead of o is unusual, but for those using
Dvorak keyboards this is typical. It is possible to define
other mistyping categories, e.g., doubling of a letter, but
such types can be usually modelled using the mentioned
ones, so we refrain from introducing other types to make
the model concise.

The above-described error classes are typical when a
person types a text. There are, however, various ways to
introduce a text into computer, like scanning and process-
ing by an optical character recognition (OCR) program. In
such a situation, a common error is to misinterpret letters
that look similar, e.g., e and c, I /��/ and l /��/. Sometimes
an OCR application can also misinterpret two adjacent let-
ters as one and vice versa, e.g., ni and m.

2.3. Techniques for Isolated-Word Spelling Error
Correction

Isolated-word spelling error correction means providing
one or more suggestions for a non-word. If more than
one suggestion is provided, they should be ranked from
the most to the least probable candidate, e.g., the sug-
gestion spelling is a more probable candidate for a non-
word *speling than the suggestion spilling, but we cannot
be sure.

The discussion from the previous section gives us a
key to construct suggestions. We simply try to revert the
effect of human-made errors. It is impossible to be sure
which kind of error (or errors) the person made, so usually
a list of some number of possibilities is produced. Each
suggestion has a score, which tells us how much it is simi-
lar to the non-word. The list is then sorted according to the
scores. In automatic spelling correction, all words but the
top-ranked one are discarded, but in interactive spelling
correction, several best candidates may be presented to the
user.

The simplest method is based on the assumption that
the person usually makes few errors, if any. Therefore,
for each lexicon word, we determine the minimal num-
ber of the basic editing operations (i.e., character inser-
tions, deletions, and substitutions) necessary to convert a
lexicon-word into the non-word. The lower the number,
the higher the probability that the user has made such er-
rors. This approach is called the minimum edit distance
technique and was introduced in (Damerau, 1964) (in fact,

Damerau uses also transpositions in his work) and rede-
fined later in (Wagner, 1974). A similar technique was
used at about the same time assuming other three basic
editing operations: insertions, deletions, and transposi-
tions (Levenshtein, 1966). This technique covers only
one of the three main categories of spelling errors, i.e.,
mistypings, however, it is possible to extend its usage to
the others. A straightforward implementation needs to
compare all lexicon words with the non-word, which is
costly. A faster solution (Baeza-Yates and Navarro, 1998)
allows, however, reducing the number of compared strings
by about an order of magnitude if the number of errors in
the non-word is low.

In the similarity key technique, a key is assigned to
each lexicon word and only lexicon keys are compared
with the key computed for the non-word. The words for
which the keys are most similar are selected as sugges-
tions. Such an approach is speed effective as only the
words with similar keys have to be processed. The very
first such a technique was based on the SOUNDEX sys-
tem (Odell and Russell, 1918), which was developed to
correct names written phonetically. The SOUNDEX code
is rather short and consists of a letter and three digits, so it
is imprecise and cannot distinguish between many words.
Therefore, a similar, but more precise, technique, SPEED-
COP, was developed (Pollock and Zamora, 1984) for the
spelling checking problem. The system offers two keys,
skeleton and omission, and is often more suitable. Both
techniques can be used, however, only for misspelling and
mistyping correction.

Rule-based techniques use the knowledge of the
most common error types to transform the non-word into
lexicon words. First such a knowledge-based system
(Yannakoudakis and Fawthrop, 1983a; 1983b) was based
on rules determined from experiments with over 1000
spelling errors. The rules model various spelling errors so
the application of them to the non-word results in a num-
ber of correct words. There are two main problems with
these techniques. Firstly, the rules have to be obtained
from experiments with real spelling errors and must be
built into an algorithm or obtained by the algorithm from
another source. Secondly, it is difficult to organise the
lexicon in such a way that the words obtained from the
rules are rapidly verified if they are real words, so pro-
ducing the list of suggestions may be slow. An advantage
of these methods is their ability to cover all three spelling
error categories.

Probabilistic techniques rely on the probability of in-
troducing some types of errors. The analysis of the proba-
bilities of substituting one letter by other, letter insertion,
letter deletion, or making a transposition of letters is the
basis of the approach developed at Bell Labs (Church and
Gale, 1991). The probabilities were obtained analysing a
corpus containing millions of words. The suggestions are



S. Deorowicz and M.G. Ciura278

sorted according to the probabilities of making changes in
the word necessary to obtain the non-word. The probabil-
ities of making errors can be used also for spell checking
in several ways, i.e., for improving the similarity key or
rule-based techniques.

The phonetic similarity technique is suitable espe-
cially to deal with misspellings. The method is based
on the assumption that many types of errors are caused
by the person who knows the pronunciation of a word,
but does not know its correct spelling. Such people often
render phonemes using improper graphemes. There are
several possibilities to address the problem of phonetic
similarity. The SOUNDEX code is one of them. Some
other solutions are PHONIX (Gadd, 1990), Metaphone
(Philips, 1990), and Double Metaphone (Philips, 2000),
used in the Aspell spellchecker (Atkinson, 2003). The
most complex techniques employ grapheme to phoneme
conversions (Berkel and Smedt, 1988).

Other popular solutions in spelling correction which
offer good results are based on neural networks (Hodge
and Austin, 2003; Kukich, 1988) and the noisy channel
(Brill and Moore, 2000; Toutanova and Moore, 2002).

2.4. Why Perfect Spelling Correction Is Impossible

The spelling correction problem is difficult to be solved
completely, because people make various errors. Without
contextual information we cannot be sure which word was
intended to be typed. Often, several candidates are possi-
ble. Let us consider the non-word *stat. In the document
concerning astronomical problems, it is often a mistyping
of star, but in other documents it is rather a mistyping of
stay or state. Abstracting from the document contents, we
are sometimes unable to choose the accurate suggestion.
There is also the possibility that the typist does not know a
word and guesses its spelling thus producing a sequence of
letters which is far from the correct word, e.g., *sicolagest
instead of psychologist3. It is hard to propose an accurate
suggestion in such a case.

Even if we know the context of the text non-word,
there are situations in which we are unable to decide how
to correct it. The simplest example are enumerations—
several words can be enumerated and we usually have lit-
tle contextual information.

3. Modelling Spelling Errors with
Substitution Rules

3.1. Substitution Rules

Our approach to spelling correction is based on rules
modelling typical spelling errors. Each rule is a triple

3 This example comes from one of our test data sets.

������_������ � ������_������ � �����. The rules are ap-
plied to the non-word in such a way that the �����_������ ,
located anywhere within the non-word, is substituted for
the ������_������ . The cost of making a substitution is
related with the new word. If the obtained word is valid, it
is added to the suggestion list. Different rules can be ap-
plied to the non-word, and all possibilities are examined.
When two or more rules are applied to the non-word, the
costs sum up.

Since the number of rules can be large, we specify
them in an equivalent but more compact form by gathering
the rules with the same �����_������ : �����_������ �

����� ����� � � � � ����, where �� means 	��� related to the
�th ������_������ , ��. There are some special symbols
used in the rule notation. The first one, . (dot), appearing
as the ������_������ , means an empty string, and appear-
ing as the �����_������ , means any position in the word
except for initial and final. The symbols $ and ˆ can appear
only in the �����_������ , and mean respectively the end
of the word and the beginning of the word. When one of
these two symbols appears as the �����_������ , the rule
defines the insertion of the ������_������ at the end or be-
ginning of the word. The sample rules mean: �ai� ey� ��—
substitute ai by ey while the cost of making the substi-
tution is �; �ˆin� un� ��—substitute in appearing at the be-
ginning of the word by un; �ize$� ate� ��—substitute ize
appearing at the end of the word by ate; �e� .� ��—remove
e; �.� e� ��—insert e in any position in the word except for
initial and final; �$� e� ��—insert e in the final position of
the word.

We define also the special symbol �, which means
any letter. It is introduced to define rules handling tra-
ditional mistypings: �*� *� ��—substitute any character by
any other, �*� .� ��—remove any letter, �.� *� ��—insert any
letter in any position in the word except for the initial and
the final one. The last special symbol, _, means a space
character. It allows defining the cost of the insertion of
a space into the examined non-word, e.g., �.� _� ��. We
also allow using the digraph ���
��� � to distinguish dif-
ferent “any letter” in the rule. This allows defining the
rules covering the transpositions of adjacent letters, e.g.,
�*a*b� *b*a� �� defines changing the ordering of the two
consecutive letters and �*a*b*c� *c*a*b� �� defines a more
complex transposition between three letters.

Note also that since we allow substituting substrings
instead of only single characters, our approach is different
from the calculation of the edit distance. It can be con-
sidered as an extension of the known algorithms (Oflazer,
1996; Savary, 2001), which can handle only mistypings.
The idea of substituting strings instead of single charac-
ters is not novel (Brill and Moore, 2000). The authors of
the mentioned work show a way of automatic training of
their spelling errors model with a set of spelling errors.
The substitution rules are also recovered from the train-



Correcting spelling errors by modelling their causes 279

ing set. Our approach is different since we propose to use
some insight into the origin of spelling errors. Therefore,
we have some knowledge of the causes of the errors and
may propose a set of rules which is probably to be smaller
than the one obtained automatically. Such a strategy is
less flexible, but likely may lead to faster spelling correc-
tion and similar quality of suggestions.

3.2. Mistypings

Mistypings are the simplest errors. In our approach, there
are rules specifying the cost of a letter insertion, a letter
deletion, a substitution of any letter with any other, and a
transposition of two adjacent letters. We extend the basic
rule of transposition from two to three letters, since we
observed this helps in correction. In our implementation,
the rules cannot overlap, so the change of the ordering of
three adjacent letters cannot be simulated as a sequence of
two overlapping 2-letter transpositions.

The probability of letter substitutions depends on the
keyboard layout (Grudin, 1983), so the costs of making
them should reflect the distance between the letters on the
keyboard. Figure 2(a) presents rules for letter substitu-
tions and letters transpositions. (We assume here the QW-
ERTY layout.)

(a) (b) (c)

a�6q,6w,5s,6z

b�5v,6g,6h,5n

c�5x,5d,5f,5v

k�5j,6i,6o,5l,6m

*a*b�2*b*a

*a*b*c�4*b*c*a

*a*b*c�4*c*a*b

*a*b*c�4*c*b*a

ay�5a,5ai,5ei,5ey,5ea

a�5ay,5ai,5ei,5ey,5ea

ai�5ay,5a,5ei,5ey,5ea

ei�5ay,5a,5ai,5ey,5ea

ey�5ay,5a,5ai,5ei,5ea

ea�5ay,5a,5ai,5ei,5ey

t�4tt,4th

tt�4t,4th

th�4t,4tt

.�3e

e�3.

ˆun�5in,5im,5il,5ir

ˆin�5un,5im,5il,5ir

ˆim�5un,5in,5il,5ir

ˆil�5un,5in,5im,5ir

ˆir�5un,5in,5im,5il

ize$�5ate,5ify,5en

ise$�5ate,5ify,5en

ate$�5ize,5ise,5ify,5en

ify$�5ize,5ise,5ate,5en

en$�5ize,5ise,5ate,5ify

Fig. 2. Sample substitution rules covering various
types of spelling errors. Three types of er-
rors are shown: (a) mistypings, (b) mis-
spellings, (c) vocabulary incompetence.

3.3. Misspellings

Misspellings are a bit more complex to handle. This type
of errors appears when a person knows the pronunciation
of a word, but does not know its spelling or even knows
the pronunciation only approximately. In such a case, one

usually tries to write the word rendering the phonemes in
some way, often in the way the phonemes can be legally
rendered. Let us think of the word misspelling /��������	/.
According to the typical representations of phonemes, it
may be typed as *misspelyng.

For each phoneme, we distilled its grapheme rep-
resentations to produce the rules covering misspellings.
Each rule defines the cost of substituting different rep-
resentations of a phoneme with its other representations.
The more so, in English, some letters can be inaudible and
are often omitted by the typist, e.g., the letter h is inaudible
in the word hour. The word-ending e is also often missed
as it is mute. A typical misspelling is also adding some
letters, e.g., the word-ending e, when the person is unsure
whether the letter exists in the word or not. To deal with
such situations, we created rules inserting or removing the
letters a, e, h, o. Yet another misspelling is rendering the
pair of phonemes /
�/ or /��/ with the letter x. Sample
rules covering misspellings are presented in Fig. 2(b).

3.4. Vocabulary Incompetence Errors

Covering vocabulary incompetence errors is most com-
plex when the typist does not know the word and
guesses it. The typical errors committed in such a
situation are the usage of wrong prefixes or suffixes
of words. We model such errors providing rules for
groups of often misused affixes. Some of the rules are
for: negating prefixes �il-� in-� im-� ir-� un-�, �mal-�mis-�,
�a-� an-�, �de-� dis-�; other prefixes: �macro-�mega-�,
�multi-� poly-�, �col-� com-� con-�, �em-� en-� in-�; verb
suffixes: �-ate� -en� -ify� -ise� -ize�; noun suffixes: �-er�
-ian� -ist� -or�, �-dom� -ness� -ship�, �-ness� -ty�, �-alist�
-ist�, �-ance� -ion� -ism� -ity� -ment� -ship�, �-ation� -tion�;
nationality suffixes: �-an� -e� -ean� -er� -ese� -i� -ian�, ad-
jective and adverb suffixes: �-al� -ar� -ic� -ical� -ed� -ive�,
�-al� -ly� -ally�. Sample rules addressing vocabulary in-
competence errors are shown in Fig. 2(c).

3.5. Other Spelling Error Types

The above-described errors are typical for a typed text. If
the way of introducing the text into a computer is differ-
ent, other spelling errors may appear. The rules covering
errors introduced during the optical character recognition
stage reflect such situations like misinterpreting the pair
of letters ni as a single letter m, misinterpreting the let-
ter e as c, and similar. In our implementation, we assume
that the text is typed, so such OCR-specific rules are ab-
sent from the set of rules examined in the experiments de-
scribed in Section 6.



S. Deorowicz and M.G. Ciura280

3.6. Gathering It All Together

There are a number of substitution rules that may lead to
a lot of suggestions. Since higher cost means smaller rel-
evance between the suggestion and the original non-word
we define a maximal cost of suggestion acceptance. In
our method, all possible words which can be obtained us-
ing substitution rules from the non-word, which do not
exceed the maximum cost are examined. We, however, re-
frain from overlapping the rules. If there are several ways
of obtaining a suggestion from the non-word (using vari-
ous rules), we choose the one with the lowest cost.

All suggestions are sorted according to decreasing
costs. The ones with equal costs are sorted according to
the length of the common prefix of the non-word and the
suggestion. Such a criterion extends the observation (Mit-
ton, 1987; Pollock and Zamora, 1983) that the first letter
of the non-word and of the correct word are rarely dif-
ferent. If some words have the same costs and the same
lengths of the common prefixes, they are sorted according
to the length of the common suffixes with the non-word.
The last criterion is lexicographical ordering.

Substitution rules modelling spelling errors have
been, in general, hand-crafted. We, however, used the
research described in (Church and Gale, 1991; Grudin,
1983) to develop rules for mistypings. The discussion
on grapheme representations of phonemes described in
(Jassem, 1983; Mateescu, 2003) has been used to prepare
rules handling misspellings. Rules handling vocabulary
incompetence errors result from the analysis of the de-
scription presented in (Merriam-Webster, 2002). Some
additional rules (a few) are also based on our experience.
The costs for the rules were selected according to the ex-
periments with the aspell corpus.4 Therefore, the results
for this data set cannot be considered objective. We, how-
ever, tried to refrain from tuning to this data set.

Our model is, of course, a bit simplistic, since we
ignore some more complicated cases of spelling errors,
e.g., people’s attempt to spell a word by analogy with an-
other word, which is often when the correct spelling is un-
known. Such spelling errors are, however, hard to cover
with such a simple strategy of modelling errors by substi-
tution rules.

4. Minimal Acyclic Deterministic Finite
Automaton as Lexicon Representation

One of the most important decisions in the development
of a spelling checking solution is the choice of lexicon
representation. There is no single answer which way is
the best since the problem has to be considered together
with the method of correcting spelling errors.

4 This data set will be introduced in Section 6.

We propose to use a minimal ADFA (Fig. 3), simi-
larly to (Mihov and Schulz, 2004; Oflazer, 1996; Savary,
2001; Schulz and Mihov, 2002), which allows storing the
lexicon in a compact form. There are highly efficient static
algorithms for making, searching, and listing the minimal
ADFA (Ciura and Deorowicz, 2001; Daciuk et al., 2000).
(In the research, we use ADFAs with terminal transitions,
the so-called Mealy automata.) The making algorithm is
fast, but requires an alphabetically sorted list of words,
and there is no simple method to delete or insert a word
into an existing minimal ADFA. Fortunately, the lexicon
for a spellchecker is fixed and there is no need to extend
it, so these limitations are unimportant. If necessary, there
are also ways of maintaining the minimal ADFA dynam-
ically (Carrasco and Forcada, 2002; Daciuk et al., 2000),
but these methods are slower, and we do not consider them
further.

The usage of such a lexicon representation allows
fast checking for the existence of a word in the lexicon
during the spelling detection stage, and also helps to eas-
ily employ substitution rules during the spelling correction
stage.

START:

d

e f

n

i

e

t r

i

i n

e
y

y
g

d

s

Fig. 3. Minimal ADFA storing a lexicon: {defied,
defies, defy, defying, denied, denies, deny,
denying, trie, tried, tries, try, trying}. Thick
arrows indicate terminal transitions.

5. Implementation Details

Vocabulary incompetence errors, misspellings, and almost
all mistypings are handled by substitution rules. A word’s
splitting is, however, implemented separately. The algo-
rithm of our spelling correction method is presented in
Fig. 4.

The parameters of the procedure ��� are: ����—
the examined non-word, �—the current position in ���� ,
�����—a transition pointing to the next state, 	���—a to-
tal cost of substitution rules employed so far. In the initial
execution of this procedure, � � �, 	��� � �, and �����

is the transition pointing to the starting state. The variable
���� contains the examined non-word at the beginning,
but during the process it is a variant of the original non-
word obtained from it by a sequence of substitutions or
transpositions.



Correcting spelling errors by modelling their causes 281

procedure �������� � �� ����� � 	����;
begin

01 if ����� � NIL or 	��� � 
��_	��� then return;
end if;

02 ������ ����� ����� ; � � �����������;
03 if � � � and ���������
��� then

���_��������������� � 	����; end if;
04 if � � � then return; end if;

{increment the word position (�)}
05 �������� � �� ��
��������� �������� 	��� �;

{try all applicable substitutions}
06 for all 	 � ������������_��������� � �� do
07 ����������������� ����_��� ��

�����������������_����������

�� ������� ����_�����

��������� � � ����_����� 	��� � � �	��� �;

08 end for;
{try to split the word}

09 if ���������
��� then
10 �������������������	� ������������� �� ��

�����_��_����� � 	��� �
��;
11 end if;

end;

Fig. 4. Pseudocode of the spelling correction method imple-
mented in our approach. (The operator �� means string
concatenation and space means a space character.)

The lines 01–04 validate the current transition, �����,
and examine if we are at the end of the current word or
beyond the end. The procedure ���_���������� adds
a ���� to the list of suggestions. It is executed if the
current transition is terminal. In the line 05, we simply
move one letter forward in the word ���� . The func-
tion ���� traverses the ADFA from the state pointed by
the ����� according to the string given as its second pa-
rameter. It returns the transition for the last letter of the
traversed sequence. It is necessary to obtain the transi-
tion, not the pointed state, since we have to verify in the
procedure whether the last traversed transition was termi-
nal or not. When there is no possibility to traverse the
ADFA, i.e., there is no transition related with the letter,
the function ���� returns NIL. The lines 06–08 imple-
ment the application of substitution rules, which are ap-
plied to the actual position of the ���� . The substitution
rules are stored using a hash table of a size a bit larger
than the number of rules. Therefore, they can be eas-
ily accessed. The function ������������_���� returns a
set of triples ���_��� � ���_��� � ����� describing the rules
that can be applied in the current position, �, in the word.
(If the subindex of the word ���� exceeds the length of
the ���� , an empty character is returned.)

A special case of mistypings—a deletion of the space
between consecutive words—reflects in a sequence of let-
ters being joined words. We handle such a situation in
the lines 09–11, where the current word is split (the vari-

able 	� means the cost of splitting a word and is also
defined by a rule). We insert a space character (denoted
in the figure as space) into the word and start searching
from the starting state of the ADFA (the global variable
trans_to_start means the transition pointing the starting
state), since we are looking for another correct word (or
try to change the remaining part of the sequence of letters
to be a correct word).

6. Experimental Results

To evaluate our spelling checking method, we chose two
data sets containing real-world spelling errors. The first
one, aspell, is a collection of hard-to-correct errors used
for testing GNU Aspell (Atkinson, 2002). The second
one, wikipedia, is a data set of typical spelling errors
made by the editors of the Wikipedia Project (Wikipedia,
2003).5 The Wikipedia is edited by many people from the
whole world, so the spelling errors are of any kind and re-
flect spelling problems of different people. The structure
of these collections is as follows: The aspell data set con-
tains pairs: wrong word–correct word. The wikipedia data
set is a bit more complex. With a single wrong word one
or more correct forms is related, as the same wrong word
can appear as a spelling error from several correct words.
The fraction of wrong words with more than one correct
word related is, however, small, about �	.

We compare our proposition with three popular
spellcheckers: Ispell, GNU Aspell, and Microsoft Word6

built-in spellcheckers.7 (All the examined spellcheckers
make no use of contextual information, similarly to our
approach.) To provide an honest comparison of spelling
correction methods, not the lexicon contents, the spelling
errors were filtered to remove all wrong words for which
the correct form (or at least one correct form for wikipedia)
did not appear in all the three basic lexicons: Ispell Amer-
ican Extra Large, Aspell American, Word 97. After such
a filtering, aspell and wikipedia data sets contain respec-
tively ��� and ���� wrong words. Our method can be
used with any list of words but for the experiments we de-
cided to use the same word list as GNU Aspell, containing

�� ��� entries, to avoid tuning the lexicon contents to the
collections.

Unfortunately, we were unable to compare our ap-
proach to the ones presented recently in (Brill and Moore,
2000; Toutanova and Moore, 2002). The authors report
impressive results, but they examine the proposed solu-
tions on a set of errors, which is not publicly available and
we cannot obtain it for tests. Also, the implementation of

5 These sets of spelling errors contain no information on the context.
6 We used the GetSpellingSuggestions method from Word’s Vi-

sual Basic for Applications to obtain the list of suggestions.
7 In all spellcheckers, the American English dictionaries were used.



S. Deorowicz and M.G. Ciura282

the algorithms, the data sets used for their training, and
the lexicons used are unavailable.

It would be ideal to choose the same lexicon for all
the spellcheckers. Unfortunately, we were unable to do
so, since word lists are usually integrated into spellcheck-
ers. The only thing we could do was choosing the size
of the lexicons for the Ispell program to be similar to the
others. The sizes of the examined spellchecker lexicons
were: Ispell—
�� ���, Aspell—
�� ���. The developer
of the MS-Word built-in spellcheckers does not publish
any information on the size of the lexicons. With respect
to our preliminary experiments we can only estimate these
sizes to be about 
�� ��� for Word 97 and over ��� ���
for Word 2000 and Word 2003.

Because of language evolution, some wrong words
from our data sets exist in spellcheckers’ lexicons as cor-
rect words. Therefore, we cannot obtain a list of sugges-
tions for them. Fortunately, the fraction of such words is
small (the columns denoted as Present words in the tables
give the number of wrong words from our data sets ex-
isting in the spellcheckers’ lexicons). To calculate the ac-
curacy of the spellchecker, we proceeded as follows. For
each pair ������_���� � ���_�� _	����	�_������ (for as-
pell the list contains only one word, but for wikipedia in
about �	 cases it is longer), we check the wrong_word.
If it exists in the spellchecker’s lexicon, we increment the
�� counter (number of Present words). If it is absent from
the lexicon, we obtain the list_of_suggestions. Then we
increment all the counters �� (
 � 
 � 
�) for which
any of the forms from the list_of_correct_forms appears
within the top 
 positions of the list_of_suggestions. The
values Top-
 (for 
 � 
 � 
�) denoting the accuracy of
suggestions is calculated as

Top-
 �
��

�� � ��
� 
��	�

where �� denotes the number of pairs in the data set.

The experiments were made for the Ispell program,
the four modes of the GNU Aspell program, the three ver-
sions of the Microsoft Word program, and our proposal.
Table 1 shows the results of all the examined methods for
the aspell data set; the best methods from each family are
also compared graphically in Fig. 5(a). As can be ob-
served, the percentage of accurate words returned as the
first suggestion by the spellcheckers is rather small, and
does not exceed ��	. Only three programs break the ��	
threshold, i.e., Word 2000, Word 2003, and our proposi-
tion, which provides the best result. If we compare the
ratios Top-
, we can observe that our solution is best for
all 
 � �, and only for 
 � 
� GNU Aspell is better.
In the real world, the ideal situation is, however, to pro-
pose the correct form as the first suggestion, or in a very
early position as the user can be confused obtaining a list
of many suggestions. The more important is, therefore, to

Table 1. Experimental results on the aspell data set (525 errors).
(The column Present words contains the number of
wrong words appearing in the spellcheckers’ lexicons.)

Method Present Top-� Top-� Top-� Top-� Top-��
words [%] [%] [%] [%] [%]

Ispell �� �	�� 
��	 
��� ���� ����

Aspell (fast) �
 �	�
 	��� ���� ���� �
��

Aspell (ultra) �
 �
�	 	
�� ���� ��� ���

Aspell (normal) �
 �	� 		� �
�
 ���� ���

Aspell (bad spellers) �
 ���	 	��� ���� ��� ����

Word 97 �� ��� 	��� 	�� ���� ���	

Word 2000 �� 	��	 ���� �
�� ���� ����

Word 2003 �� 	��� ���� �
�� ���� ����

our �
 		�� ���� ��	 ���	 ����

Table 2. Experimental results on the wikipedia data
set (2240 errors). (The column Present
words contains the number of wrong words
appearing in the spellcheckers’ lexicons.)

Method Present Top-� Top-� Top-� Top-� Top-��
words [%] [%] [%] [%] [%]

Ispell 	� �	�� ���� ���� ���� ���


Aspell (fast) 

 ���� ��� 
�� ��	 	��

Aspell (ultra) 

 ���� ��� 
�� ��	 	��

Aspell (normal) 

 �
�� ��� ��	 ��
 ���

Aspell (bad spellers) 

 ���
 �� ��� ��
 ���

Word 97 �� ��� ��� 
�� 
�� ���

Word 2000 
� ��� ��
 	�� 	�
 	��

Word 2003 
� ��	 ��� 	�� 	�� 	�	

our 

 
�� ��
 ��� �� ��

propose the highest possible fraction of accurate sugges-
tions at the top of the list. Since the substitution rules, in
our research, were adjusted according to the experiments
with the aspell data set, the results cannot be considered
objective.

The second experiment, performed on the wikipedia
data set, is impartial, since the errors from this corpus
were absent from the training data. Table 2 contains the
results, while Fig. 5(b) provides the graphical compari-
son of the best methods. Since the spelling errors from
this corpus are typical, the ratio of accurate suggestions is
much higher. Three methods produce over ��	 of accu-
rate suggestions in the first position of the list. The rank-
ing of the spellcheckers is similar—again our proposal of-
fers the highest fraction of accurate suggestions in the first
position. Even if we compare the methods using the Top-

ratio, for all 
 � 
� our algorithm outperforms the others.



Correcting spelling errors by modelling their causes 283

Table 3. Average times necessary to produce a
list of suggestions of a maximal length
10 for the compared spellcheckers.

Method wikipedia set aspell set
[ms/word] [ms/word]

Ispell ���� ����

Aspell (fast) ��
� 
���

Aspell (ultra) ���� ����

Aspell (normal) ����
 ����

Aspell (bad spellers) ����	 ����

Word 97 ���
� ����


Word 2000 ���
	 �	���

Word 2003 ����
 �����

our ���� ���

We measured also the speed of spelling correction of
the examined methods on a computer equipped with an
Athlon XP 2500+ processor clocked at 1833 MHz. The
results (Table 3) show that the fastest algorithm is Ispell.
Approximately, it is three times faster than our approach.
Ispell, however, covers only mistypings and offers poor re-
sults when we measure the accuracy of suggestions. The
speeds of algorithms from the Aspell family are highly di-
versified, and the version offering the most accurate sug-
gestions, Aspell normal, is about 30–40 times slower than
our proposal. The spellcheckers implemented in Word are
also much slower, about 10 times, than our solution.

We cannot compare directly our solution to the one
described in (Brill and Moore, 2000), since we used dif-
ferent data sets and ran our implementation on approx-
imately a 3–4 times faster processor. Nevertheless, we
can roughly say that our solution is several times faster,
since the method based on the noisy channel produces a
list of suggestions in about 50 milliseconds on Pentium
III clocked at 500 MHz, and we do that in less than 2 mil-
liseconds on Athlon XP 2500+ clocked at 1833 MHz.

To make future comparisons possible, we
provide the set of rules used in our research at
http://www-zo.iinf.polsl.gliwice.pl/
~sdeor/pub/dc05abs.htm. At the same URL
the contents of the aspell and wikipedia collections are
available.

7. Conclusions

We proposed a method of spelling correction based on
modelling causes of errors. Using substitution rules we
model classic types of spelling errors: vocabulary incom-
petence, misspellings, mistypings. Other error types, as
OCR-related, can also be handled by our proposal. The

� � � � � 
�

��

��

��

��

��

��

Aspell normal

Word 2003

Ispell

our method

Top positions in the suggestion list

(a) aspell data set

� � � � � 
�
��

��

��

��

��


��

Aspell normal

Word 2003

Ispell

our method

Top positions in the suggestion list

(b) wikipedia data set

Fig. 5. Comparison of the accuracy of suggestions for aspell
and wikipedia data sets. (At the vertical axes, the per-
centage of accurate suggestion is given.)

lexicon is represented as a minimal acyclic determinis-
tic finite automaton, therefore it is compact and spell-
checking is extremely fast—a word can be verified in less
than a microsecond on a modern PC. Spelling correction
is slower, because many words are examined as potential
candidates for correct forms of a non-word. The time de-
pends on the type of errors, the number of suggestions,
and the lexicon size. We examined two different sets of
spelling errors: difficult to correct, aspell, and typical,
wikipedia. The time necessary to produce the suggestion
list was about 
�� millisecond per single case. The lexicon
size was 
�� ��� and the maximal number of suggestions
was set to 
�. Our algorithm outperforms the other ex-
amined methods of spell-checking in the ratio of accurate
suggestions and speed.

Our method can be applied to many languages (it suf-
fices to collect a set of correct words and define substitu-



S. Deorowicz and M.G. Ciura284

tion rules covering errors typical for the language), ex-
cept for some truly agglutinative languages, like Turkish,
Finnish, etc., since their lexicons cannot be represented
as AFDAs. The proposed method of producing the list
of suggestions can be, however, used also for cyclic de-
terministic finite automata that can be employed to rep-
resent lexicons for such languages. For a clear presenta-
tion, we discussed, however, only the correction of En-
glish spelling errors.

The costs of rules in our implementation are integer
numbers from the range �
� �. In the proposed set of rules,
we adjusted the costs according to the experiments on one
of the test data sets of real errors. The results of correction
could be slightly improved if the costs were selected more
precisely. We, however, tried to refrain from tuning the set
of rules to the chosen sets of spelling errors.

The main disadvantage of our proposal is its restric-
tion to an isolated-word spelling detection and correc-
tion problem. An intention of this paper is, however, to
show how good suggestions can be proposed when we
resign from contextual information. The method can be
also employed as a part of a more complex contextual
spellchecker as a generator of suggestions which are later
ranked according to the context.

An important problem in real applications is that we
use a static ADFA, which forbids users to extend the lexi-
con with new words or prepare their own private lexicons.
This can be, however, handled thanks to the second ADFA
storing only the user’s private lexicon, which is typically
much smaller than the main one. The user’s ADFA can be
implemented dynamically. Also, a static automaton (re-
built when necessary) is an interesting proposal, since for
lexicons smaller than 10,000 words the ADFA is rebuilt
with in a few milliseconds on contemporary computers.
The list of suggestions obtained from the second ADFA,
searched in the same way like the main ADFA, and the
main list can be merged in order to offer a single list to the
user.

Acknowledgments

We would like to thank Szymon Grabowski for reading a
preliminary version of this paper and suggesting improve-
ments. We are also grateful to the referees for their com-
ments on the paper, which helped to make the presentation
clearer.

References

Atkinson K. (2002): Spell checker test kernel results. — Avail-
able at http://aspell.net/test/.

Atkinson K. (2003): GNU Aspell. — Available at http://
aspell.sourceforge.net/.

Baeza-Yates R. and Navarro G. (1998): Fast approximate string
matching in a dictionary. — Proc. 5th Int. Symp. String
Processing and Information Retrieval, SPIRE’98, Santa
Crus de la Sierra, Bolivia, pp. 14–22.

Berkel B. van and Smedt K.D. (1988): Triphone analysis: A
combined method for the correction of orthographical and
typographical errors. — Proc. 2nd Conf. Applied Natural
Language Processing, Austin, pp. 77–83.

Brill E. and Moore R.C. (2000): An improved error model for
noisy channel spelling correction. — Proc. 38th Annual
Meeting of the Association for Computational Linguistics,
Hong Kong, pp. 286–293.

Carrasco R. and Forcada M. (2002): Incremental construc-
tion and maintenance of minimal finite-state automata. —
Comput. Linguistics, Vol. 28, No. 2, pp. 207–216.

Church K.W. and Gale W.A. (1991): Probability scoring for
spelling correction. — Statist. Comput., Vol. 1, No. 1,
pp. 93–103.

Ciura M.G. and Deorowicz S. (2001): How to squeeze a lexicon.
— Soft. Pract. Exper., Vol. 31, No. 11, pp. 1077–1090.

Czech Z.J., Havas G. and Majewski B.H. (1997): Perfect hash-
ing. — Theoret. Comput. Sci., Vol. 182, No. 1–2, pp. 1–
143.

Daciuk J., Mihov S., Watson B.W. and Watson R.E. (2000): In-
cremental construction of minimal acyclic finite-state au-
tomata. — Comput. Linguistics, Vol. 26, No. 1, pp. 3–16.

Damerau F.J. (1964): A technique for computer detection and
correction of spelling errors. — Comm. ACM, Vol. 7,
No. 3, pp. 171–176.

Damerau F.J. (1990): Evaluating computer-generated domain-
vocabularies. — Inf. Process. Manag., Vol. 26, No. 6,
pp. 791–801.

Damerau F.J. and Mays E. (1989): An examination of undetected
typing errors. — Inf. Process. Manag., Vol. 25, No. 6,
pp. 659–664.

Darragh J.J., Cleary J.G. and Witten I.H. (1993): Bonsai: A
compact representation of trees. — Softw. Pract. Exper.,
Vol. 23, No. 3, pp. 277–291.

Gadd T.N. (1990): PHONIX: The algorithm. — Program: Au-
tomat. Library Inf. Syst., Vol. 24, No. 4, pp. 363–366.

Grudin J. (1983): Error patterns in skilled and novice transcrip-
tion typing, In: Cognitive Aspects of Skilled Typewrit-
ing, (W.E. Copper, Ed.). — New York: Springer-Verlag,
pp. 121–143.

Hodge V.J. and Austin J. (2003): A comparison of standard
spell checking algorithms and a novel binary neural ap-
proach. — IEEE Trans. Knowl. Data Eng., Vol. 15, No. 5,
pp. 1073–1081.

Jassem W. (1983): The Phonology of Modern English. — War-
saw: Polish Scientific Publishers.

Knuth D.E. (1973): The Art of Computer Programming (Vol. 3.
Sorting and Searching Algorithms). — Reading, MA:
Addison–Wesley.



Correcting spelling errors by modelling their causes 285

Kuenning G.H. (2003): International ispell. — Available at
http://www.cs.hmc.edu/~geoff/ispell.
html.

Kukich K. (1988): Variations on a back-propagation name
recognition net. — Proc. Advanced Technology Confer-
ence, U.S. Postal Service, Wash. D.C., USA, pp. 722–735.

Kukich K. (1992): Techniques for automatically correcting
words in text. — ACM Comput. Surveys, Vol. 24, No. 4,
pp. 377–439.

Levenshtein V.I. (1966): Binary codes capable of correcting
deletions, insertions and reversals. — Soviet Physics Dok-
lady, Vol. 10, pp. 707–710.

Maly K. (1976): Compressed tries. — Comm. ACM, Vol. 19,
No. 7, pp. 409–415.

Mateescu D. (2003): English phonetics and phonological
theory. — University of Bucharest, Romania. Available at
http://www.unibuc.ro/eBooks/filologie/
mateescu

Merriam-Webster (2002): A dictionary of prefixes, suffixes, and
combining forms from Webster’s third new international
dictionary, unabridged. — Merriam–Webster. Available
at http://www.spellingbee.com/pre_suf_
comb.pdf

Mihov S. and Schulz K.U. (2004): Fast approximate search in
large dictionaries. — Comput. Linguistics, Vol. 30, No. 4,
pp. 451–477.

Mitton R. (1987): Spelling checkers, spelling correctors, and
the misspellings of poor spellers. — Inf. Process. Manag.,
Vol. 23, No. 5, pp. 495–505.

Mitton R. (1996): Spellchecking by computer. — J. Simplif.
Spell. Soc., Vol. 20. No. 1, pp. 4–11.

Morrison D.R. (1968): PATRICIA—Practical Algorithm to Re-
trieve Information Coded in Alphanumeric. — J. ACM,
Vol. 15, No. 4, pp. 514–534.

Odell M.K. and Russell R.C. (1918): U.S. Patent Numbers,
1,261,167 (1918) and 1,435,663 (1922). — U.S. Patent Of-
fice, Washington, D.C.

Oflazer K. (1996): Error-tolerant finite-state recognition with
applications to morphological analysis and spelling cor-
rection. — Comput. Linguistics, Vol. 22, No. 1, pp. 73–89.

Peterson J.L. (1986): A note on undetected typing errors. —
Comm. ACM, Vol. 29, No. 7, pp. 633–637.

Philips L. (1990): Hanging on the metaphone. — Comput. Lang.
Mag., Vol. 7, No. 12, pp. 38–44.

Philips L. (2000): The double metaphone search algorithm. —
C/C++ Users Journal, Vol. 18, No. 6.

Pollock J.J. and Zamora A. (1983): Collection and characteri-
zation of spelling errors in scientific and scholary text. —
J. Amer. Soc. Inf. Sci., Vol. 34, No. 1, pp. 51–58.

Pollock J.J. and Zamora A. (1984): Automatic spelling cor-
rection in scientific and scholarly text. — Comm. ACM,
Vol. 27, No. 4, pp. 358–368.

Savary A. (2001): Typographical nearest-neighbor search in a
finite-state lexicon and its application to spelling correc-
tion. — Lect. Notes Comput. Sci., Vol. 2494, pp. 251–260.

Schulz K.U. and Mihov S. (2002): Fast string correction with
Levenshtein-automata. — Int. J. Docum. Anal. Recognit.,
Vol. 5, No. 1, pp. 67–85.

Toutanova K. and Moore R.C. (2002): Pronunciation modelling
for improved spelling correction. — Proc. 40th Annual
Meeting of the Association for Computational Linguistics,
Hong Kong, pp. 144–151.

Wagner R.A. (1974): Order-� correction for regular languages.
— Comm. ACM, Vol. 17, No. 5, pp. 265–268.

Wikipedia (2003): Wikipedia: List of common misspellings. —
Available at http://en2.wikipedia.org/wiki/
Wikipedia:List_of_common_misspellings.

Yannakoudakis E.J. and Fawthrop D. (1983a): An intelli-
gent spelling corrector. — Inf. Process. Manag., Vol. 19,
No. 12, pp. 101–108.

Yannakoudakis E.J. and Fawthrop D. (1983b): The rules of
spelling errors. — Inf. Process. Manag., Vol. 19, No. 2,
pp. 87–99.

Received: 7 January 2005
Revised: 25 February 2005




